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Abstract
Traditional channel-wise pruning methods by reducing net-
work channels struggle to effectively prune efficient CNN
models with depth-wise convolutional layers and certain ef-
ficient modules, such as popular inverted residual blocks.
Prior depth pruning methods by reducing network depths
are not suitable for pruning some efficient models due to
the existence of some normalization layers. Moreover, fine-
tuning subnet by directly removing activation layers would
corrupt the original model weights, hindering the pruned
model from achieving high performance. To address these
issues, we propose a novel depth pruning method for effi-
cient models. Our approach proposes a novel block prun-
ing strategy and progressive training method for the sub-
net. Additionally, we extend our pruning method to vision
transformer models. Experimental results demonstrate that
our method consistently outperforms existing depth pruning
methods across various pruning configurations. We obtained
three pruned ConvNeXtV1 models with our method applying
on ConvNeXtV1, which surpass most SOTA efficient mod-
els with comparable inference performance. Our method also
achieves state-of-the-art pruning performance on the vision
transformer model.

Introduction
Deep neural networks (DNNs) have made significant strides
across various tasks, culminating in remarkable successes
within industrial applications. Among these applications,
the pursuit of model optimization stands out as a prevalent
need, offering the potential to elevate model inference speed
while minimizing accuracy trade-offs. This pursuit encom-
passes a range of techniques, notably model pruning, quan-
tization, and efficient model design. The efficient model de-
sign includes neural architecture search (NAS) (Cai et al.
2020; Yu and Huang 2019; Yu et al. 2020; Wang et al.
2021a) and handcraft design methodologies. Model prun-
ing has emerged as a prevalent strategy for optimizing mod-
els in industrial applications. Serving as a primary accel-
eration approach, model pruning focuses on the deliberate
removal of redundant weights while maintaining accuracy.
This process typically involves three sequential steps: ini-
tial baseline model training, subsequent pruning of less vital
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Figure 1: Performance vs. speedup on the ImageNet-
1K. Our three pruned ConvNeXtV1 models surpass most
SOTA efficient models on performance including RegNetY,
RepVGG, VanillaNet, ConvNeXtV2, Swin-T, PVT, DeiT,
EdgeViT, EfficientFormerV2, and FastViT.

weights or layer channels, and a concluding finetuning phase
for the pruned model. Notably, model pruning can be clas-
sified into two categories: non-structured pruning and struc-
tured pruning. Structured pruning is the preferred approach
for model deployment in industrial applications, primarily
due to hardware limitations. In contrast to non-structured
methods, where less important weights in convolutional ker-
nel layers are zeroed out in a sparse manner within each
kernel channel, structured pruning encompasses techniques
like channel-wise pruning and block pruning. Channel-wise
pruning focuses on eliminating entire channel filters within
the kernel, while block pruning operates at a larger scale,
typically targeting complete blocks. Given that block prun-
ing often leads to a reduction in model depth, it is also re-
ferred to as a depth pruner.

The evolution of CNN model design has led to the de-
velopment of more efficient models. For instance, Mo-
bileNetV2 (Sandler et al. 2018) employs numerous depth-
wise convolutional layers and stacks inverted residual
blocks, achieving high performance while minimizing pa-
rameters and flops. ConvNeXtV1 (Liu et al. 2022) leverages
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the large kernel trick and incorporates stacked inverted resid-
ual blocks to achieve remarkable efficiency. The conven-
tional channel-wise pruning method faces challenges with
depth-wise convolutional layers due to sparse computation
and fewer parameters. Moreover, now model platforms fa-
vor a higher degree of parallel computing like GPUs, and
channel-wise pruning methods would make efficient mod-
els thinner and sparser, which leads to low hardware uti-
lization and thus inferior achievable hardware efficiency.
To address these issues, DepthShrinker (Fu et al. 2022)
and Layer-Folding (Dror et al. 2021) are proposed to opti-
mize MobileNetV2 by reducing model depth through repa-
rameterization techniques (Ding et al. 2021a,b). However,
these methods exhibit certain limitations. (1) The mecha-
nism of finetuning subnet with removing activation layers
directly could potentially compromise the integrity of base-
line model weights, hindering the attainment of high perfor-
mance. (2) These methods come with usage constraints, they
are unable to prune models with some normalization lay-
ers like LayerNorm (Ba, Kiros, and Hinton 2016) or Group-
Norm (Wu and He 2018) layer, because reparameterization
technique cannot merge normalization layer which is not
BatchNorm layer into adjacent convolutional layer or full-
connection layer. (3) These methods cannot be applied to
vision transformer models for optimization due to the exis-
tence of LayerNorm layer.

To alleviate these problems, we propose a progressive
training strategy and novel block pruning method for our
depth pruning approach that can prune both CNN and vision
transformer models. The progressive training strategy can
smoothly transfer the baseline model structure to the sub-
net structure with high utilization of baseline model weights,
which leads to higher accuracy. Our proposed block pruning
method can handle the existing normalization layer issue,
which can handle all activation and normalization layers in
theory. Thus, our method can prune vision transformer mod-
els, which is not suitable for existing depth pruning meth-
ods. Our experimental evaluation spans across ResNet34,
MobileNetV2, and ConvNeXtV1, showcasing the superior
pruning capabilities. As shown in Figure 1, pruned Con-
vNeXtV1 models with our method surpass most SOTA ef-
ficient models with comparable inference performance. No-
tably, we extend our exploration to vision transformer mod-
els, achieving leading pruning results compared to other vi-
sion transformer pruning methods.

Our main contributions can be summarized as follows. (1)
We propose a unified and efficient depth pruning method for
optimizing both CNN and vision transformer models. (2)
We propose a progressive training strategy for subnet op-
timization, coupled with a novel block pruning strategy us-
ing reparameterization technique. (3) Conducting compre-
hensive experiments on both CNN and vision transformer
models to showcase the superior pruning performance of our
depth pruning method.

Related Work
Network Pruning. Pruning algorithms can be roughly di-
vided into two types. One is the non-structured pruning al-
gorithm represented by (Han, Mao, and Dally 2015; Elsen

et al. 2020; Pool and Yu 2021). It removes redundant ele-
ments in the weight according to certain criteria. However,
non-structured pruning requires special software or hard-
ware accelerators for the pruned models, so its versatility
is not strong. In contrast to unstructured pruning, structured
pruning prunes the entire parameter structure, such as dis-
carding entire rows or columns of weights, or entire filters
in convolutional layers.

When VGG (Simonyan and Zisserman 2014) and
ResNet (He et al. 2016) were on the rise, Pruning Filters (Li
et al. 2016) adopts the L1-norm to select unimportant chan-
nels and prune them. Network FPGM (He et al. 2019) uti-
lizes the geometric median of the convolutional filter to find
redundant filters. Subsequently, various efficient DNN net-
works, such as MobileNet and its variants (Howard et al.
2017, 2019; Tan et al. 2019; Radosavovic et al. 2020), incor-
porated depthwise convolutions (Chollet 2017) to acceler-
ate speed and improve accuracy, enabling real-time deploy-
ment on diverse hardware platforms. MatePruning (Liu et al.
2019) proposes the concept of PruningNet, which automat-
ically generates weights for the pruned model, thus avoid-
ing retraining. However, while depthwise convolutional of-
fers advantages in terms of reduced computation and param-
eters, it also presents a drawback—an increased memory
footprint, posing a challenge for computationally intensive
hardware like GPUs and DSPs (Tan and Le 2021). Unfortu-
nately, channel-wise pruning methods do not offer an intu-
itive and efficient solution to address this memory footprint
challenge.

The most relevant to our work is layer-wise pruning,
which can completely remove a block or layer to reduce
the depth of the network and effectively alleviate the prob-
lem of memory usage. Shallowing deep networks (Chen and
Zhao 2018) and LayerPrune (Elkerdawy et al. 2020) pro-
pose their own strategies for evaluating the importance of
convolutional layers. ESNB (Zhou, Yen, and Yi 2021) and
ResConv (Xu et al. 2020) identify which layers to be pruned
by evolutionary search algorithms and differentiable param-
eters, respectively. Layer-Folding (Dror et al. 2021) and
DepthShinker (Fu et al. 2022) remove non-linear activation
functions within the block and merge multiple layers into a
single layer using structural reparameterization techniques.
Layer-Folding and DepthShinker have only been verified on
the few limited models, and the hard removal of ReLU may
have an impact on the accuracy of the subnet.

The Transformer family of models excels in performance
across various vision tasks (Carion et al. 2020; Strudel et al.
2021; Brown et al. 2020); however, its high inference cost
and significant memory footprint hinder widespread adop-
tion (Pope et al. 2023). To tackle the memory footprint chal-
lenge, layer-wise pruning presents an effective solution. Dy-
namic skipping blocks to remove some layers has become
the mainstream transformer compression method (Zhang
and He 2020; Dong, Cordonnier, and Loukas 2021; Michel,
Levy, and Neubig 2019). DynamicViT (Rao et al. 2021)
dynamically screens the number of tokens that need to be
passed to the next layer. By encouraging dimension-wise
sparsity, VTP (Zhu, Tang, and Han 2021) selects the dimen-
sion with strong redundancy for pruning.
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Structural Reparameterization. In the absence of a
nonlinear activation function within a block, the structural
reparameterization technique facilitates the consolidation of
multiple convolutional layers into a single convolutional
layer (Bhardwaj et al. 2022). This consolidation effectively
diminishes the neural network’s memory requirements dur-
ing inference, resulting in accelerated model processing.
RepVGG (Ding et al. 2021b) distinguishes between training
and testing structures, empowering the plain network to sur-
pass the performance of ResNet. Furthermore, DBB (Ding
et al. 2021a) merges a multi-branch architecture into a single
convolution, significantly outpacing the speed of a conven-
tional multi-branch unit.

Neural Architecture Search (NAS). Weight-sharing
NAS has become the mainstream of pruning methods due to
its flexibility and convenience of training a supernet and de-
ploying multiple subnets. Once-for-All (Cai et al. 2020) uses
a progressive training supernet. BigNAS (Yu et al. 2020)
uses a series of simple and practical training methods to im-
prove the efficiency of training supernet. Once the supernet
is trained, typical search algorithms, such as genetic search,
can be applied to find a set of Pareto-optimal networks for
various deployment scenarios.

In this work, we propose a unified depth pruning ap-
proach for both efficient CNN and vision transformer mod-
els with a progressive training strategy, a novel block prun-
ing method, and the reparameterization technique. Differ-
ing from DepthShrinker and Layer-Folding finetuning the
subnet with direct activation layer removal, our method pro-
gressively removes the activation layer in the pruned block
during subnet training. Moreover, our method handles the
normalization layer problem that DepthShrinker and Layer-
Folding cannot prune models with LayerNorm or Group-
Norm layers in the block. Further, they can not prune vi-
sion transformer models. Although our work has a similar
training process as VanillaNet (Chen et al. 2023), whereas
VanillaNet is proposed to design a completely new network
structure, our method is a general depth pruning framework
for both CNN and vision transformer models.

Method
Unified Progressive Depth Pruner
Our depth pruning approach aims to reduce model depth by
proposed novel block pruning strategy with reparameteriza-
tion technique rather than directly omitting the block. As
shown in Figure 2, our block pruning strategy converts a
complex and slow block into a simple and fast block in block
merging. For a block, we replace the activation layer with
identity layer and replace the LayerNorm (LN) or Group-
Norm (GN) layer with a BatchNorm (BN) layer and insert an
activation layer with a BatchNorm layer at the end of block
to create conditions for reparameterization. Then, the repa-
rameterization technique can merge the BatchNorm layers,
adjacent Convolutional or Full-connection layers and skip
connections as shown in Figure 2.

Overview. Our approach primarily consists of four main
steps, which are supernet training, subnet searching, subnet
training, and subnet merging. First, We construct a supernet

based on the baseline model, where we make block mod-
ification as shown in Figure 2. After supernet training, a
search algorithm is used to search an optimal subnet. Then,
we adopt a proposed progressive training strategy to opti-
mize the optimal subnet with less accuracy loss. In the end,
the subnet would be merged into a shallower model with the
reparameterization technique.

Supernet Training. Efficient CNN and vision trans-
former models usually consist of several basic blocks, like
some efficient models structure shown in Figure 2. First,
we construct a supernet based on the baseline model and
then train a robust supernet model based on the sandwich
rule (Yu and Huang 2019) method to ensure that each sub-
net has a meaningful accuracy. We combine the baseline
block and corresponding pruned block into a supernet block,
which has both baseline block and pruned block flows. For
a supernet block, choosing the baseline block flow means
no pruning and choosing pruned block flow means pruning
the block. Then, subnet selection is a series of choices where
the choice number is equal to a block number of the baseline
model. The subnet would be faster with more pruned blocks
selected.

Inspired by BigNAS (Yu et al. 2020), we adopt the sand-
wich rule to sample the subnetwork before each step. In each
step, we sample four sequential subnets, where the first one
keeps all blocks unpruned, the following two subnets ran-
domly select blocks to be pruned, and the last one keeps
all blocks pruned. Then, we optimize supernet with accu-
mulated grads of four subnets. The sandwich rule can ef-
fectively guarantee the upper and lower limits of the trained
supernet. Also many methods (Wang et al. 2021b,a) demon-
strate that the sandwich rule can be used to train supernet
efficiently, even if the number of epochs is small and the ac-
curacy distribution of the subnet is the same as that of train-
ing more epochs. In this way, we can reduce the training cost
of supernet.

Subnet Searching. The primary objective of our depth
pruner is to identify an optimal subnet based on a specified
pruning criteria, such as the number of blocks to be pruned.
As shown in Equation 1, we formulate this problem as an
optimal problem. For all samples X and their labels Y , the
goal of subnet searching is to find a subnet Sp with the high-
est accuracy. p ∈ RNblock is a binary vector, representing the
pruning setting of the subnet. If i-th block is pruned, pi is set
to 1. The number of pruned blocks of each subnet is equal
to k. Genetic algorithm (Cai et al. 2020) is applied to solve
this problem.

argmax
p

Accuracy(Sp(X), Y ) s.t. ||p||0 = k (1)

After the search process, we obtain a subnet that has a
specified number of pruned blocks, and other blocks keep
the same as the baseline model.

Subnet Training. We need to train the optimal subnet ob-
tained from the previous step to restore its accuracy. Rather
than directly training the subnet, our approach employs a
progressive training strategy to finetune the subnet smoothly
transferring from baseline model weights. The subnet train-
ing consists of two stages. During the first training stage,
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Figure 2: Framework overview of our proposed depth pruner. Each pruned baseline block will gradually evolve into a smaller
merged block to speedup and save memory. Four baselines are experimented, including three CNN-based networks (ResNet34,
MobileNetV2 and ConvNeXtV1) and one vision transformer network (DeiT-Tiny).

we adopt a progressive training strategy, gradually transfer-
ring from a baseline model structure to the pruned subnet
structure by a controlling λ factor. In the second stage, we
continue finetuning the pruned subnet to the end for high
accuracy.

As for the first stage, the gradual transition of λ from 0
to 1 allows for a controlled process that transfers a baseline
block to pruned block as shown in Equation 2, where Bb is
the block of baseline model and Bp is the pruned block of
the subnet and x is the input of block. Thus all the pruned
blocks of the subnet go through the same process with λ and
obtain the pruned subnet smoothly.

o = (1− λ) ·Bb(x) + λ ·Bp(x) (2)
Our method controls λ transition from 0 to 1 during the first
training phase, and then keeps λ constant during the sec-
ond phase of training as shown in Equation 3, where K is
hyper-parameter and C is current training epoch and T is
total training epoch.

λ =

{
1−max(0, cos(C·K

T · π
2 )), if C ≤ T

K ,

1, if C > T
K .

(3)

It is worth noting that, to reduce the error in subsequent
subnet merging, it is necessary to modify the padding and
stride of related convolutional layers in pruned blocks be-
fore subnet training. For example, accumulate all padding

values which are not zero forward to the first convolutional
layer of the block and set the padding values of the remain-
ing convolutional layer to zero. Also, accumulate all stride
values which are not equal to one backward to the last con-
volutional layer of the block and set the stride value of other
convolutional layers to one.

Subnet Merging. After subnet training, we obtain a sub-
net with some activation layers replaced with Identity lay-
ers, some LayerNorm layers replaced with BatchNorm lay-
ers with some activation layers, and BatchNorm inserted at
the end of the pruned block. In this stage, we adopt reparam-
eterization techniques to make the subnet shallower.
• Conv +BN −→ Conv

During the inference phase of a neural network, it is pos-
sible to fuse the operations of BatchNorm layers into Con-
volutional (Conv) layers to accelerate model inference. We
assume that the parameters of the Conv layer are denoted as
ω and b, and the parameters of the BN layer are denoted as
γ, σ, ϵ, β. After merging of the Conv layer and BN layer, the
parameters of the Conv layer would be modified as follows:

ω̂ =
γ · ω√
σ2 + ϵ

b̂ = β + γ · b− µ√
σ2 + ϵ

(4)

• Conv/FC + Conv/FC −→ Conv/FC

Two adjacent full-connection (FC) layers can be simply
merged into a FC layer by the fusion of their weights. Sup-
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pose that there are two adjacent FC layers, their weights
are W1 ∈ RC1×C0 and W2 ∈ RC2×C1 , and their biases
are b1 ∈ RC1 and b2 ∈ RC2 . For a given input feature
x ∈ RN×C0 , the output of these two FC layers is expressed
as W2(W1x

T +b1)+b2, which can be obtained by an equiv-
alent FC layer whose weight is equal to W2W1 and bias is
equal to (W2b1 + b2).

We will primarily introduce the fusion methods between
convolutional layers. For sequential 1×1 convolutional layer
fusing with k×k convolutional layer, we adopt the proposed
fusion method from DBB (Ding et al. 2021a) to merge the
two layers into an equivalent k × k convolutional layer. For
sequential k × k convolutional layer fusing with k × k, it
would obtain an equivalent (2k − 1) × (2k − 1) convolu-
tional layer with more parameters and flops compared with
k × k convolutional layer. We propose a simple way to ad-
dress this problem, which replaces the first k×k Conv layer
with a 1×1 Conv layer, where the parameter of 1×1 Conv is
taken from the central point of the k×k Conv with a retrain-
ing model. Then take the DBB fusion method to transform
the two convolutional layers into an equivalent k× k convo-
lutional layer.

• Conv + skip connection(Identity/Conv) −→ Conv

RepVGG (Ding et al. 2021b) proposes a method to trans-
form a multi-branch model into an equivalent single-path
model. According to the additivity property of convolutions,
for two convolutional layers with the same kernel size, they
satisfy the following Equation 5:

Conv(W1, x) +Conv(W2, x) = Conv(W1 +W2, x) (5)

where Conv(W,x) represents the convolutional operation,
W1 and W2 are the convolutional kernel parameters, and x
is the input data. RepVGG has demonstrated that the iden-
tity and 1×1 convolutional can be equivalently transformed
into a k×k convolution. Then with the property of convolu-
tional additivity, the multi-branch convolutional layers can
be merged into an equivalent convolutional layer and skip
connection identity can be merged into convolutional layer
too.

Depth Pruner on CNN
Applying our method on CNN models can refer to Figure 2
showing the pipeline. We should find the basic block first,
and design a corresponding pruned block by reference of
the pruned block in Figure 2. For activation layers in the
block, we replace it with an Identity layer. For the normal-
ization layer, which is not BatchNorm layer in block, we
replace it with a BatchNorm layer, otherwise nothing needs
to be done. Finally, we would insert an activation layer with
a BatchNorm layer at the end of block. If an activation layer
already exists in the position like ResNet34 block, only a
BatchNorm layer needs be inserted after the activation layer
at the end of block. After the pruned block is completed, re-
view the supernet training, subent searching, subnet training,
and subnet merging processes. We would obtain the pruned
CNN models. For plain CNN models, we can define the
block which can includes two or more sequential convolu-
tional layers.

Depth Pruner on Vision Transformer
We also apply our proposed depth pruner on vision trans-
former models. The vision transformer block usually has
a multi-headed self-attention (MHSA) module and a MLP
module that includes two full-connection layers. Particu-
larly, we utilize DeiT (Touvron et al. 2021) as the case show-
ing the pruning flows. As demonstrated in Figure 2, to build
the Supernet, we add BN bypasses next to the LN and ac-
tivation (GELU) layers of the original model and insert a
GELU&BN block after the residual addition operation. Af-
ter subnet searching and subnet training, we obtain the sub-
net, whose original LN and GELU operations of the pruned
blocks are all replaced by BNs. A GELU&BN block is at-
tached after the residual addition. Then, we merge the subnet
to obtain a fast pruned model as shown in Figure 2.

Experiments
In this section, we showcase the efficacy of our depth pruner.
Initially, we elucidate the experimental configurations and
outline the procedure for applying the depth pruner to both
CNN models and Vision Transformers. Subsequently, we
compare our results with the state-of-the-art pruning meth-
ods to highlight the superiority of our approach. Finally, we
perform ablation studies to elaborate on the effect of subnet
searching and progressive training strategy in our method.

Datasets
All the experiments are conducted on the ImageNet-
1K (Russakovsky et al. 2015). ImageNet-1K dataset is a
widely used image classification dataset that spans 1000 ob-
ject classes and contains 1,281,167 training images, 50,000
validation images, and 100,000 test images. We apply con-
ventional data augmentation techniques to preprocess input
images during training and scale input images to 224× 224
for all experiments with reporting performance on validation
dataset.

Experiments Setting on Different Models
We apply depth pruner on a series of CNN models, in-
cluding ResNet34 (He et al. 2016), MobileNetV2, Con-
vNeXtV1 (Liu et al. 2022), and Vision Transformer (Tou-
vron et al. 2021) to validate the efficiency of our method.
We utilize four GPUs to train our model, with a total batch
size of 256. In the training process, we take 10 epochs to
train the supernet, except for MobileNetV2 and search opti-
mal subnets. Then we train these subnets with the proposed
progressive training strategy and complete subnet merging
to obtain more efficient shallow models.

ResNet34. For ResNet34 pruning experiments, we prune
6 and 10 blocks respectively and go through the whole prun-
ing process to obtain two pruned and shallow subnets. For
subnet training, the hyper-parameters K in Equation 3 is
3, and the total training epochs is 150. At epoch 100, we
change kernel size from 3 × 3 to 1 × 1 of the first convo-
lutional layer in the pruned block. We compare our method
with MetaPruning (Liu et al. 2019) and channel-wise NAS
method Universally Slimmable Networks (US) (Yu and
Huang 2019) to verify the pruning performance.
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Models FLOPs
(G)

Acc1
(%) Speedup

ResNet34-Baseline 3.67 73.6 1.00

US-ResNet34-0.6× 2.32 72.0 1.24
MetaPruning-0.6× 2.32 72.8 1.24

Ours-P6 2.97 73.2 1.25
Ours-P6* 2.97 73.5 1.24

US-ResNet34-0.5× 1.90 70.8 1.43
MetaPruning-0.5× 1.87 71.6 1.43

Ours-P10 2.51 71.8 1.43
Ours-P10* 2.51 72.4 1.43

Table 1: Classification performance comparisons on Ima-
geNet. P6 and P10 indicate pruning 6 and 10 blocks, respec-
tively, and ’*’ means a higher accuracy subnet with longer
search time.

MobileNetV2. For MobileNetV2 pruning experiments,
we adopt three pruning configurations from DepthShrinker.
We skip the supernet training and subnet searching phases
to obtain three same subnets. We directly train these three
subnets to the end and compare the final performance with
the corresponding subnet. We also use the NAS method to
search three subnets with similar speedup ratios to compare
with our method. For subnet training, the hyper-parameters
K is 3, and the total training epochs is 450.

ConvNeXtV1. For ConvNeXtV1 pruning experiments,
we set three pruning configurations which let the sub-
net obtain the performance around 81% top-1 accuracy on
ImageNet-1k. Then, we compare these subnets with many
SOTA models which include CNN and vision transformer
structures to verify our method pruning performance. For
subnet training, the hyper-parameters K is 4.5 and the total
training epochs is 450. To achieve better speedup, we change
the kernel of the depthwise conv of the pruned block from 7
to 3.

DeiT. For DeiT pruning experiments, we conduct a prun-
ing experiment with 6 layers experiment to compare with
the SOTA vision transformer pruning method. For subnet
training, the hyper-parameters K is 6, and the total training
epochs is 450.

Comparisons with SOTA Models
We compare the depth pruner with the state-of-the-art prun-
ing methods under the comparable inference speed on a sin-
gle AMD MI100 GPU. Following (Graham et al. 2021), we
measure the average inference speedup of compressed net-
works with batchsize=128. In this paper, we compare the
accuracy of different models with comparable speedups.

ResNet34. Table 1 compares our method with MetaPrun-
ing and NAS US methods on ResNet34. We prune 6 and 10
blocks respectively by applying our depth pruner to obtain
two subnets with 1.25× and 1.43× speedup ratios, respec-
tively. Under comparable speedup, our method surpasses
the MetaPruing by 0.8% and NAS US method by 1.6% on
1.43× speedup ratio with a longer search time.

Models FLOPs
(M)

Acc1
(%) Speedup

MBV2-1.4-Baseline 630 76.5 1.00

MetaPruning-0.5× 332 73.2 1.49
US-MBV2-1.4-0.6× 384 73.4 1.56

MBV2-1.4-DS-A 519 74.4 1.75
Ours-P6 519 74.8 1.75

US-MBV2-1.4-0.4× 286 72.2 2.04
MBV2-1.4-DS-C 492 73.1 2.16

Ours-P9 492 73.8 2.16
US-MBV2-1.4-0.3× 213 68.1 2.40

MBV2-1.4-DS-E 474 72.2 2.50
Ours-P11 474 72.5 2.50

Table 2: Classification performance comparisons with
MetaPruing, NAS US and DepthShrinker on ImageNet with
same network structures as the DepthShinker.

MobileNetV2. Table 2 shows the experimental results
on MobileNetV2-1.4. We adopt the same subnets as
DepthShrinker, but the subnet training process is different
from our progressive training strategy. We achieve 0.7%
higher accuracy than MBV2-1.4-DS-C at a 2.16× speedup
ratio, and some improvement compared to DepthShrinker
at other speedup ratios. We also compare MetaPruning, and
similar to ResNet34, we reproduce MetaPruning-0.35× with
inference speeds comparable to MBV2-1.4-DS-C, while our
depth pruning achieves a 2.1% higher accuracy with a higher
speedup ratio.

ConvNeXtV1. Table 3 compares our accuracy with some
common efficient models since there is no compression
method for ConvNeXtV1. We test the speedup ratios of all
networks on the AMD platform using the slowest network
EfficientFormerV2-S2 in the table as a benchmark. We di-
vide the model into levels by accuracy, and our depth prun-
ing method achieves higher accuracy with comparable speed
in different levels.

DeiT. As shown in Table 4, our method outperforms other
state-of-the-art methods in both accuracy and speedup ra-
tio. Our proposed depth pruner achieves a 1.26× speedup
ratio with only a 1.9% top-1 accuracy drop. By replac-
ing mergeable modules and applying the reparameterization
technique, our proposed method can shrink the network and
bring real inference acceleration.

Ablation Study
In this section, we analyze the effectiveness of subnet
searching and progressive training strategy.

Models Before FT(%) After FT(%)

ResNet34-P10-A 57.8 71.8
ResNet34-P10-B 55.9 71.2

Table 5: Evaluating the accuracy consistence of subnets.
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Models Type FLOPs(G) Params(M) Acc1(%) Speedup

ConvNeXtV1-T-Baseline (Liu et al. 2022) Conv 4.5 28.6 82.1 2.4

RepVGG-B1 (Ding et al. 2021b) Conv 11.8 51.8 78.4 2.1
EfficientFormerV2-S1 (Li et al. 2022) Hybrid 0.7 6.1 79.0 4.0

MobileOne-S4 (Vasu et al. 2023) Conv 3.0 14.8 79.4 3.9
ConvNeXtV2-P (Woo et al. 2023) Conv 9.1 9.1 79.7 4.0

PVT-Small (Wang et al. 2021c) Attention 3.8 24.5 79.8 2.7
VanillaNet-9 (Chen et al. 2023) Conv 8.6 41.4 79.9 1.1

RegNetY-12G (Radosavovic et al. 2020) Conv 12.1 51.8 80.3 1.8
ConvNeXtV1-T-UPDP-P9 Conv 2.5 23.6 80.6 4.9

RepVGG-B3 (Ding et al. 2021b) Conv 26.2 110.9 80.6 1.1
ConvNeXtV1-N (Woo et al. 2023) Conv 2.5 15.6 80.8 3.6

EdgeViT-S (Pan et al. 2022) Hybrid 1.9 11.1 81.0 3.6
Swin-T (Liu et al. 2021) Attention 4.5 28.3 81.1 2.8

PVT-Medium (Wang et al. 2021c) Attention 6.7 44.0 81.2 1.8
ConvNeXtV1-T-UPDP-P6 Conv 3.1 27.5 81.3 4.2

VanillaNet-11 (Chen et al. 2023) Conv 10.3 50.0 81.1 1.1
EfficientFormerV2-S2 (Li et al. 2022) Hybrid 1.3 12.6 81.6 1.0

PVT-Large (Wang et al. 2021c) Attention 9.8 61.0 81.7 1.3
DeiT-B (Touvron et al. 2021) Attention 17.5 86.0 81.8 1.5
ConvNeXtV1-T-UPDP-P3 Conv 3.8 28.3 81.9 3.3

Table 3: Performance of ConvNeXtV1 depth pruning results on ImgeNet. Speedups are tested on an AMD MI100 GPU with a
batch size of 128. Adopt the slowest network in the table (EfficientFormerV2) as the baseline(1.0 speedup) for comparison.

Models FLOPs
(G)

Params
(M)

Acc1
(%) Speedup

DeiT-Tiny 1.3 5.4 72.2 1.00

SCOP* 0.8 - 68.9 -
HVT* 0.7 - 69.7 -

S2ViTE 1.0 4.2 70.1 1.12
WD-Pruning 0.7 3.5 70.3 1.20

XPruner 0.6 - 71.1 -
Ours-P6 0.9 3.8 70.3 1.26

Table 4: DeiT depth pruning results on ImageNet. The re-
sults of S2ViTE (Tang et al. 2022) and WD-Pruning (Yu
et al. 2022) refer to their paper. SCOP (Tang et al. 2020),
HVT (Pan et al. 2021), and XPruner (Yu and Xiang 2023) do
not publish their results about the number of parameters and
speedup ratio. ”*” denotes that the results come from (Yu
et al. 2022).

Effectiveness of Subnet Searching. We verify the effec-
tiveness of our ResNet34 subnet searching by comparing
performance of two pruned-10-layers subnets with different
accuracy before subnet finetune (FT) based on ResNet34.
Table 5 shows ResNet34-P10-A with a higher accuracy be-
fore subnet finetune can achieve higher finetune accuracy,
which proves the effectiveness of supernet training and sub-
net searching for optimal subnet with a final high perfor-
mance.

Models Direct (%) Progressive (%)

ResNet34-P10 71.3 71.8
MBV2-1.4-P9 73.1 73.8

ConvNeXtV1-T-P3 81.6 81.9
DeiT-Tiny-P6 69.5 70.3

Table 6: Evaluating the effectiveness of progressive training.

Effectiveness of Progressive Training Strategy. Com-
pared with hard removal of non-linear activation functions,
our progressive training has a significant improvement in the
accuracy of each subnetwork. As shown in Table 6, for var-
ious sub-networks, we observe that progressive training im-
proves accuracy by 0.3%-0.8% than direct training method.

Conclusion
In this paper, we present a unified depth pruner for both effi-
cient CNN and vision transformer models to prune models in
the depth dimension. Our depth pruner includes four steps,
which are supernet training, subnet searching, subnet train-
ing, and subnet merging. We propose a novel block pruning
method and a progressive training strategy to utilize base-
line model weights better. During subnet merging, we use
reparameterization technique to make subnet become shal-
lower and faster. We conduct our method to several CNN
models and transformer models. The SOTA pruning perfor-
mance demonstrates the superiority of our method. In the
future, we would explore our method on more transformer
models and tasks.
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