
FedASMU: Efficient Asynchronous Federated Learning with Dynamic
Staleness-Aware Model Update

Ji Liu1* Juncheng Jia2,3∗, Tianshi Che4, Chao Huo2, Jiaxiang Ren4, Yang Zhou4, Huaiyu Dai5,
Dejing Dou6

1 Hithink RoyalFlush Information Network Co., Ltd., China.
2 Soochow University, China

3 Collaborative Innovation Center of Novel Software Technology and Industrialization, China
4 Auburn University, United States

5 North Carolina State University, United States
6 Boston Consulting Group, China

jiliuwork@gmail.com, jiajuncheng@suda.edu.cn

Abstract

As a promising approach to deal with distributed data, Feder-
ated Learning (FL) achieves major advancements in recent
years. FL enables collaborative model training by exploit-
ing the raw data dispersed in multiple edge devices. How-
ever, the data is generally non-independent and identically
distributed, i.e., statistical heterogeneity, and the edge devices
significantly differ in terms of both computation and commu-
nication capacity, i.e., system heterogeneity. The statistical
heterogeneity leads to severe accuracy degradation while the
system heterogeneity significantly prolongs the training pro-
cess. In order to address the heterogeneity issue, we propose
an Asynchronous Staleness-Aware Model Update FL frame-
work, i.e., FedASMU, with two novel methods. First, we pro-
pose an asynchronous FL system model with a dynamical
model aggregation method between updated local models and
the global model on the server for superior accuracy and high
efficiency. Then, we propose an adaptive local model adjust-
ment method by aggregating the fresh global model with local
models on devices to further improve the accuracy. Extensive
experimentation with 6 models and 5 public datasets demon-
strates that FedASMU significantly outperforms baseline ap-
proaches in terms of accuracy (0.60% to 23.90% higher) and
efficiency (3.54% to 97.98% faster).

Introduction
In recent years, numerous edge devices have been generat-
ing large amounts of distributed data.Due to the implemen-
tation of laws and regulations, e.g., General Data Protec-
tion Regulation (GDPR) (EU 2018), the traditional training
approach, which aggregates the distributed data into a cen-
tral server or a data center, becomes almost impossible. As
a promising approach, Federated Learning (FL) (Kairouz,
McMahan, and et al. 2021; Liu et al. 2022a) enables collab-
orative model training by transferring gradients or models
instead of raw data. FL avoids privacy or security issues in-
curred by direct raw data transfer while exploiting multiple
edge devices to train a global model. FL has been applied
in diverse areas, such as computer vision (Liu et al. 2020),

*Corresponding authors.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

nature language processing (Liu et al. 2021), bioinformatics
(Chen et al. 2021), and healthcare (Nguyen et al. 2022a).

Traditional FL commonly uses a parameter server (server)
(Liu et al. 2023a) to manage training on various devices
synchronously (McMahan et al. 2017; Li et al. 2020; Liu
et al. 2023b; Jia et al. 2023). This synchronous process
involves multiple rounds, each with five steps: 1) device
selection by the server (Shi et al. 2020), 2) broadcasting
the global model to chosen devices, 3) local training on
each device, 4) uploading updated models (gradients) to the
server, and 5) the server aggregating these models to up-
date the global model after all devices complete the first four
steps. Although straightforward, this mechanism can be in-
efficient due to stragglers, especially with heterogeneous de-
vices (Jiang et al. 2022; Lai et al. 2021). Faster devices often
idle while waiting for slower devices, leading to efficiency
loss (Wu et al. 2020).

In federated learning (FL), device heterogeneity is notable
in both computational and communication capacities (Wu
et al. 2020; Che et al. 2022, 2023b), and in data distribu-
tion (McMahan et al. 2017; Li et al. 2020; Wang et al. 2020;
Che et al. 2023a). This results in varying local training and
model update times. Some devices, due to limited bandwidth
or high latency, struggle to upload their models promptly,
a challenge termed as system heterogeneity. Additionally,
the data on each device often exhibits non-Independent and
Identically Distributed (non-IID) characteristics, leading to
statistical heterogeneity. This can cause divergent local ob-
jectives (Wang et al. 2020) and client drift (Karimireddy
et al. 2020; Hsu, Qi, and Brown 2019), thereby impacting
the accuracy of the global FL model.

Asynchronous FL (Xu et al. 2021; Wu et al. 2020; Nguyen
et al. 2022a) allows server-side model aggregation without
waiting for slower devices. However, it faces potential ac-
curacy issues due to stale model uploads and non-IID data
(Zhou et al. 2021a). For instance, a device might upload
a model based on an outdated global model, causing the
current global model to regress, leading to lower accuracy.
Additionally, without proper staleness control (Xie, Koyejo,
and Gupta 2019), asynchronous FL might struggle to con-
verge (Su and Li 2022).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13900

Current studies tackle system and statistical heterogene-
ity in isolation. Device scheduling methods (Shi et al. 2020;
Shi, Zhou, and Niu 2020; Wu et al. 2020; Zhou et al. 2022;
Liu et al. 2022b) address system heterogeneity but may lead
to lower accuracy due to limited device participation. Asyn-
chronous FL, addressing system heterogeneity, either uses
static polynomial formulas for staleness (Xie, Koyejo, and
Gupta 2019; Su and Li 2022; Chen, Mao, and Ma 2021) or
basic attention mechanisms (Chen et al. 2020), lacking dy-
namic adjustment in model aggregation, affecting accuracy.
Conversely, methods like regularization (Li et al. 2020),
gradient normalization (Wang et al. 2020), and momentum
techniques (Hsu, Qi, and Brown 2019; Jin et al. 2022a) focus
on statistical heterogeneity within synchronous FL.

In this paper, we propose an original Asynchronous Fed-
erated learning framework with Staleness-Aware Model Up-
date (FedASMU). To address the system heterogeneity, we
design an asynchronous FL system and propose a dynamical
adjustment method to update the importance of updated lo-
cal models and the global model based on both the staleness
and the local loss for superior accuracy and high efficiency.
We enable devices to adaptively aggregate fresh global mod-
els so as to reduce the staleness of the local model. We sum-
marize the major contributions in this paper as follows:

• We propose a novel asynchronous FL system model
with a dynamic model aggregation method on the server,
which adjusts the importance of updated local models
and the global model based on the staleness and the im-
pact of local loss for superior accuracy and high effi-
ciency.

• We propose an adaptive local model adjustment method
on devices to integrate fresh global models into the local
model so as to reduce staleness for superb accuracy. The
model adjustment consists of a Reinforcement Learning
(RL) method to select a proper time slot to retrieve global
models and a dynamic method to adjust the local model
aggregation.

• We conduct extensive experiments with 9 state-of-the-
art baseline approaches, 6 typical models, and 5 public
real-life datasets, which reveals FedASMU can well ad-
dress the heterogeneity issues and significantly outper-
forms the baseline approaches.

The rest of the paper is organized as follows. We present
the related work in Section 2. Then, we formulate the prob-
lem and explain the system model in Section 3. We propose
the staleness-aware model update in Section 4. The experi-
mental results are given in Section 5. Finally, Section 6 con-
cludes the paper.

Related Work
Parallel, distributed, and federated learning have been exten-
sively studied in recent years (Chen, Zhou, and Zhou 2023;
Chen et al. 2023; Lee et al. 2019; Wu et al. 2021; Goswami
et al. 2020; Zhang et al. 2021; Guo et al. 2022; Yan et al.
2022a; Yan, Zhou, and Guo 2022; Yan et al. 2022b; Jin et al.
2022b, 2021; Zhao et al. 2021; Zhou and Liu 2013; Lee
et al. 2013; Zhang et al. 2013; Zhou et al. 2014; Zhang et al.

2014; Bao et al. 2015; Zhou et al. 2015a,b; Lee et al. 2015;
Jiang et al. 2019; Zhou 2017; Hong et al. 2023; Chen et al.
2018b,a). A bunch of FL approaches (McMahan et al. 2017;
Li et al. 2020; Wang et al. 2020; Karimireddy et al. 2020;
Acar et al. 2021) focus on collaboratively training a global
model using data from mobile devices, typically employing
a synchronous mechanism for server-side model aggrega-
tion. They are inefficient due to the straggler effect, where
the server waits for all selected devices to upload their mod-
els. The issue is exacerbated as device scale and system het-
erogeneity increase.

Three types of strategies are employed in synchronous
FL to manage system heterogeneity: device scheduling (Shi
et al. 2020; Shi, Zhou, and Niu 2020; Wu et al. 2020), which
may affect accuracy by limiting less capable devices; prun-
ing (Zhang et al. 2022) and dropout (Horvath et al. 2021),
potentially leading to reduced accuracy; and device cluster-
ing (Li et al. 2022) using hierarchical architectures (Abad
et al. 2020), which can compromise efficiency and accuracy
due to statistical heterogeneity.

Multiple model aggregation methods (Karimireddy et al.
2020) exists to handle the statistical heterogeneity with
the synchronous mechanism. In particular, regularization
(Li et al. 2020; Acar et al. 2021), gradient normalization
(Wang et al. 2020), classifier calibration (Luo et al. 2021),
and momentum-based (Hsu, Qi, and Brown 2019) methods
adjust the local objectives to reduce the accuracy degra-
dation brought by heterogeneous data. Contrastive learn-
ing (Li, He, and Song 2021), personalization (Sun et al.
2021), meta-learning-based method (Khodak, Balcan, and
Talwalkar 2019), and multi-task learning (Smith et al. 2017)
adapt the global model or local models to non-IID data.
However, these methods lack dynamic adjustment for model
diversity and are limited to synchronous FL.

To conquer the system heterogeneity problem, asyn-
chronous FL (Xu et al. 2021; Nguyen et al. 2022a) enables
the global model aggregation without waiting for all the de-
vices. The asynchronous FL can be performed once a model
is uploaded from an arbitrary device (Xie, Koyejo, and
Gupta 2019) or when multiple models are buffered (Nguyen
et al. 2022b). However, the old uploaded models may drag
the global model to a previous status, which significantly de-
grades the accuracy (Su and Li 2022). Several methods are
proposed to improve the accuracy of asynchronous FL. For
instance, the impact of the staleness and the divergence of
model updates is considered to adjust the importance of up-
loaded models (Su and Li 2022), which cannot dynamically
adapt the weights based on the training status, e.g., loss val-
ues. The attention mechanism and the average local training
time are exploited to adjust the weights of uploaded mod-
els (Chen et al. 2020) without the consideration of staleness.
Strategies like replacing stale models with the latest global
model (Wu et al. 2020) can lead to loss of device-specific
data, and while staleness-based formulas (Park et al. 2021;
Xie, Koyejo, and Gupta 2019; Chen, Mao, and Ma 2021)
and loss value adjustments (Park et al. 2021) are used, they
lack dynamic optimization for loss minimization.

Different from the existing works, we propose an asyn-
chronous FL framework, i.e., FedASMU, to address the sys-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13901

…

Broadcast global
m

odel

U
pload local

m
odel

…

1

3

7

2 Local training

Local data
Di

Device i Local training

Local data
Dm

Device !

Local training

Local data
D1

Device 1
…

Broadcast global

m
odel

Request fresh
m

odel

#0 #1

U
pload local

m
odel

#%0
2

Br
oa

dc
as

t
gl

ob
al

m

od
el

…

#%'
(

…

…
#' #' + 1

…

#%*
!

#* #* + 1

Upload local m
odel

Broadcast global m
odel

4

5 Local model
aggregation

6

Global Model aggregation

#%

#+

Figure 1: The system model of FedASMU.

tem heterogeneity. FedASMU adjusts the importance of up-
loaded models based on the staleness while enabling devices
to adaptively aggregate fresh global models to further miti-
gate the staleness issues, which handles the statistical het-
erogeneity.

Asynchronous System Architecture
In this section, we present the problem formulation for FL
and the asynchronous system model.

We consider an FL setting composed of a powerful server
and m devices, denoted by M, which collaboratively train
a global model. Each device i stores a local dataset Di =
{xi,d ∈ Rs, yi,d ∈ R}Di

d=1 with Di = |Di| data samples
where xi,d is the d-th s-dimensional input data vector, and
yi,d is the label of xi,d. The whole dataset is denoted by
D =

⋃
i∈MDi with D =

∑
i∈MDi. Then, the objective of

the training process within FL is:

min
w

{
F(w) ≜

1

|D|
∑
i∈M
|Di|Fi(w)

}
, (P)

where w represents the global model, Fi(w)

is the local loss function defined as Fi(w) ≜
1

|Di|
∑

{xi,d,yi,d}∈Di
F (w,xi,d, yi,d), and F (w,xi,d, yi,d)

is the loss function to measure the error of the model
parameter w on data sample {xi,d, yi,d}.

In order to address the problem defined in Formula P , we
propose an asynchronous FL framework as shown in Figure
1. The server triggers the local training of m′ devices with
a constant time period T . The training process is composed
of multiple global rounds. At the beginning of the training,
the version of the global model is 0. Then, after each global
round, the version of the global model increases by 1. Each
global round is composed of 7 steps. First, the server trig-
gers m′(m′ ≤ m) devices and broadcasts the global model
wo to each device at Step 1⃝. The m′ devices are randomly
selected available devices. Then, each device performs lo-
cal training with its local dataset at Step 2⃝. During the lo-
cal training process, Device i requests a fresh global model

(Step 3⃝) from the server to reduce the staleness of the lo-
cal training as the global model may be updated at the same
time. Then, the server sends the global model wg to the de-
vice at Step 4⃝, if wg is newer than wo, i.e., g > o. Af-
ter receiving the fresh global model, the device aggregates
the global model and the latest local model to a new model
at Step 5⃝ and continues the local training with the new
model. When the local training is completed, Device i up-
loads the local model to the server at Step 6⃝. Finally, the
server aggregates the latest global model wt with the up-
loaded model wi

o at Step 7⃝. When aggregating the global
model wt and the uploaded local model wi

o, the staleness
of the local model is calculated as τi = t − o + 1. When
the staleness τi is significant, the local model may drag the
global model to a previous version corresponding to infe-
rior accuracy due to legacy information. We discard the up-
loaded local models when the staleness exceeds a predefined
threshold τ to meet the staleness bound so as to ensure the
convergence.

Staleness-Aware Model Update
In this section, we propose our dynamic staleness-aware
model aggregation method on the server (Step 7⃝) and the
adaptive local model adjustment method on devices (Steps
3⃝ and 5⃝).

Dynamic Model Update on the Server
In this subsection, we propose our dynamic staleness-aware
model update method on the server. When the server re-
ceives an uploaded model wi

o from Device i with the origi-
nal version o, it updates the current global model wt accord-
ing to the following formula:

wt+1 = (1− αi
t)wt + αi

tw
i
o, (1)

where αi
t represents the importance of the uploaded model

from Device i at global round t, which may have a signifi-
cant impact on the accuracy of the aggregated model (Xie,
Koyejo, and Gupta 2019). Then, we decompose the problem

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13902

defined in Formula P to the following bi-level optimization
problem (Bard 1998):

min
w,A

{
F(w,A) ≜

1

|D|
∑
i∈M
|Di|Fi(w(A))

}
,

w(A) = (1− αi
t)wt + αi

tw
i
o, α

i
t ∈ A, (P1)

s.t. wi
o = argmin

wi
o

Fi(w
i
o) ∀ i ∈M, (P2)

A = argmin
A

F(w,A), (P3)

where A = {α1
t , α

2
t , ..., α

m
t } is a set of values correspond-

ing to the importance of the uploaded models from devices.
Problem P2 is the minimization of the local loss function,
which is detailed in Section . Inspired by (Xie, Koyejo, and
Gupta 2019), we propose a dynamic polynomial function to
represent αi

t defined in Formula 2 for Problem P3.

ξit(o) =
λit√

t(t− o+ 1)σ
i
t

+ ιit,

αi
t(o) =

µαξ
i
t(o)

1 + µαξit(o)
, (2)

where µα refers to a hyper-parameter, t − o + 1 represents
the staleness, t represents the version of the current global
model, o corresponds to the version of the global model
that Device i received before local training, λit, σ

i
t, and ιit

are control parameters on Device i at the t-th global round.
These three parameters are dynamically adjusted according
to Formula 3 to reduce the loss of the global model.

λit = λio−1 − ηλi∇λi
o−1
F(wo),

σi
t = σi

o−1 − ησi∇σi
o−1
F(wo), (3)

ιit = ιio−1 − ηιi∇ιio−1
F(wo),

where ηλi , ησi , and ηιi represent the corresponding learning
rates for dynamic adjustment,∇λi

o−1
F(wo),∇σi

o−1
F(wo),

and∇ιio−1
F(wo) correspond to the respective partial deriva-

tives of the loss function.
The model aggregation algorithm of FedASMU on the

server is shown in Algorithm 1. A separated thread period-
ically triggers m′ devices when the number of devices per-
forming training is smaller than a predefined value (Lines
1 - 6). When the server receives wi

o (Line 8), it verifies if
the uploaded model is within the staleness bound (Line 9).
If not, the server ignores the wi

o (Line 10). Otherwise, the
server updates the control parameters λit, σ

i
t, ι

i
t according to

Formula 3 (Line 12) and calculates αi
t based on Formula 2

(Line 13). Afterward, the server updates the global model
(Line 14).

Adaptive Model Update on Devices
In this subsection, we present the local training process with
an adaptive local model adjustment method on devices to
address Problem P2.

When Device i is triggered to perform local training, it re-
ceives a global model wo from the server and takes it as the

Algorithm 1: FedASMU on the Server

Require:
T : The maximum number of global rounds
m′: The number of devices to be triggered
τ : The predefined staleness limit
T : The constant time period to trigger devices
w0: The initial global model
λ0, σ0, ι0: The initial control parameters
ηλi , ησi , ηιi : The learning rates for the dynamic adjust-
ment

Ensure:
wT : The global model at Round T

1: while The training is not finished (in parallel) do
2: if Should trigger new devices then
3: Trigger and broadcast the global model to m′ de-

vices for parallel local training
4: Sleep T
5: end if
6: end while
7: for t in {1, 2, ..., T} do
8: Receive wi

o
9: if t− o+ 1 > τ then

10: Discard wi
o and continue

11: else
12: Update λit, σ

i
t, ι

i
t according to Formula 3

13: Update αi
t utilizing Formula 2

14: Update wt exploiting Formula 1
15: end if
16: end for

initial local model wo,0. Within the local training process,
the Stochastic Gradient Descent (SGD) approach (Robbins
and Monro 1951) is exploited to update the local model
based on the local dataset Di as defined in Formula 4.

wo,l = wo,l−1 − ηi∇Fi(wo,l−1, ζl−1), ζl−1 ∼ Di, (4)

where o is the version of the global model, l represents the
number of local epochs, ηi refers to the learning rate on De-
vice i, and ∇Fi(·) corresponds to the gradient based on an
unbiased sampled mini-batch ζl−1 from Di.

In order to reduce the gap between the local model and
the global model, we propose aggregating the fresh global
model with the local model during the local training process
of the devices. During the local training, the global model
may be intensively updated simultaneously. Thus, the model
aggregation with the fresh global model can well reduce the
gap between the local model and the global model. How-
ever, it is complicated to determine the time slot to send the
request and the weights to aggregate the fresh global model.
In this section, we first propose a Reinforcement Learning
(RL) method to select a proper time slot. Then, we explain
the dynamic local model aggregation method.

Intelligent Time Slot Selection We propose an RL-based
intelligent time slot selector to choose a proper time slot to
request a fresh global model from the server. In order to re-
duce communication overhead, we assume only one fresh
global model is received during the local training. When the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13903

Algorithm 2: FedASMU on Devices

Require:
t: The number of the meta model update
ti: The number of local model aggregation
Li: The maximum number of epochs on Device i
wo: The original global model with Version o
wg: The fresh global model with Version g
θit−1: The parameters of the meta model
γiti−1, υiti−1: The control parameters

Ensure:
wi

o,L: The trained local model
1: l∗ ← Generate a time slot using θit−1 orHi

ti−1

2: wi
o,0 ← wo

3: for l in {1, 2, ...,Li} do
4: if l = l∗ then
5: Send a fresh global model request to server
6: Receive wg

7: end if
8: if wg is updated then
9: βi

ti−1 ← Calculation based on Formula 8
10: Update wo,l−1 with βi

ti−1, wg and Formula 7
11: Update γiti and υiti based on Formula 9
12: R ← lossb,io,l − loss

a,i
o,l

13: bti ← (1− ρ)bti−1 + ρR
14: Update θt orHi

ti withR
15: end if
16: Update wo,l based on Formula 4
17: end for

request is sent early, the server performs few updates and the
final updated local model may still suffer from severe stale-
ness. However, when the request is sent late, the local update
cannot leverage the information from the fresh global model,
corresponding to inferior accuracy. Thus, it is beneficial to
choose a proper time slot to send the request.

The intelligent time slot selector is composed of a meta
model on the server and a local model on each device. The
meta model generates an initial time slot decision for each
device, and is updated when a device performs the first lo-
cal training. The local model is initialized with the initial
time slot and updated within the device during the following
local training to generate personalized proper time slot for
the fresh global model request. We exploit a Long Short-
Term Memory (LSTM)-based network with a fully con-
nected layer for the meta model and a Q-learning method
(Watkins and Dayan 1992) for each local model. Both the
meta model and the local model generate the probability for
each time slot. We exploit the ϵ-greedy strategy (Xia and
Zhao 2015) to perform the selection.

Within the local training process, we define the reward as
the difference between the loss value before model aggre-
gation and that after aggregation. For instance, before ag-
gregating the fresh global model with the request sent after
l∗ local epochs, the loss value of Fi(wo,l∗ , ζl∗) is lossb,io,l∗

and that after aggregation is lossa,io,l∗ . Then, the reward is

R = lossb,io,l∗ − loss
a,i
o,l∗ . Inspired by (Zoph and Le 2017),

we update the LSTM model with Formula 5 once an initial
aggregation is performed.

θt = θt−1+ηRL

L∑
l=1

∇θt−1
logP (∫l|∫(l−1):1; θt−1)(R−bt),

(5)

where θt represents the parameters in the meta model after
the t-th meta model update, ηRL refers to the learning rate
for the training process of RL, L is the maximum number of
local epochs, ∫l corresponds to the decision of sending the
request (1) or not (0) after the l-th local epoch, and bt is a
base value to reduce the bias of the model. The model is pre-
trained with some historical data and dynamically updated
during the training process of FedASMU on each device.
TheQ-learning method manages a mappingHi between the
decision and the reward on Device i, which is updated with
a weighted average of historical values and reward as shown
in Formula 6, inspired by (Dietterich 2000).

Hi
ti(l

∗
ti−1, ati−1) = Hi

ti−1(l
∗
ti−1, ati−1)+

ϕ(R+ ψmax
a
Hi

ti−1(l
∗
t1 , a)−H

i
ti−1(l

∗
ti−1, ati−1)), (6)

where ati−1 represents the action, l∗ti−1 represents the
number of local epochs to send the request within the
(ti − 1)-th local model aggregation, ϕ and ψ are hyper-
parameters. The action is within an action space, i.e.,
ati−1 ∈ {add, stay,minus}, with add representing adding
1 epoch to l∗ti−1 (l∗ti = l∗ti−1 + 1), stay representing staying
with the same epoch (l∗ti = l∗ti−1+1), andminus represent-
ing removing 1 epoch from l∗ti−1 (l∗ti = l∗ti−1 − 1).

Dynamic Local Model Aggregation When receiving a
fresh global model wg , Device i performs local model ag-
gregation with its current local model wb

o,l using Formula
7.

wa
o,l = (1− βi

ti−1)w
b
o,l + βi

ti−1wg, (7)

where βi
ti−1 is the weight of the fresh global model on De-

vice i at the (ti − 1)-th local global model aggregation. For-
mula 7 differs from Formula 1 as the received fresh global
model corresponds to a higher global version. We exploit
Formula 8 to calculate βi

t−1.

ϕiti−1(g, o) =
γiti−1√
g

(1−
υiti−1√
g − o+ 1

),

βi
ti−1(g, o) =

µβϕ
i
ti−1(g, o)

1 + µβϕiti−1(g, o)
, (8)

where µβ is a hyper-parameter, γiti−1 and υiti−1 are control
parameters to be dynamically adjusted based on Formula 9.

γiti = γiti−1 − ηγi∇γi
ti−1
Fi(w

b
o,l, ζl−1),

υiti = υiti−1 − ηυi∇υi
ti−1
Fi(w

b
o,l, ζl−1), ζl−1 ∼ Di, (9)

where ηγi and ηυi are learning rates for γiti and υiti .
The model update algorithm of FedASMU on devices is

shown in Algorithm 2. First, an epoch number l∗ (time slot)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13904

Method
LeNet CNN ResNet

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-100 Tiny-ImageNet

Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time

FedASMU 0.486 8800 0.182 20737 0.603 10109 0.277 30569 0.358 16027 0.171 22415
FedAvg 0.431 125514 0.168 95306 0.551 117794 0.243 73145 0.299 109680 0.146 155023
FedProx 0.363 126958 0.172 93430 0.371 / 0.243 73145 0.302 109680 0.148 151935
MOON 0.302 437531 0.172 93430 0.47 100302 0.212 252703 0.302 106021 0.149 139444
FedDyn 0.279 / 0.147 70260 0.507 43974 0.193 52874 0.328 73711 0.142 103661
FedAsync 0.478 36565 0.158 102113 0.491 24931 0.23 37160 0.315 21107 0.143 31288
PORT 0.305 366182 0.104 / 0.385 / 0.145 / 0.314 35712 0.134 78155
ASO-Fed 0.408 83712 0.153 110942 0.482 92246 0.208 103090 0.276 198797 0.122 359899
FedBuff 0.365 9829 0.174 25791 0.364 / 0.201 65736 0.315 27672 0.148 43523
FedSA 0.306 21077 0.0835 / 0.508 20415 0.189 94169 0.195 / 0.116 /

Table 1: The accuracy and training time with FedASMU and diverse baseline approaches. “Acc” represents the convergence
accuracy of the global model. “Time” refers to the training time to achieve a target accuracy, i.e., 0.30 for LeNet with CIFAR-
10, 0.13 for LeNet with CIFAR-100, 0.40 for CNN with CIFAR-10, 0.15 for CNN with CIFAR-100, 0.25 for ResNet with
CIFAR-100, and 0.12 for ResNet with Tiny-ImageNet. “/” represents that the method does not achieve the target accuracy.

to send a request for a fresh global model is generated based
on θt−1 when t = 1 or Hi

ti−1 when t ̸= 1 (Line 1). In the
l∗-th local epoch, the device sends a request to the server
(Line 5), and it waits for the fresh global model (Line 6).
After receiving the fresh global model (Line 8), we exploit
Formula 8 to update βi

ti−1 (Line 9), Formula 7 to update
wo,l−1 (Line 10), Formula 9 to update γit−1 and υit−1 (Line
11), the reward values (Line 12), bt−1 with ρ being a hyper-
parameter (Line 13), θt when t = 1 or Hi

ti−1 when t ̸= 1
(Line 14). Finally, the local model is updated (Line 16).

Experiments
In this section, we present the experimental comparison
of FedASMU with 9 state-of-the-art approaches. We first
present the experimentation setup. Then, we demonstrate the
experimental results.

Experimental Setup
We consider an FL environment with a server and 100 het-
erogeneous devices. We consider both the asynchronous
baseline approaches, i.e., FedAsync (Xie, Koyejo, and
Gupta 2019), PORT (Su and Li 2022), ASO-Fed (Chen et al.
2020), FedBuff (Nguyen et al. 2022b), FedSA (Chen, Mao,
and Ma 2021), and synchronous baseline approaches, i.e.,
FedAvg (McMahan et al. 2017), FedProx (Li et al. 2020),
MOON (Li, He, and Song 2021), and FedDyn (Acar et al.
2021). We utilize 5 public datasets, i.e., Fashion-MNIST
(FMNSIT) (Xiao, Rasul, and Vollgraf 2017), CIFAR-10 and
CIFAR-100 (Krizhevsky, Hinton et al. 2009), IMDb (Zhou
et al. 2021b), and Tiny-ImageNet (Le and Yang 2015). The
data on each device is non-IID based on a Dirichlet distri-
bution (Li et al. 2021). We leverage 6 models to deal with
the data, i.e., LeNet5 (LeNet) (LeCun et al. 1989), a syn-
thetic CNN network (CNN), ResNet20 (ResNet) (He et al.
2016), AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
TextCNN (Zhou et al. 2021b), and VGG-11 (VGG) (Si-
monyan and Zisserman 2015).

Evaluation of FedASMU

As shown in Tables 1 and 2, FedASMU consistently cor-
responds to the highest convergence accuracy and training
speed. Compared with synchronous baseline approaches,
the training speed of FedASMU is much faster than Fe-
dAvg (58.23% to 92.01%), FedProx (58.23% to 93.06%),
MOON(74.66% to 97.98%), and FedDyn (42.10% to
91.31%) because of asynchronous model update, while the
convergence accuracy of FedASMU can still outperform
the baseline approaches (0.80% to 16.65% higher for Fe-
dAvg, 0.70% to 23.20% higher for FedProx, 0.70% to
18.30% higher for MOON, 0.80% to 18.90% higher for Fed-
Dyn). Compared with asynchronous baseline approaches,
FedASMU corresponds to the fastest to achieve a target
accuracy (6.19% to 84.95% faster than FedAsync, 27.57%
to 97.59% faster than PORT, 70.38% to 93.75% faster
than ASO-Fed, 10.46% to 69.64% faster than FedBuff, and
3.54% to 67.5% faster than FedSA). In addition, the accu-
racy of FedASMU is significantly higher (0.70% to 11.70%
compared with FedAsync, 0.60% to 21.80% compared with
PORT, 2.89% to 13.90% compared with ASO-Fed, and
0.60% to 23.90% compared with FedBuff). The accuracy
advantage of FedASMU is brought by the dynamic adjust-
ment of the weights within the model aggregation process on
both the server and the devices while the high training speed
is because of the asynchronous mechanism and the aggrega-
tion of the local model and the fresh global model during the
local training process.

We further carry out experimental evaluation with diverse
bandwidth, various device heterogeneity, and bigger number
of devices. When devices have limited network connection
(the bandwidth becomes modest), FedASMU corresponds
to slightly higher accuracy (5.04% to 9.34%) and train-
ing speed (21.21% to 62.17%) compared with baseline ap-
proaches. The advantages of FedASMU become less signifi-
cant due to extra global model transfer. Although FedASMU
introduces more data communication while retrieving fresh

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13905

Method
AlexNet VGG TextCNN LeNet

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 IMDb FMNIST

Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time

FedASMU 0.490 12591 0.246 12150 0.653 43093 0.264 83226 0.882 3537 0.829 8250
FedAvg 0.432 157678 0.205 92558 0.508 335866 0.0975 / 0.874 13960 0.706 65000
FedProx 0.433 141125 0.209 91369 0.505 331991 0.0929 / 0.875 15668 0.708 65000
MOON 0.429 157678 0.202 89297 0.47 335866 0.0991 / 0.875 13960 0.708 65000
FedDyn 0.428 144999 0.197 103950 0.549 190403 0.218 307955 0.874 12674 0.761 40607
FedAsync 0.411 83693 0.203 13717 0.637 45940 0.147 375236 0.875 5837 0.779 12371
PORT 0.365 / 0.192 17400 0.552 75036 0.209 120533 0.876 4884 0.711 75716
ASO-Fed 0.446 55292 0.238 60864 0.533 268349 0.125 405906 0.811 / 0.756 41100
FedBuff 0.469 27763 0.223 27672 0.62 109082 0.238 167053 0.876 7671 0.767 27179
FedSA 0.416 18363 0.176 15933 0.383 / 0.0319 / 0.865 5251 0.783 8553

Table 2: The accuracy and training time with FedASMU and diverse baseline approaches. “Acc” is the convergence accuracy
of the global model. “Time” refers to the training time to achieve a target accuracy, i.e., 0.40 for AlexNet with CIFAR-10, 0.12
for AlexNet with CIFAR-100, 0.45 for VGG with CIFAR-10, 0.12 for VGG with CIFAR-100, 0.85 for TextCNN, and 0.70 for
LeNet. “/” represents that the method does not achieve the target accuracy.

0 1 2 3 4
Time (s) ×105

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

FedAvg
FedASMU-0
FedASMU-DA
FedASMU-FA
FedASMU

(a) LeNet

0 1 2 3 4
Time (s) ×105

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

FedAvg
FedASMU-0
FedASMU-DA
FedASMU-FA
FedASMU

(b) CNN

Figure 2: The accuracy and training time with FedASMU,
FedASMU-DA, FedASMU-FA, FedASMU-0, and FedAvg
on CIFAR-10.

global models, it can well improve the efficiency of the FL
training. When the devices are heterogeneous (the diversity
of the computation and communication capacity becomes
severe), FedASMU performs much better, i.e., the advan-
tages augment 13.67% to 20.10% in terms of accuracy and
85.39% to 91.93% in terms of efficiency. When the devices
significantly differ, FedASMU can dynamically adjust the
model aggregation on both the server and devices with much
better performance. The performance of FedASMU is sig-
nificantly better than that of the baseline approaches with
more devices (4.52% to 15.05% higher in terms of accuracy
and 53.47% to 91.20% faster), which demonstrates the ex-
cellent scalability of FedASMU.

As shown in Figure 2, we conduct an ablation study with
FedASMU-DA, FedASMU-FA, FedASMU-0, and FedAvg.
FedASMU-DA represents FedASMU without dynamic
model aggregation. FedASMU-FA refers to FedASMU
without fresh global model aggregation. FedASMU-0
is FedASMU without the two methods, equivalent to
FedAsync with staleness bound. As the dynamic weight ad-
justment can improve the accuracy, FedASMU outperforms
FedASMU-DA (1.38% to 4.32%) and FedASMU-FA out-
performs FedASMU-0 (0.65% to 3.04%) in terms of ac-

curacy. As the fresh global model aggregation can reduce
the staleness between local models and the global model,
FedASMU corresponds to a shorter training time (44.77% to
73.96%) to achieve the target accuracy (0.30 for LeNet and
0.40 for CNN) and higher accuracy (1.75% to 4.71%) com-
pared with FedASMU-FA. In addition, FedASMU-DA leads
to better performance (1.04% to 3.41% in terms of accuracy
and 15.71% to 19.54% faster) compared with FedASMU-
0. Both FedASMU-DA and FedASMU-FA outperform Fe-
dAvg in terms of accuracy (0.73% to 3.75%) and efficiency
(72.88% to 85.72%). Although FedASMU-0 corresponds
to slightly higher accuracy (0.08% to 0.34%) compared
with FedAvg, it leads to much higher efficiency (67.84% to
82.26% faster) because of the asynchronous mechanism.

Conclusion

While asynchronous FL can improve the efficiency with het-
erogeneous devices, staleness may severely degrade the per-
formance. In this paper, we propose a novel Asynchronous
Staleness-Aware Model Update FL framework (FedASMU)
with an asynchronous system model and two novel meth-
ods, i.e., a dynamic model aggregation method on the server
and an adaptive local model adjustment method on devices.
The adaptive local model adjustment method consists of an
RL-based time slot selection method and a dynamic local
model aggregation method.Extensive experimentation re-
veals significant advantages of FedASMU compared with
synchronous and asynchronous baseline approaches in terms
of accuracy (0.60% to 23.90% higher) and efficiency (3.54%
to 97.98% faster).

Acknowledgements

This work is partially sponsored by the National Science
Foundation under Grant No. OAC-2313191 (for T. Che and
Y. Zhou).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13906

References
Abad, M. S. H.; Ozfatura, E.; Gunduz, D.; and Ercetin, O. 2020.
Hierarchical federated learning across heterogeneous cellular net-
works. In IEEE ICASSP, 8866–8870.
Acar, D. A. E.; Zhao, Y.; Matas, R.; Mattina, M.; Whatmough, P.;
and Saligrama, V. 2021. Federated Learning Based on Dynamic
Regularization. In ICLR, 1–36.
Bao, X.; Liu, L.; Xiao, N.; Zhou, Y.; and Zhang, Q. 2015.
Policy-driven autonomic configuration management for nosql. In
CLOUD, 245–252.
Bard, J. F. 1998. Practical Bilevel Optimization: Algorithms and
Applications. Springer.
Che, T.; Liu, J.; Zhou, Y.; Ren, J.; Zhou, J.; Sheng, V. S.; Dai, H.;
and Dou, D. 2023a. Federated Learning of Large Language Models
with Parameter-Efficient Prompt Tuning and Adaptive Optimiza-
tion. In EMNLP. Singapore.
Che, T.; Zhang, Z.; Zhou, Y.; Zhao, X.; Liu, J.; Jiang, Z.; Yan, D.;
Jin, R.; and Dou, D. 2022. Federated Fingerprint Learning with
Heterogeneous Architectures. In ICDM, 31–40. IEEE.
Che, T.; Zhou, Y.; Zhang, Z.; Lyu, L.; Liu, J.; Yan, D.; Dou, D.; and
Huan, J. 2023b. Fast federated machine unlearning with nonlinear
functional theory. In ICML, 4241–4268. PMLR.
Chen, M.; Mao, B.; and Ma, T. 2021. FedSA: A staleness-aware
asynchronous Federated Learning algorithm with non-IID data.
Future Generation Computer Systems (FGCS), 120: 1–12.
Chen, S.; Xue, D.; Chuai, G.; Yang, Q.; and Liu, Q. 2021. FL-
QSAR: a federated learning-based QSAR prototype for collabora-
tive drug discovery. Bioinformatics, 36(22-23): 5492–5498.
Chen, Y.; Ning, Y.; Slawski, M.; and Rangwala, H. 2020. Asyn-
chronous online federated learning for edge devices with non-iid
data. In IEEE Int. Conf. on Big Data (Big Data), 15–24.
Chen, Z.; Feng, G.; Liu, B.; and Zhou, Y. 2018a. Construction
policy of network service chain oriented to resource fragmentation
optimization in operator network. JEIT, 40(4): 763–769.
Chen, Z.; Feng, G.; Liu, B.; and Zhou, Y. 2018b. Delay optimiza-
tion oriented service function chain migration and re-deployment
in operator network. Acta Electronica Sinica, 46(9): 2229–2237.
Chen, Z.; Tan, X.; Zhou, Z.; and Zhou, Y. 2023. A channel aggrega-
tion based dynamic pruning method in federated learning. In IEEE
Global Communications Conference (GLOBECOM). To appear.
Chen, Z.; Zhou, C.; and Zhou, Y. 2023. A hierarchical federated
learning model with adaptive model parameter aggregation. Com-
puter Science and Information Systems, 20(3): 1037–1060.
Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the MAXQ value function decomposition. JAIR, 13: 227–303.
EU. 2018. European Union’s General Data Protection Regulation
(GDPR). https://eugdpr.org/, accessed 2018-1.
Goswami, S.; Pokhrel, A.; Lee, K.; Liu, L.; Zhang, Q.; and Zhou,
Y. 2020. GraphMap: scalable iterative graph processing using
NoSQL. The Journal of Supercomputing (TJSC), 76(9): 6619–
6647.
Guo, G.; Yan, D.; Yuan, L.; Khalil, J.; Long, C.; Jiang, Z.; and
Zhou, Y. 2022. Maximal directed quasi-clique mining. In ICDE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual Learn-
ing for Image Recognition. In IEEE Conf. on CVPR, 770–778.
Hong, J.; Zhu, Z.; Lyu, L.; Zhou, Y.; Boddeti, V. N.; and Zhou, J.
2023. Int. Workshop on Federated Learning for Distributed Data
Mining. In KDD, 5861–5862. Long Beach, CA.

Horvath, S.; Laskaridis, S.; Almeida, M.; Leontiadis, I.; Venieris,
S.; and Lane, N. 2021. Fjord: Fair and accurate federated learning
under heterogeneous targets with ordered dropout. NeurIPS, 34.
Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring the effects
of non-identical data distribution for federated visual classification.
arXiv preprint arXiv:1909.06335.
Jia, J.; Liu, J.; Zhou, C.; Tian, H.; Dong, M.; and Dou, D. 2023. Ef-
ficient Asynchronous Federated Learning with Sparsification and
Quantization. CCPE. To appear.
Jiang, Y.; Perng, C.-S.; Sailer, A.; Silva-Lepe, I.; Zhou, Y.; and Li,
T. 2019. Csm: A cloud service marketplace for complex service
acquisition. ACM TIST, 8(1): 1–25.
Jiang, Z.; Wang, W.; Li, B.; and Li, B. 2022. Pisces: Efficient Fed-
erated Learning via Guided Asynchronous Training. arXiv.
Jin, J.; Ren, J.; Zhou, Y.; Lv, L.; Liu, J.; and Dou, D. 2022a. Accel-
erated Federated Learning with Decoupled Adaptive Optimization.
In ICML, volume 162, 10298–10322.
Jin, J.; Zhang, Z.; Zhou, Y.; and Wu, L. 2022b. Input-agnostic cer-
tified group fairness via gaussian parameter smoothing. In ICML.
Jin, R.; Li, D.; Gao, J.; Liu, Z.; Chen, L.; and Zhou, Y. 2021. To-
wards a better understanding of linear models for recommendation.
In KDD, 776–785.
Kairouz, P.; McMahan, H. B.; and et al. 2021. Advances and Open
Problems in Federated Learning. Found. Trends Mach. Learn.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.; and
Suresh, A. T. 2020. SCAFFOLD: Stochastic Controlled Averaging
for Federated Learning. In ICML, volume 119, 5132–5143.
Khodak, M.; Balcan, M.-F. F.; and Talwalkar, A. S. 2019. Adaptive
Gradient-Based Meta-Learning Methods. In NeurIPS, 1–12.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple layers
of features from tiny images.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks.
In NeurIPS, 1106–1114.
Lai, F.; Zhu, X.; Madhyastha, H. V.; and Chowdhury, M. 2021.
Oort: Efficient federated learning via guided participant selection.
In USENIX Symposium on OSDI, 19–35.
Le, Y.; and Yang, X. 2015. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7): 3.
LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hub-
bard, W.; and Jackel, L. 1989. Handwritten digit recognition with
a back-propagation network. In NeurIPS, volume 2, 1–9.
Lee, K.; Liu, L.; Ganti, R. L.; Srivatsa, M.; Zhang, Q.; Zhou, Y.;
and Wang, Q. 2019. Lightwieight indexing and querying services
for big spatial data. IEEE TSC, 12(3): 343–355.
Lee, K.; Liu, L.; Schwan, K.; Pu, C.; Zhang, Q.; Zhou, Y.; Yigi-
toglu, E.; and Yuan, P. 2015. Scaling iterative graph computations
with graphmap. In IEEE SC, 57:1–57:12.
Lee, K.; Liu, L.; Tang, Y.; Zhang, Q.; and Zhou, Y. 2013. Efficient
and customizable data partitioning framework for distributed big
rdf data processing in the cloud. In CLOUD, 327–334.
Li, G.; Hu, Y.; Zhang, M.; Liu, J.; Yin, Q.; Peng, Y.; and Dou, D.
2022. FedHiSyn: A Hierarchical Synchronous Federated Learning
Framework for Resource and Data Heterogeneity. In ICPP.
Li, Q.; Diao, Y.; Chen, Q.; and He, B. 2021. Federated learning on
non-iid data silos: An experimental study. arXiv:2102.02079.
Li, Q.; He, B.; and Song, D. 2021. Model-Contrastive Federated
Learning. In CVPR, 10713–10722.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13907

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; and
Smith, V. 2020. Federated Optimization in Heterogeneous Net-
works. In MLSys, volume 2, 429–450.
Liu, J.; Huang, J.; Zhou, Y.; Li, X.; Ji, S.; Xiong, H.; and Dou, D.
2022a. From distributed machine learning to federated learning: a
survey. KAIS, 64(4): 885–917.
Liu, J.; Jia, J.; Ma, B.; Zhou, C.; Zhou, J.; Zhou, Y.; Dai, H.;
and Dou, D. 2022b. Multi-Job Intelligent Scheduling With Cross-
Device Federated Learning. TPDS, 34(2): 535–551.
Liu, J.; Wu, Z.; Yu, D.; Ma, Y.; Feng, D.; Zhang, M.; Wu, X.; Yao,
X.; and Dou, D. 2023a. Heterps: Distributed deep learning with re-
inforcement learning based scheduling in heterogeneous environ-
ments. FGCS, 148: 106–117.
Liu, J.; Zhou, X.; Mo, L.; Ji, S.; Liao, Y.; Li, Z.; Gu, Q.; and Dou,
D. 2023b. Distributed and deep vertical federated learning with big
data. CCPE, e7697.
Liu, M.; Ho, S.; Wang, M.; Gao, L.; Jin, Y.; and Zhang, H. 2021.
Federated learning meets natural language processing: A survey.
arXiv preprint arXiv:2107.12603.
Liu, Y.; Huang, A.; Luo, Y.; Huang, H.; Liu, Y.; Chen, Y.; Feng, L.;
Chen, T.; Yu, H.; and Yang, Q. 2020. Fedvision: An online visual
object detection platform powered by federated learning. In AAAI.
Luo, M.; Chen, F.; Hu, D.; Zhang, Y.; Liang, J.; and Feng, J.
2021. No Fear of Heterogeneity: Classifier Calibration for Fed-
erated Learning with Non-IID Data. In NeurIPS, 5972–5984.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and y Arcas,
B. A. 2017. Communication-efficient learning of deep networks
from decentralized data. In AISTATS, 1273–1282.
Nguyen, D. C.; Pham, Q.-V.; Pathirana, P. N.; Ding, M.; Senevi-
ratne, A.; Lin, Z.; Dobre, O.; and Hwang, W.-J. 2022a. Federated
learning for smart healthcare: A survey. ACM CSUR, 55(3): 1–37.
Nguyen, J.; Malik, K.; Zhan, H.; Yousefpour, A.; Rabbat, M.;
Malek, M.; and Huba, D. 2022b. Federated Learning with Buffered
Asynchronous Aggregation. In AISTATS, volume 151, 3581–3607.
Park, J.; Han, D.-J.; Choi, M.; and Moon, J. 2021. Sageflow: Ro-
bust federated learning against both stragglers and adversaries. In
NeurIPS, volume 34, 840–851.
Robbins, H.; and Monro, S. 1951. A stochastic approximation
method. The annals of mathematical statistics, 400–407.
Shi, W.; Zhou, S.; and Niu, Z. 2020. Device scheduling with fast
convergence for wireless federated learning. In IEEE ICC, 1–6.
Shi, W.; Zhou, S.; Niu, Z.; Jiang, M.; and Geng, L. 2020. Joint
device scheduling and resource allocation for latency constrained
wireless federated learning. IEEE TWC, 20(1): 453–467.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In ICLR.
Smith, V.; Chiang, C.-K.; Sanjabi, M.; and Talwalkar, A. S. 2017.
Federated Multi-Task Learning. In NeurIPS, volume 30, 1–11.
Su, N.; and Li, B. 2022. How Asynchronous can Federated Learn-
ing Be? In IWQoS, 1–11.
Sun, B.; Huo, H.; YANG, Y.; and Bai, B. 2021. PartialFed: Cross-
Domain Personalized Federated Learning via Partial Initialization.
In NeurIPS, volume 34, 23309–23320.
Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; and Poor, H. V. 2020. Tack-
ling the Objective Inconsistency Problem in Heterogeneous Feder-
ated Optimization. In NeurIPS, volume 33, 7611–7623.
Watkins, C. J. C. H.; and Dayan, P. 1992. Technical Note Q-
Learning. Machine Learning, 8: 279–292.

Wu, S.; Li, Y.; Zhang, D.; Zhou, Y.; and Wu, Z. 2021. Topicka:
Generating commonsense knowledge-aware dialogue responses to-
wards the recommended topic fact. In IJCAI, 3766–3772.
Wu, W.; He, L.; Lin, W.; Mao, R.; Maple, C.; and Jarvis, S. 2020.
SAFA: A semi-asynchronous protocol for fast federated learning
with low overhead. IEEE Transactions on Computers, 655–668.
Xia, Z.; and Zhao, D. 2015. Online reinforcement learning by
bayesian inference. In IJCNN, 1–6.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist: a
novel image dataset for benchmarking machine learning algo-
rithms. arXiv preprint arXiv:1708.07747.
Xie, C.; Koyejo, S.; and Gupta, I. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934.
Xu, C.; Qu, Y.; Xiang, Y.; and Gao, L. 2021. Asynchronous feder-
ated learning on heterogeneous devices: A survey. arXiv preprint.
Yan, D.; Qu, W.; Guo, G.; Wang, X.; and Zhou, Y. 2022a. Pre-
fixfpm: A parallel framework for general-purpose mining of fre-
quent and closed patterns. VLDBJ, 31(2): 253–286.
Yan, D.; Zhou, Y.; and Guo, G. 2022. Think-like-a-task program-
ming model. Encyclopedia of Big Data Technologies.
Yan, D.; Zhou, Y.; Guo, G.; and Liu, H. 2022b. Parallel graph
processing. Encyclopedia of Big Data Technologies.
Zhang, H.; Liu, J.; Jia, J.; Zhou, Y.; and Dai, H. 2022. FedDUAP:
Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server. In IJCAI, 2776–2782.
Zhang, Q.; Liu, L.; Lee, K.; Zhou, Y.; Singh, A.; Mandagere, N.;
Gopisetty, S.; and Alatorre, G. 2014. Improving hadoop service
provisioning in a geographically distributed cloud. In CLOUD.
Zhang, Q.; Liu, L.; Ren, Y.; Lee, K.; Tang, Y.; Zhao, X.; and Zhou,
Y. 2013. Residency aware inter-vm communication in virtualized
cloud: Performance measurement and analysis. In CLOUD.
Zhang, Z.; Jin, J.; Zhang, Z.; Zhou, Y.; Zhao, X.; Ren, J.; Liu, J.;
Wu, L.; Jin, R.; and Dou, D. 2021. Validating the Lottery Ticket
Hypothesis with Inertial Manifold Theory. NeurIPS, 34.
Zhao, X.; Zhang, Z.; Zhang, Z.; Wu, L.; Jin, J.; Zhou, Y.; Jin, R.;
Dou, D.; and Yan, D. 2021. Expressive 1-lipschitz neural networks
for robust multiple graph learning against adversarial attacks. In
ICML, 12719–12735.
Zhou, C.; Liu, J.; Jia, J.; Zhou, J.; Zhou, Y.; Dai, H.; and Dou, D.
2022. Efficient device scheduling with multi-job federated learn-
ing. In AAAI, 9971–9979.
Zhou, C.; Tian, H.; Zhang, H.; Zhang, J.; Dong, M.; and Jia, J.
2021a. TEA-fed: time-efficient asynchronous federated learning
for edge computing. In ACM Int. Conf. on Computing Frontiers.
Zhou, Y. 2017. Innovative Mining, Processing, and Application of
Big Graphs. Ph.D. thesis, Georgia Institute of Technology.
Zhou, Y.; and Liu, L. 2013. Social influence based clustering of
heterogeneous information networks. In KDD, 338–346.
Zhou, Y.; Liu, L.; Lee, K.; Pu, C.; and Zhang, Q. 2015a. Fast It-
erative Graph Computation with Resource Aware Graph Parallel
Abstractions. In ACM Symposium on HPDC, 179–190.
Zhou, Y.; Liu, L.; Lee, K.; and Zhang, Q. 2015b. Graphtwist: Fast
iterative graph computation with two-tier optimizations. VLDBJ,
8(11): 1262–1273.
Zhou, Y.; Pu, G.; Ma, X.; Li, X.; and Wu, D. 2021b. Distilled One-
Shot Federated Learning. arXiv preprint arXiv:2009.07999.
Zhou, Y.; Seshadri, S.; Chiu, L.; and Liu, L. 2014. Graphlens: Min-
ing enterprise storage workloads using graph analytics. In BigData.
Zoph, B.; and Le, Q. V. 2017. Neural Architecture Search with
Reinforcement Learning. In ICLR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13908

