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Abstract

This paper delves into the realm of stochastic optimiza-
tion for compositional minimax optimization—a pivotal chal-
lenge across various machine learning domains, including
deep AUC and reinforcement learning policy evaluation. De-
spite its significance, the problem of compositional minimax
optimization is still under-explored. Adding to the complex-
ity, current methods of compositional minimax optimization
are plagued by sub-optimal complexities or heavy reliance on
sizable batch sizes. To respond to these constraints, this paper
introduces a novel method, called Nested STOchastic Recur-
sive Momentum (NSTORM), which can achieve the optimal
sample complexity and obtain the nearly accuracy solution,
matching the existing minimax methods. We also demon-
strate that NSTORM can achieve the same sample complexity
under the Polyak-Lojasiewicz (PL)-condition—an insightful
extension of its capabilities. Yet, NSTORM encounters an is-
sue with its requirement for low learning rates, potentially
constraining its real-world applicability in machine learning.
To overcome this hurdle, we present ADAptive NSTORM
(ADA-NSTORM) with adaptive learning rates. We demon-
strate that ADA-NSTORM can achieve the same sample com-
plexity but the experimental results show its more effective-
ness. All the proposed complexities indicate that our pro-
posed methods can match lower bounds to existing minimax
optimizations, without requiring a large batch size in each it-
eration. Extensive experiments support the efficiency of our
proposed methods.

Introduction
In recent years, minimax optimization theory has been con-
sidered more attractive due to the broad range of machine
learning applications, including generative adversarial net-
works (Goodfellow et al. 2014; Arjovsky, Chintala, and Bot-
tou 2017; Gulrajani et al. 2017), adversarial training of deep
neural networks (Madry et al. 2018; Wang et al. 2021; Qu
et al. 2023), robust optimization (Chen et al. 2017; Mohri,
Sivek, and Suresh 2019; Qu et al. 2022), and policy evalua-
tion on reinforcement learning (Sutton and Barto 2018; Hu
et al. 2019; Zhang et al. 2021). At the same time, many ma-
chine learning problems can be formulated as compositional
optimizations, for example, model agnostic meta-learning
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(Finn, Abbeel, and Levine 2017; Gao, Li, and Huang 2022)
and risk-averse portfolio optimization (Zhang and Lan 2020;
Shapiro, Dentcheva, and Ruszczynski 2021). Due to the im-
portant growth of these two problems in machine learning
fields, the compositional minimax problem should be also
clearly discussed, which can be formulated as follows:

min
x∈X

max
y∈Y

f(g(x), y) ≜ Eζf(Eξ[g(x; ξ)], y; ζ), (1)

where g(·) : X → Rd, f(·, ·) : (Rd,Y) → R, ξ ∈ Ξ,
ζ ∈ Ω, X and Y are convex and compact sets. Suppose that
f(g(x), y) is a strongly concave objective function with re-
spect to y for all x ∈ X .

Numerous research studies have been dedicated to inves-
tigating the convergence analysis of minimax optimization
problems (Nemirovski et al. 2009; Palaniappan and Bach
2016; Lin, Jin, and Jordan 2020; Yang, Kiyavash, and He
2020; Chen et al. 2020; Rafique et al. 2022) across di-
verse scenarios. Various methodologies have been devised
to address these challenges. Approaches such as Stochas-
tic Gradient Descent Ascent (SGDA) have been proposed
(Lin, Jin, and Jordan 2020), accompanied by innovations
like variance-reduced SGDA (Luo et al. 2020; Xu et al.
2020) that aim to expedite convergence rates. Moreover, the
application of Riemannian manifold-based optimization has
been explored (Huang, Gao, and Huang 2020) across differ-
ent minimax scenarios, showcasing the breadth of method-
ologies available. However, all of these methods are only de-
signed for the non-compositional problem. It indicates that
the stochastic gradient can be assumed as an unbiased esti-
mation of the full gradient of both the two sub-problems. Be-
cause it is too difficult to get an unbiased estimation in com-
positional optimization, these methods cannot be directly
used to optimize the compositional minimax problem.

Recent efforts have yielded just two studies on the non-
convex compositional minimax optimization problem (1),
named Stochastic Compositional Gradient Descent Ascent
(SCGDA) (Gao et al. 2021) and Primal-Dual Stochastic
Compositional Adaptive (PDSCA) (Yuan et al. 2022). How-
ever, they only can obtain the sample complexity O(κ4/ϵ4)
for achieving the ϵ-accuracy solution, which limits the appli-
cability in many machine learning scenarios. Consequently,
there is a pressing need to devise a more streamlined ap-
proach capable of tackling this challenge. In addition, some
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compositional minimization optimizations have been pro-
posed, such as SCGD (Wang, Fang, and Liu 2017), STORM
(Cutkosky and Orabona 2019), and RECOVER (Qi et al.
2021). They may not be directly utilized for the minimax
problem (1), because the minimization of objective f(g(x))
depends on the maximization of objective f(g(x), ·) for any
x ∈ X . Furthermore, the combined errors from Jacobian and
gradient estimators worsen challenges in both sub-problems.
We aim to develop an approach effectively tackling the com-
positional minimax problem (1), optimizing sample com-
plexities efficiently, without requiring a large batch size.

In this paper, to address the aforementioned challenges,
we first develop a novel Nested STOchastic Recursive
Momentum (NSTORM) method for the problem (1). The
NSTORM method leverages the variance reduction tech-
nique (Cutkosky and Orabona 2019) to estimate the in-
ner/outer functions and their gradients. The theoretical result
shows that our proposed NSTORM method can achieve the
optimal sample complexity of O(κ3/ϵ3). To the best of our
knowledge, NSTORM is the first method to match the best
sample complexity in existing minimax optimization studies
(Huang, Wu, and Hu 2023; Luo et al. 2020) without requir-
ing a large batch size. We also demonstrate that NSTORM
can achieve the same sample complexity under the Polyak-
Łojasiewicz (PL)-condition, which indicates an insightful
extension of NSTORM. In particular, the central idea of our
proposed NSTORM method and analysis has two aspects: 1)
the variance reduction is applied to both function and gradi-
ent values, which is different from (Gao et al. 2021; Yuan
et al. 2022) and 2) the estimator of the inner gradient ∇g(x)
is updated with a projection to ensure that the error can be
bounded regardless of the minimization sub-problem. Fur-
thermore, because NSTORM requires a small learning rate
to obtain the optimal sample complexity, it may be difficult
to set in real-world scenarios. To address this issue, we take
advantage of adaptive learning rates in NSTORM and de-
sign an adaptive version, called ADAptive NSTORM (ADA-
NSTORM). We also demonstrate that ADA-NSTORM can
also obtain the same sample complexity as NSTORM, i.e.,
O(κ3/ϵ3) and performs better in practice without tuning the
learning rate manually.

Related Work
Compositional minimization problem: The compositional
minimization optimization problem is common in many
real-world machine learning scenarios, e.g., meta-learning
(Finn, Abbeel, and Levine 2017) and risk-averse portfolio
optimization (Zhang and Lan 2020), which can be defined
as follows:

min
x

f(g(x)) ≜ Eζf(Eξ[g(x; ξ)]; ζ). (2)

A typical challenge to optimizing the compositional min-
imization problem is that we cannot obtain an un-
biased estimation of the full gradient by SGD, i.e.,
Eξ,ζ [∇g(x; ξ)⊤∇gf(g(x; ξ), ζ)] ̸= ∇g(x)⊤∇gf(g(x)). To
address this issue, some methods have been developed in
the past few years. For example, (Wang, Fang, and Liu
2017) uses stochastic gradient for the inner function value

when computing the stochastic gradient. However, the con-
vergence rate only can achieve O(1/ϵ8) for the nonconvex
objective, which has an obvious convergence gap to the reg-
ular SGD method. To improve the convergence speed, some
advanced variance reduction techniques have been leveraged
into Stochastic Compositional Gradient Descent (SCGD)
(Wang, Fang, and Liu 2017). For example, SAGA (Zhang
and Xiao 2019a), SPIDER (Fang et al. 2018), and STORM
(Cutkosky and Orabona 2019) were leveraged into SCGD
and achieved a better convergence result, i.e., O(1/ϵ3). Re-
cently, some studies (Yuan, Lian, and Liu 2019; Zhang and
Xiao 2021; Jiang et al. 2022; Tarzanagh et al. 2022) bridged
the gap between stochastic bilevel or multi-level optimiza-
tion problems and stochastic compositional problems, and
developed efficient methods. However, all of these methods
only investigated the convergence result for minimization
problems, ignoring the maximization sub-problem.
Minimax optimization problem: The minimax optimiza-
tion problem is an important type of model and leads to
many machine learning applications, e.g., adversarial train-
ing and policy optimization. Typically, the minimax opti-
mization problem can be defined as follows:

min
x∈Rd1

max
y∈Y

f(x, y) ≜ Eξf(x, y; ξ). (3)

Note that both x and y in (3) are trained from the same
dataset. Currently, the prevailing approach for solving mini-
max optimization problems involves alternating between op-
timizing the minimization and maximization sub-problems.
Stochastic Gradient Descent Ascent (SGDA) methods (Lin,
Jin, and Jordan 2020; Yan et al. 2020; Yuan and Hu 2020)
have been proposed as initial solutions to address this
problem. Subsequently, accelerated gradient descent ascent
methods (Luo et al. 2020; Xu et al. 2020) emerged, lever-
aging variance reduction techniques to tackle stochastic
minimax problems based on the variance reduction tech-
niques. Additionally, research efforts have been made to
explore non-smooth nonconvex-strongly-concave minimax
optimization (Huang, Gao, and Huang 2020; Chen et al.
2020). Moreover, (Huang, Gao, and Huang 2020) proposed
the Riemannian stochastic gradient descent ascent method
and some variants for the Riemannian minimax optimization
problem. (Qiu et al. 2020) reformulated nonlinear temporal-
difference learning as a minimax optimization problem and
proposed the single-timescale SGDA method. However, all
of these methods fail to address the compositional structure
inherent in the compositional minimax optimization prob-
lem presented in (1).

The Proposed Method
Design Challenge
Compared to the conventional minimax optimization prob-
lem, the main challenge in compositional minimax op-
timization is that we cannot obtain the unbiased gradi-
ent of the objective function f . Although we can access
the unbiased estimation of each function and its gradi-
ent, i.e., Eξ[g(x; ξ)] = g(x), Eζ [f(y; ζ)] = f(y) and
Eζ [∇f(y; ζ)] = ∇f(y), it is still difficult to obtain an unbi-
ased estimation of the gradient ∇f(g(x), y). This is due to
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the fact that the expectation over ξ cannot be moved into the
gradient ∇f , i.e., Eξ,ζ [∇f(g(x; ξ), y; ζ)] ̸= ∇f(g(x), y).
Similarly, we cannot get the unbiased estimation of the func-
tion value f such that Eξ,ζ [f(g(x; ξ), y; ζ)] ̸= f(g(x), y).

Motivated by the aforementioned challenge, one poten-
tial approach to improve the evaluation of both function
values and Jacobians is to utilize variance-reduced esti-
mators. These estimators can effectively reduce estimation
errors. However, applying variance-reduced estimators di-
rectly to minimax optimization in compositional minimiza-
tion (Zhang and Lan 2020; Qi et al. 2021) is not straight-
forward. This is because if the estimators for Jacobians are
not bounded, the estimation error may increase for the max-
imization sub-problem. In order to address this issue, (Gao
et al. 2021) and (Yang, Zhang, and Fang 2022) have devel-
oped SCGDA and PDSCA methods to approach the compo-
sitional minimax optimization, respectively. However, they
only obtain the sample complexity as O(κ4/ϵ4) to achieve ϵ-
accuracy solution, which is much slower than existing com-
positional minimization or minimax optimization methods.
To obtain the optimal sample complexity without requir-
ing large batch sizes, our proposed method modifies the
STORM (Cutkosky and Orabona 2019; Jiang et al. 2022)
estimator and incorporates gradient projection techniques.
This modification ensures that the Jacobians can be bounded
for the minimization sub-problem and the gradients are pro-
jected onto a convex set for the maximization problem,
thereby reducing gradient estimation errors.

Nested STOchastic Recursive Momentum
(NSTORM)
In this subsection, we will present our proposed method,
named the Nested STOchastic Recursive Momentum
(NSTORM), to solve the compositional minimax problem
in (1). We aim to find an ϵ-accuracy to achieve low sample
complexity without using large batch sizes.

Our proposed NSTORM method is illustrated in Algo-
rithm 1. Inspired by STROM (Cutkosky and Orabona 2019),
the NSTORM method leverages similar variance-reduced
estimators for both the two sub-problems in (1). Note that
our goal is to find an ϵ-stationary point with low sample
complexity. As we mentioned before because we cannot ob-
tain the unbiased estimation of ∇xf(g(xt), yt), we use es-
timators ut and v′t to estimate the inner function g(xt) and
its gradient ∇g(xt), respectively. In each iteration t, the two
estimators ut and v′t can be computed by:

ut = (1− βt)ut−1 + βtg(xt; ξt)

+ (1− βt)(g(xt; ξt)− g(xt−1; ξt)),
(4)

v′t = ΠCg
[(1− βt)v

′
t−1 + βt∇g(xt; ξt)

+ (1− βt)(∇g(xt; ξt)−∇g(xt−1; ξt))],
(5)

where 0 < βt < 1. Note that the projection operation
ΠCg

(x) = argmin∥w∥≤Cg
∥w − x∥2 aims to bound the

error of the stochastic gradient estimator, which also facil-
itates the outer level estimator. More specifically, we need to
reduce the variance of the estimator (because true gradients
are in the projected domain, projection does not degrade the

Algorithm 1: Illustration of NSTORM method.

Initialization: x1, y1 = y∗(x1), γ, βt, αt, ηt
1: for t = 1 to T do
2: Draw a sample ξt;
3: if t = 1 then
4: ut = g(xt; ξt), v′t = ∇xg(xt; ξt), v′′t =

∇gf(ut, yt; ξt), and wt = ∇yf(ut, yt; ξt);
5: else
6: Compute estimators ut and v′t by (4) and (5);
7: Draw another sample ζt;
8: Compute the estimator v′′t by (6);
9: vt = v′tv

′′
t ;

10: Compute the estimator wt by (7);
11: end if
12: Update xt+1 and yt+1 by (8);
13: end for

analysis); on the other side, we must avoid the variance of
the estimator accumulating after the outer level, i.e., maxi-
mization sub-problem.

For the outer level function, if we use the same strat-
egy to compute the gradient as SCGDA (Gao et al. 2021),
i.e., vt = (v′t)

⊤∇gf(ut, yt; ζt), we have to use large
batches and the variance produced by vt cannot be bounded.
Therefore, we also estimate the outer function by the
NSTORM method, which results in a tighter bound for
E[∥vt − ∇xf(g(xt), yt)∥2]. As such, we estimate the gra-
dient ∇gf(ut, yt) by v′′t , which can be computed by:

v′′t = (1− βt)v
′′
t−1 + βt∇gf(ut, yt; ζt)

+ (1− βt)(∇gf(ut, yt; ζt)−∇gf(ut−1, yt−1; ζt)).
(6)

Based on the chain rule, the estimated compositional gradi-
ent is equal to v′tv

′′
t , i.e., vt = v′tv

′′
t . To avoid using large

batches, we estimate the outer function ∇yf(g(xt), yt) by
wt based on the NSTORM estimator, which can be com-
puted by:

wt = (1− αt)wt−1 + αt∇yf(ut, yt; ζt)

+ (1− αt)(∇yf(ut, yt; ζt)−∇yf(ut−1, yt−1; ζt)),
(7)

where 0 < αt < 1. After obtaining the estimators vt and wt,
we can use the following strategy to update the parameters
x and y in the compositional minimax problem:

xt+1 = xt − γηtvt, yt+1 = yt + ηtwt, (8)

where γ is the step size, and ηt is the learning rate. Note that
in the first iteration, we evaluate all estimators u1, v

′
1, v

′′
1 , w1

by directly computing inner level function and gradients,
i.e., line 4 in Algorithm 1. The reason we choose two level
estimators is to avoid using large batches, and only need to
draw two samples, i.e., ξt and ζt, to calculate estimators
for updating xt and yt, respectively. The common idea to
achieve the optimal solution of minimax (Lin, Jin, and Jor-
dan 2020) is that the step size of x should be smaller than
y. In addition, the compositional minimization sub-problem
will generate larger errors, which incurs more challenges for
NSTORM. Particularly, in (8), if we simply set the same
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Figure 1: Trajectories of different methods for the composi-
tional minimax optimization.

step sizes of x and y, our proposed NSTORM method may
fail to converge, which is confirmed in the subsequent proof.
Therefore, we set γ < 1 to ensure that the step size of x is
less than y.

To clearly explain the advantages of NSTORM, a toy ex-
ample is illustrated in Figure 1. Consider the following con-
crete example of a nonconvex-strongly-concave function.:
f(g(x), y) = −2g(x)2 + 2g(x)y − 1

2y
2, where g(x) = 2x.

In Figure 1, we simulate these stochastic oracles by adding
noise when obtaining function gradients and function val-
ues. This function obtains the biased estimation in the mini-
mization sub-problem affording the problem in (1). It can be
observed that NSTORM performs more robustness on noisy
and biased estimation, which brings up an opportunity to
obtain the optimal solution with shorter and smoother paths
compared to other benchmarks.

Convergence Analysis of NSTORM
In what follows, we will prove the convergence rate of our
proposed NSTROM method in Algorithm 1. We first state
some commonly-used assumptions for compositional and
minimax optimizations (Gao et al. 2021; Wang, Fang, and
Liu 2017; Xian et al. 2021; Yuan, Lian, and Liu 2019;
Zhang and Lan 2020) to facilitate our convergence analy-
sis. In order to simplify the notations and make the paper
coherence, we denote ∇f(a, b) = (∇af(a, b),∇bf(a, b))
for (a, b) ∈ A × B in the following assumptions, where
A = {g(x)|x ∈ X} and B = Y .
Assumption 1. (Smoothness) There exists a constant L >
0, such that

∥∇f(a1, b1)−∇f(a2, b2)∥ ≤ L∥(a1, b1)− (a2, b2)∥,
where ∀(a1, b1), (a2, b2) ∈ A × B. In addition, we assume
that there exists a constant Lg > 0, Lf > 0 such that

∥∇g(x1; ξ)−∇g(x2; ξ)∥ ≤ Lg∥x1 − x2∥
∥g(x1; ξ)− g(x2; ξ)∥ ≤ Lf∥x1 − x2∥,

where ∀x1, x2 ∈ X .
Assumption 2. (Bounded Gradient) There exist two con-
stants Cg > 1 and Cf > 0, where the two gradients
can be bounded by E[∥∇g(x)∥2] ≤ C2

g , ∀x ∈ X and
E[∥∇f(a, b)∥2] ≤ C2

f , ∀(a, b) ∈ A× B.

Assumption 3. (Bounded Variance) There exist three con-
stants σf > 0, σg > 0, and σg′ > 0, where the three kinds
of variance can be bounded by:

E[∥∇f(a, b; ζ)−∇f(a, b)∥2] ≤ σ2
f , ∀(a, b) ∈ A× B,

E[∥∇g(x; ξ)−∇g(x)∥2] ≤ σ2
g′ , x ∈ X ,

E[∥g(x; ξ)− g(x)∥2] ≤σ2
g , x ∈ X .

Assumption 4. (Strongly Concave) There exists a constant
µ > 0, such that

f(a, b1) ≤ f(a, b2)+ ⟨∇bf(a, b2), a1− b2⟩−
µ

2
∥b1− b2∥2,

where ∀a ∈ A and ∀b1, b2 ∈ B.

Similar to existing minimax studies (Lin, Jin, and Jor-
dan 2020; Xian et al. 2021), we also use ϵ-point of ∇Φ(x),
i.e., ∥∇Φ(x)∥ ≤ ϵ as the convergence criterion in our
focused compositional minimax problem, where Φ(x) =
maxy∈Y f(g(x), y) and y∗(x) = argmaxy∈Y f(g(x), y).
We demonstrate that Φ(x) is differentiable and (C2

gLκ +
CfLg)-smooth, where κ = L/µ, and y∗(x) is κ-Lipschitz,
which has some differences compared to the minimax opti-
mization (Lin, Jin, and Jordan 2020).

Now, we can obtain the following convergence result of
our proposed NSTORM method in Algorithm 1 to solve the
compositional minimax problem in (1):
Theorem 1. Under the Assumptions 1-4, for Al-
gorithm 1, by setting ηt = 1

(m+t)1/3
, m >

max{125L3, 8γ3L3
Φ, (12L

2c21 + 4L2c22)
3, c31, c

3
2}, c1 ≥

2 + 4γ(C2
f +C2

g ) + 2C2
gL

2γ, c2 ≥ 2
3 + 180L2 +

36γC2
gL

2

µ2 ,
βt = c1η

2
t−1, αt = c2η

2
t−1, 0 < γ ≤ 1√

B2+20κ4C2
g

, where

B =
100C2

gL
4

µ2 + 2L2
f + 2L2

g + 12L2L2
f + 4L2C2

g , we can
obtain the following:

1

T

T∑
t=1

E∥∇Φ(xt)∥ ≤ m1/6
√
M√

γT
+

√
M

√
γT 1/3

,

where M = Φ(x1)−Φ∗+σ2
g+σ2

g′ +σ2
f+L2σ2

g+(c21(2σ
2
g+

2σ2
g′ +2σ2

f+4L2σ2
g)+4σ2

fc
2
2) ln(T+m) and Φ∗ represents

the minimum value of Φ(x).

Remark 1. As discussed in the previous section, our
proposed NSTORM method in Algorithm 1 results in
tighter bounds for all variances, i.e., E[∥ut − g(xt)∥2],
E[∥v′t − ∇g(xt)∥2], E[∥v′′t − ∇gf(ut, yt)∥2] and E[∥wt −
∇yf(g(xt), yt)∥2], which makes NSTROM method con-
verge faster comparing with existing studies. Therefore, it is
very important to show the upper bounds of these variances.
Remark 2. Without loss of generality, let m = O(1), we
have M = O(ln(m+T )) = O(1). Therefore, our proposed
NSTORM method has a convergence rate of O

(
1/T 1/3

)
.

Let 1
T

∑T
t=1 E[∇Φ(xt)] = O

(
1/T 1/3

)
≤ ϵ, we have T =

O
(
κ3/ϵ3

)
. Because we only need two samples, i.e., O(1),

to estimate the stochastic to compute the gradient in each
iteration, and need T iterations. Therefore, our NSTORM
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Algorithm 2: Illustration of ADA-NSTORM method.

Initialization: x1, y1 = y∗(x1), γ, λ, βt, αt, ηt, τ , at, bt.
1: for t = 1 to T do
2: Draw a sample ξt;
3: if t = 1 then
4: ut = g(xt; ξt), v′t = ∇xg(xt; ξt), v′′t =

∇gf(ut, yt; ξt), and wt = ∇yf(ut, yt; ξt);
5: else
6: Compute the estimator ut by (4);
7: Compute the estimator v′t by (5);
8: Draw another sample ζt;
9: Compute the estimator v′′t by (6);

10: vt = v′tv
′′
t ;

11: Compute the estimator wt by (7);
12: end if
13: Generate the adaptive matrices At ∈ Rd×d and Bt ∈

Rp×p by (9) and (10) (Adam);
14: Compute the x̃t+1 and ỹt+1 by (11) and (12);
15: Compute the xt+1 and yt+1 by (13);
16: end for

method requires sample complexity of O
(
κ3/ϵ3

)
for find-

ing an ϵ-accuracy point of the compositional minimax prob-
lem in (1). Because the SCGDA method (Gao et al. 2021)
only achieves O

(
κ4/ϵ4

)
with requiring a large batch size

as O(T ), it is observed that our proposed NSTROM method
improves the convergence rate significantly.
Remark 3. It is worth noting that if we moderate the as-
sumption of f(g(x), y) with respect to y to follow the
PL-condition instead of strongly-concave in Assumption 4,
NSTORM can also obtain the sample complexity, i.e.,
O(κ3/ϵ3). To the best of our knowledge, this is the first
study to design the method for compositional minimax opti-
mization, which highlights the extensibility and applicability
of NSTORM.

ADAptive-NSTORM (ADA-NSTORM)
Learning Procedure of ADA-NSTORM
According to the analysis of variance in the NSTORM
method, due to the large variance of the two-level estima-
tor, we must select a smaller learning step to update pa-
rameters x and y. As a result, this degrades the applica-
bility of NSTORM. Adaptive learning rates (Huang, Gao,
and Huang 2020; Huang, Wu, and Hu 2023) have been de-
veloped to accelerate many optimization methods includ-
ing (stochastic) gradient-based methods based on momen-
tum technology. Therefore, we leverage adaptive learning
rates in NSTORM and propose ADAptive NSTORM (ADA-
NSTORM) method, which is illustrated in Algorithm 2.

In each iteration t, we first use the NSTORM method to
update all estimators related to the inner/outer functions and
their gradients. At Line 13 in Algorithm 2, we generate the
adaptive matrices At and Bt for the two variables x and y,
respectively. In particular, the general adaptive matrix At ⪰
ρId is updated for the variable x, and the global adaptive
matrix Bt is for y. It is worth noting that we can generate the
two matrices At and Bt by a class of adaptive learning rates

generators such as Adam (Kingma and Ba 2014), AdaBelief,
(Zhuang et al. 2020), AMSGrad (Reddi, Kale, and Kumar
2018), AdaBound (Luo, Xiong, and Liu 2019). In particular,
the Adam generator can be computed by:

at = τat−1 + (1− τ)v2t , At = diag (
√
at + ρ) , (9)

bt = τbt−1 + (1− τ)w2
t , Bt = diag(

√
bt + ρ), (10)

where t ≥ 1, τ ∈ (0, 1) and ρ > 0. Due to the biased full
gradient in the compositional minimax problem, we leverage
the gradient estimator vt and wt to update adaptive matrices
instead of simply using the gradient, i.e., ∇xf(xt, yt; ξt) and
∇yf(xt, yt; ζt) (Huang, Gao, and Huang 2020; Huang, Wu,
and Hu 2023). After obtaining adaptive learning matrices
At and Bt, we use adaptive stochastic gradient descent to
update the parameters x and y as follows:

x̃t+1 = xt − γA−1
t vt

= argmin
x∈Rd

{
⟨x, vt⟩+

1

2γ
(x− xt)

T
At (x− xt)

}
, (11)

ỹt+1 = yt − λB−1
t wt

= argmax
y∈Pd

{
⟨y, wt⟩+

1

2λ
(y − yt)

T
Bt (y − yt)

}
, (12)

where γ and λ are step sizes for updating x̃ and ỹ, respec-
tively. At Line 15 in Algorithm 2, we use the momentum
iteration to further update the primal variable x and the dual
variable y as follows:

xt+1 = xt + ηt(x̃t+1 − xt),

yt+1 = yt + ηt(ỹt+1 − yt).
(13)

Convergence Analysis of ADA-STORM
We will introduce one additional assumption to facilitate the
convergence analysis of ADA-NSTORM.
Assumption 5. In Algorithm 2, the adaptive matrices At,
∀t ≥ 1 for updating the variables x satisfies AT

t = At and
λmin(At) ≥ ρ > 0, where ρ is an appropriate positive
number. We consider the adaptive matrics Bt, ∀t ≥ 1 for
updating the variables y satisfies b̂Ip ≥ Bt ≥ bIp > 0,
where Ip denotes a d-dimensional identity matrix.
Remark 4. Assumption 5 ensures that the adaptive ma-
trices At, ∀t ≥ 1 are positive definite, which is widely
used in (Huang, Gao, and Huang 2020; Huang, Wu, and Hu
2023; Huang 2023). This Assumption also guarantees that
the global adaptive matrices Bt, ∀t ≥ 1 are positive definite
and bounded, resulting in mild conditions. To support the
mildness of this assumption, we will empirically show that
the learning performance does not have obvious changes by
varying the bound of at and bt.
Theorem 2. Given Assumptions 1-5, for Algorithm 2, by
setting ηt = 1

(m+t)1/3
, m > max{ 8L3

Φγ3

ρ3 , (10L2c21 +

4L2c22)
3, c31, c

3
2}, c1 ≥ 2 +

5γ(2C2
f+2C2

g+C2
gL

2)

ρ , c2 ≥ 2
3 +

125λL2

2µb +
125γC2

gκ
2b̂

3b , γ ≤ ρ

4
√

B2
1+ρB2

, where B1 =
50C2

gκ
4b̂

λ2 ,

B2 = 70κ3L
λ + 2L2

f + 2L2
g + 12L2L2

f + 4L2C2
g , βt+1 =
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Figure 2: Convergence performance on four benchmark datasets with an imbalance ratio of 10%

c1η
2
t ≤ c1ηt < 1, αt+1 = c2η

2
t ≤ c2ηt < 1, 0 < λ ≤ b

6L ,
we can obtain the following:

1

T

T∑
t=1

E[∥∇Φ(xt)∥]

≤

√√√√ 1

T

T∑
t=1

E[∥At∥2] ·

(
2
√
5Mm1/3

√
γT

+
2
√
5M

√
γT 1/3

)
,

where M = (Φ(x1) − Φ∗ + σ2
g + σ2

g′ + σ2
f + L2σ2

g)/ρ +

((2c21(σ
2
g +σ2

g′ +σ2
f +6L2σ2

g)+4c22σ
2
f ) ln(m+T ))/ρ and

Φ∗ represents the minimum value of Φ(x).
Remark 5. Without loss of generality, let b = O(1) and
b̂ = O(1). From Theorem 2, given γ ≤ ρ

4
√

B2
1+ρB2

, where

B1 =
50C2

gκ
4b̂

λ2 , B2 = 70κ3L
λ + 2L2

f + 2L2
g + 12L2L2

f +

4L2C2
g , λ ≤ b

6L , we can see that γ = O(1/κ2), λ =
O(1/L), M = O(1). Then, we can get the convergence rate
O
(
1/T 1/3

)
. Therefore, to achieve ϵ-accuracy solution, the

total sample complexity is O(κ3/ϵ3). It is worth noting that

the term

√
1
T

T∑
t=1

E[∥At∥2] is bounded to the existing adap-

tive learning rates in Adam algorithm (Kingma and Ba 2014)
and so on. (Yuan et al. 2022) develops a PDSCA method
with adaptive learning rates to approach the compositional
minimax optimization problem and achieves O(1/ϵ4) com-
plexity. However, (Yuan et al. 2022) sets η = O(1/

√
T ),

which is difficult to know in practice.

Experiments
In this section, we present the results of our experiments that
assess the performance of two proposed methods: NSTORM
and ADA-NSTORM in the deep AUC problem (Yuan et al.
2020, 2022). To establish a benchmark, we compare our
proposed methods against existing compositional minimax
methods, namely SCGDA (Gao et al. 2021) and PDSCA
(Yuan et al. 2022). To optimize the AUC loss, the outer
function corresponds to an AUC loss and the inner function
represents a gradient descent step for minimizing a cross-
entropy loss, as (Yuan et al. 2022). The deep AUC problem
can be formulated as follows:

min
x,a,b

max
y∈Ω

Θ(x− α∇LAVG(x), a, b, y) . (14)

The function Θ is to optimize the AUC score. The inner
function x − α∇LAVG(x) aims to optimize the average
cross-entropy loss LAVG. α is a hyper-parameter.

Rather than the deep AUC problem, we also evaluate
our proposed methods on the risk-averse portfolio optimiza-
tion problem (Shapiro, Dentcheva, and Ruszczynski 2021;
Zhang et al. 2021) and the policy evaluation in reinforce-
ment learning (Yuan, Lian, and Liu 2019; Zhang and Xiao
2019b).
Learning Model and Datasets. We employ four distinct
image classification datasets in our study: CAT vs DOG,
CIFAR10, CIFAR100 (Krizhevsky 2009), and STL10
(Coates, Ng, and Lee 2011). To create imbalanced binary
variants prioritizing AUC optimization, we followed (Yuan
et al. 2020) methodology. Similarly, as in (Yuan et al. 2022),
ResNet20 (He et al. 2016) was used. Weight decay was con-
sistently set to 1e-4. Each method was trained with batch
size 128, spanning 100 epochs. We varied parameter m (50,
500, 5000) and set γ (1, 0.9, 0.5). Learning rate ηt reduced
by 10 at 50% and 75% training. Also, β is set to 0.9. For
robustness, each experiment was conducted thrice with dis-
tinct seeds, computing mean and standard deviations. No-
tably, the ablation study focused on the CIFAR100 dataset,
10% imbalanced ratio, as detailed in the main paper.

Performance Evaluation
The training progression of deep AUC is illustrated in Fig-
ure 2. It shows the notable swiftness of convergence exhib-
ited by our two proposed methods. Furthermore, across all
four datasets, our methods consistently yield the most favor-
able test AUC outcomes. It is evident from the results de-
picted in Figure 2 that even NSTORM, which lacks an adap-
tive generator, surpasses the performance of SCGDA and
PDSCA methods, thus reinforcing the validity of our theo-
retical analysis. Intriguingly, despite ADA-NSTORM shar-
ing a theoretical foundation with NSTORM, it outperforms
the testing AUC performance in the majority of scenarios.

The testing AUC outcomes are summarized in Table 1,
with the optimal AUC values among 100 epochs. Combin-
ing these findings with Figure 2, a recurring pattern emerges:
best testing AUC performance is typically attained around
the 50th epoch, followed by overfitting. Both Table 1 and
Figure 2 show that our proposed methods consistently out-
perform benchmarks. ADA-NSTORM achieves an impres-
sive AUC of 0.833 on STL10 with a 10% imbalanced ratio.
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Datasets CAT vs DOG CIFAR10
imratio SCGDA PDSCA NSTORM ADA-NSTORM SCGDA PDSCA NSTORM ADA-NSTORM

1% 0.750 0.792 0.786 0.786 0.679 0.699 0.689 0.703
±0.004 ±0.009 ±0.001 ±0.011 ±0.011 ±0.008 ±0.003 ±0.008

5% 0.826 0.890 0.895 0.901 0.782 0.878 0.882 0.894
±0.006 ±0.006 ±0.006 ±0.004 ±0.006 ±0.003 ±0.002 ±0.005

10% 0.857 0.932 0.932 0.933 0.818 0.926 0.926 0.931
±0.009 ±0.002 ±0.005 ±0.002 ±0.004 ±0.001 ±0.001 ±0.001

30% 0.897 0.969 0.970 0.972 0.882 0.953 0.953 0.955
±0.008 ±0.002 ±0.001 ±0.001 ±0.005 ±0.001 ±0.002 ±0.001

Datasets CIFAR100 STL10
imratio SCGDA PDSCA NSTORM ADA-NSTORM SCGDA PDSCA NSTORM ADA-NSTORM

1% 0.588 0.583 0.583 0.593 0.670 0.682 0.659 0.657
±0.007 ±0.004 ±0.007 ±0.002 ±0.006 ±0.016 ±0.013 ±0.003

5% 0.641 0.651 0.648 0.655 0.734 0.775 0.779 0.781
±0.007 ±0.006 ±0.003 ±0.007 ±0.007 ±0.003 ±0.005 ±0.007

10% 0.673 0.708 0.709 0.715 0.779 0.824 0.827 0.833
±0.005 ±0.006 ±0.002 ±0.006 ±0.014 ±0.011 ±0.007 ± 0.004

30% 0.713 0.787 0.786 0.787 0.843 0.901 0.893 0.895
±0.002 ±0.007 ±0.001 ±0.001 ±0.010 ±0.002 ±0.005 ±0.007

Table 1: Testing performance on the four datasets by varying imbalanced ratios.

Figure 3: Impact of m for
NSTORM.

Figure 4: Impact of γ for
NSTORM.

Figure 5: Impact of upper
bound on at and bt.

Figure 6: Impact of τ for
ADA-NSTORM.

Notable exceptions are the CAT vs DOG and CIFAR100
datasets with a 1% imbalanced ratio, possibly due to their
proximity to the training set’s distribution.

Ablation Study

We conducted experiments to fine-tune parameters m and γ
for NSTORM, as demonstrated in Figure 3 and Figure 4. In
Theorem 1, we consider m as the lower bound, controlling
the learning rate ηt. Interestingly, adjusting m yields mini-
mal alterations. On the other hand, γ determines the relative
step sizes of x and y. Figure 4 reveals that an optimal γ value
of approximately 0.5 yields a testing AUC of 0.827.

To assess the influence of at and bt in Assumption 5, we
investigate the testing AUC under varying upper bounds for
at and bt, as illustrated in Figure 5. Notably, changing from
an upper bound of 50 to 1000 yields a minimal change in
the testing AUC, validating the mildness of Assumption 5.
In addition, the parameter τ is related to the adaptive gener-
ator within ADA-NSTORM. Figure 6 shows the impact of
τ on ADA-NSTORM’s performance within the deep AUC
problem. Intriguingly, varying τ from 0.1 to 0.9 leads to a
mere change of 0.127. These ablation studies effectively re-
inforce the robustness of our proposed methods.

Conclusion
In this paper, we first proposed a novel method named
NSTORM for optimizing the compositional minimax prob-
lem. By leveraging variance-reduced techniques of both
function and gradient values, we demonstrate that the pro-
posed NSTORM method can achieve the sample complex-
ity of O(κ3/ϵ3) for finding an ϵ-stationary point without us-
ing large batch sizes. NSTORM under the PL-condition is
also demonstrated to achieve the same sample complexity,
which indicates its extendability. To the best of our knowl-
edge, all theoretical results match the best sample complex-
ity in existing minimax optimization. Because NSTORM re-
quires a small learning rate to achieve the optimal complex-
ity, this limits its applicability in real-world machine learn-
ing scenarios. To take advantage of adaptive learning rates,
we develop an adaptive version of NSTORM named ADA-
STORM, which can achieve the same complexity with the
learning rate changing adaptively. Extensive experimental
results support the effectiveness of our proposed methods.
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