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Abstract

In recent years, Hypergraph Neural Networks (HGNNs) have
achieved considerable success by manually designing archi-
tectures, which are capable of extracting effective patterns
with high-order interactions from non-Euclidean data. How-
ever, such mechanism is extremely inefficient, demanding
tremendous human efforts to tune diverse model parameters.
In this paper, we propose a novel Hypergraph Neural Archi-
tecture Search (HyperNAS) to automatically design the opti-
mal HGNNs. The proposed model constructs a search space
suitable for hypergraphs, and derives hypergraph architec-
tures through differentiable search strategies. A hypergraph
structure-aware distance criterion is introduced as a guide-
line for obtaining an optimal hypergraph architecture via the
leave-one-out method. Experimental results for node classi-
fication on benchmark Cora, Citeseer, Pubmed citation net-
works and hypergraph datasets show that HyperNAS outper-
forms existing HGNNs models and graph NAS methods.

Introduction
For real-world applications, there exist many irregular data
structures, which can be effectively modeled via the graph
structure. To extract the useful information from the graph
structured data, graph neural networks (GNNs) have been
proposed to address various learning tasks. The existing
GNNs have achieved promising performance in real appli-
cations such as node classification (Xiao et al. 2022; Tian
et al. 2023), community detection (Qiu et al. 2022), traffic
forecasting (Jiang and Luo 2022) and biological problems
(Bongini et al. 2023).

Graph neural networks (GNNs) model pairwise connec-
tions between two data samples via a normal graph. How-
ever, the data structure in real-world tasks may exceed pair-
wise relations that cannot be effectively modeled by normal
graphs. Instead of edges in normal graphs, the hyperedge in
a hypergraph can connect the arbitrary number of vertices.
Thus, hypergraph-based learning methods are the more flex-
ible and natural to extract the useful information from the
complex graph data, which are attracting more and more at-
tention from the researchers.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Intuitive comparison between our work and the ex-
isting graph NAS work. (a) Graph NAS is dedicated to the
study of normal graphs. (b) Our work is based on hyper-
graphs.

In recent years, hypergraph neural networks (HGNNs)
have become a popular learning tool to extract the complex
patterns in non-Euclidean data, which is first proposed in
(Feng et al. 2019). It designs a hyperedge convolution op-
eration to leverage the high-order correlations across data.
Since then, a variety of hypergraph neural networks have
been proposed for different learning tasks, including but not
limited to image retrieval (Zeng et al. 2023), quadratic as-
signment problem (Wang, Yan, and Yang 2021), biomedical
science (Klimm, Deane, and Reinert 2021; Saifuddin et al.
2022), keypoint matching (Kim et al. 2022) and node classi-
fication (Bai, Zhang, and Torr 2021; Gao et al. 2022).

Although a lot of progress has been made in the literature,
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it is intractable to design an effective hypergraph networks
practically. Similar to CNNs that highly rely on the design
of architectures, the results of hypergraph neural networks
are primarily depended on the architecture design, includ-
ing vertex feature aggregation (Arya et al. 2020) and hy-
peredge feature aggregation (Jiang et al. 2019; Gao et al.
2022). Obtaining the optimal architecture usually involves
thousands of reiterative cross validation steps. It requires
numerous domain knowledge and expert efforts, which is
a labor-intensive task.

Until very recently, neural architectures search (NAS)
(Zoph and Le 2017) has become an effective tool to ad-
dress the aforementioned issue. Through learning in expres-
sive search spaces and efficient search strategies, automatic
graph learning via NAS has achieved promising progress on
various graph data analysis tasks (Gao et al. 2021; Huan,
Quanming, and Weiwei 2021; Zheng et al. 2023; Gao et al.
2023). Thus, applying NAS to derive the optimal neural ar-
chitectures for GNNs motivates us to use NAS to search the
best architecture for HGNNs. To the best of our knowledge,
there are still a research gap in developing hypergraph NAS
for automatic hypergraph learning. Perhaps the most direct
approach to implementing hypergraph NAS is to employ
NAS methods commonly used in normal graphs. But this
straightforward solution would incur some issues: First, the
inherent structural differences between normal graphs and
hypergraphs make graph-based search spaces unsuitable for
hypergraphs, as shown in Fig. 1. The key to hypergraph ar-
chitecture design lies in the effective way to aggregate ver-
tex and hyperedge features. Unlike graphs that only allow
two nodes to connect, hypergraphs allow an arbitrary num-
ber of nodes to form hyperedges, thus graph-based feature
aggregation methods cannot be used directly. Second, sim-
ply utilizing existing general architecture selection strategies
limits search performance, resulting in suboptimal HGNN
architectures.

To address the above challenges, we propose a novel
hypergraph neural architecture search method, namely Hy-
perNAS, for automatic hypergraph learning. The proposed
model defines a search space suitable for hypergraphs,
which can well emulate the artificially designed HGNN ar-
chitectures. Then, HyperNAS designs a differentiable search
algorithm and adopts the advanced one-shot NAS paradigm
to train a supernet containing all candidate architectures.
Furthermore, a hypergraph structure-aware distance crite-
rion is introduced as a guideline for obtaining an optimal
hypergraph architecture. Extensive experiments on bench-
mark graph and hypergraph datasets demonstrate the effec-
tiveness of the proposed framework. Experimental results of
the transfer learning task further demonstrate the power of
HyperNAS. Our contributions are summarized as follows:

1. We propose a hypergraph neural architecture search
method, termed HyperNAS, to enable automatic hyper-
graph learning. To the best of our knowledge, this is the
first attempt to apply NAS to hypergraphs.

2. By designing a search space suitable for hypergraphs,
HyperNAS emulates existing human-designed HGNN
architectures. To select the optimal HGNN architec-

ture guided by the hypergraph structure, we derive a
hypergraph structure-aware distance criterion to obtain
a formidable HGNN architecture in the leave-one-out
manner.

3. The extensive experimental results on benchmark graph
and hypergraph datasets demonstrate that the proposed
method is capable to design the optimal neural architec-
tures that outperform the manually-designed graph and
hypergraph architectures as well as graph NAS methods.

Related Work
Hypergraph Neural Networks
Existing hypergraph neural architectures mainly contain
three types of operators: hypergraph construction, vertex
feature aggregation, and hyperedge feature aggregation. In-
spired by convolutional neural networks, hypergraph neural
network (HGNN) (Feng et al. 2019) is the first deep learning
model for hypergraph, which leverages hypergraph Lapla-
cian to represent hypergraphs from a spectral graph perspec-
tive. (Zhang, Zou, and Ma 2020; Bai, Zhang, and Torr 2021)
generalize the convolutional operation or attention mecha-
nism to hypergraph. HGNN+ (Gao et al. 2022) enables the
learning of optimal representations in a single hypergraph
framework by bridging multi-modal/multi-type data and hy-
peredge groups.

On the other hand, some studies are devoted to the dy-
namic modification of hypergraph structure for feature em-
bedding. DHGNN (Jiang et al. 2019) utilizes k-means clus-
tering strategy to update the hypergraph structure based on
the local and global features, respectively. (Yin et al. 2022)
extracts features of historical context content to provide
guidance for dynamic hypergraph construction. (Yao et al.
2022) introduces the attention mechanism to achieve alter-
nate update of vertices and hyperedges. Despite the desirable
success of HGNNs, domain knowledge is highly required to
manually design the architecture. In this paper, we utilize
NAS to search feature aggregation operators for automatic
hypergraph learning instead of manual design.

Neural Architecture Search
NAS-RL (Zoph and Le 2017) and MetaQNN (Baker
et al. 2016) are considered as the pioneers in the field of
NAS, which leverage reinforcement learning (RL) to search
the suitable network architectures. However, the aforemen-
tioned methods spend hundreds of GPU days or even more
computing resources on searching architectures. Darts (Liu,
Simonyan, and Yang 2018) exploits differentiable NAS by
relaxing discrete architectures into a continuous space, and
jointly learns supernet weights and architecture weights,
which greatly reduces the amount of calculation and speeds
up the search. Furthermore, some of the works adopt the
evolutionary algorithm (EA) (Real et al. 2019), bayesian
optimization (BO) (White, Neiswanger, and Savani 2021),
random search (Xie et al. 2018) and hybrid-based (Yang
et al. 2020) strategies. With the improvement of search effi-
ciency, NAS has been applied to object detection (Guo et al.
2020), image classification (He et al. 2023), text-to-image
synthesis (Li et al. 2022) and the other fields.
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Figure 2: An illustration of the proposed HyperNAS framework. (Best viewed in color) The supernet is generated based on the
constructed search space. Furthermore, the hypergraph structure is used to guide the architecture selection process, resulting in
a superior architecture.

With the guidance of NAS, there are many studies focus-
ing on extending neural architecture search to GNNs. Graph-
NAS (Gao et al. 2021) designs a search space to include op-
erators from state-of-the-art GNNs and leverages reinforce-
ment learning to solve the challenging problem of applying
NAS to graphs. Concurrently, researchers have used more
search strategies in the field of graph NAS, such as bayesian
optimization (Yoon et al. 2020), evolution learning (Li
and King 2020), random search (You, Ying, and Leskovec
2020). SANE (Huan, Quanming, and Weiwei 2021) uses
a gradient-based search strategy, which greatly improves the
search efficiency. (Zheng et al. 2023; Gao et al. 2023) further
use NAS on the heterophilic graph.

In a summary, considering that NAS-based search has
achieved the satisfactory results for CNNs, RNNs, as well
as GNNs, we make the attempt to apply NAS to designing
hypergraph neural architectures in this article.

Methodology
Definitions and Notations
A hypergraph is an extension of a graph, where normal graph
is a special case of hypergraph. An edge in a graph connects
only two vertices. Different from a normal graph, each hy-
peredge in a hypergraph can connect an arbitrary number
of vertices. A hypergraph G is a pair G = (V,E) where
V = {v1, . . . , vn} is a set of elements, termed vertices,
and E = {ei = (v1, . . . , vk)} is a set of non-empty sub-
sets of V called hyperedges. k is used to denote the num-
ber of nodes in the hyperedge. d represents the dimension
of the vertex feature. A hypergraph G can be described by
an |V | × |E| incidence matrix H . Dv and De denote the
diagonal matrices of vertex degrees and edge degrees, re-
spectively. Each hyperedge is assigned with a weight by we.
The feature embedding is represented as X = {x1, . . . , xn},
where xi(i = 1, . . . , n) represents the feature of the i-th
sample. Xv represents the vertex feature and Xe is the hy-
peredge feature. For k vertices, a k × k transformation ma-

trix learned from the vertex features by multi-layer percep-
tion (MLP) is Mt, which takes into account the information
of both the vertices and the channels.

Search Space
Fig. 2 shows the framework of the proposed model. Al-
though a graph is a special case of a hypergraph, the search
space in the previously proposed graph NAS cannot be di-
rectly applied to the hypergraph NAS. Thus, it is crucial to
propose a search space suitable for hypergraph neural archi-
tecture search. As shown in Table 1, in order to design an
expressive search space suitable for hypergraph, we focus
on three key important parts: vertex aggregation, hyperedge
aggregation and skip-connection aggregation, which are in-
troduced as follows:

• Vertex Aggregation: The features of the hyperedge need
to be obtained by aggregating the features of the vertices
in the hyperedge. Specifically, hyperedge feature can be
calculated by

Xe = conv(Merg(X(1)
v , · · · , X(k)

v )), (1)

where X
(i)
v is the features of the i-th vertex in a hyper-

edge. The Merg(·) mechanism merges the message of
all the vertices and the conv(·) operator indicates that
1-dimension convolution is used to compact the derived
result, as is shown in Fig. 3. We denote the vertex aggre-
gators set by Ov .

• Hyperedge Aggregation: We regard each vertex as a cen-
ter point c, and then aggregate the hyperedge features as-
sociated with it to obtain the high-order feature of c, de-
noted as Xh. The attention mechanism (Kim et al. 2020)
is employed to generate the weights for each hyperedge
in different ways. The high-order feature is calculated as

Xh =
m∑
i=0

w(i)
e X(i)

e , (2)
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Figure 3: Vertex message aggregation. For k vertices, the
corresponding features are aggregated via the aggregation
function. Then 1-dimension convolution is performed on the
aggregated features to obtain the hyperedge feature.

Figure 4: Hyperedge message aggregation. Weights for each
hyperedge are generated, and then the high-order feature is
calculated through the obtained weights.

Action Values
Ov hgcn, hgat, sagesum, sagemean, trans
Oh attsum, attmean, attmax, attmlp

Os fusion, sum, mean, max

Table 1: Search space A.

where m represents the number of hyperedges associated
with the centroid vertex, and w represents the calculated
weights of hyperedges. The main process is shown in
Fig. 4, where the Merg operation merges the weighted
Features, such as sum. The process of calculating weights
is similar to the pooling operation in CNN. We denote the
hyperedge aggregators set by Oh.

• Skip-connection Aggregation: Skip connection has been
shown to be effective in previous work (Ji et al. 2020).
In this work, we use four different methods to aggregate
high-order features and original centroid vertex features
to obtain new centroid vertex features. We denote the
skip-connection aggregators set by Os.

Differentiable Search
Inspired by (Liu, Simonyan, and Yang 2018), we relax the
categorical choice of a particular operation to a softmax over
all possible operations to make the search space continuous:

ō(x) =
∑
o∈O

exp(αo)∑
o′∈O exp(αo′)

o(x), (3)

where the operation mixing weights for each node c are pa-
rameterized by a vector α of dimension |O|, and O is drawn
from three sets of operations: Ov,Oh,Os, as described in
the previous section. Then the corresponding αv, αh, αs can
be calculated. x represents input features of a certain layer.

Let ōv ,ōh, and ōs be the mixed operations of Ov , Oh, and
Os based on Eq. 3 respectively. The vertex aggregation and
the hyperedge aggregation processes of HyperNAS are

Xe = ōv(X
(k)
v , ∀X(k)

v ∈ e), (4)

Xh = ōh(Xe, ∀e ∋ c). (5)
Ultimately, the final embedding of the center point c is com-
puted as:

Zv = ōs(X
(c)
v , Xh), (6)

As can be seen from the aforementioned equations, the com-
putation process is the summation of all operations within
the corresponding sets. In general, HyperNAS is a bi-level
optimization task:

min
α∈A

Lval(w
∗(α), α), (7)

s.t.w∗(α) = argmin
w

Ltra(w,α), (8)

where Ltra and Lval denote the training and validation loss
respectively. α = αv, αh, αs as the upper-level variable rep-
resents the network architecture, and w∗(α) as the lower-
level variable is the corresponding weight after training.

Hypergraph-guided Architecture Selection
In general, the architecture parameter α is optimized on the
validation data (i.e. Eq. 7), and the network weights w are
optimized on the training data (i.e. Eq. 8). With the above
sequential relaxation, we can apply the recently popular one-
shot NAS method (Liu, Simonyan, and Yang 2018; Yao
et al. 2020). Specifically, following Darts (Liu, Simonyan,
and Yang 2018), we give gradient-based approximations for
optimization:

∇αLval(w
∗(α), α) ≈ ∇αLval(w − ξ∇wLtra(w,α), α),

(9)
where w is the current weight and ξ is the learning rate for
optimizing w.

However, the above approach implies that only operations
corresponding to the largest edge weights in the architecture
supernet can be kept to construct the final HGNN. However,
(Wang et al. 2021) has demonstrated that architectural scale
is not sufficient to indicate operational strength in the final
architectural choice for graph NAS. Therefore, we only use
the gradient descent strategy as training.

In the node classification setting, (Zhu et al. 2021) pro-
poses a compatibility matrix to model the linked possibility
of nodes in any two classes. (Zheng et al. 2023) further re-
stricts the connection possibility of nodes in any two classes
predicted by the supernet to approximate the ground truth.
In order to select optimal HGNN architectures guided ex-
clusively by the hypergraph structure, we derive the hyper-
graph structure-aware distance as a criterion to guide the se-
lection of HGNN architectures. Specifically, the proposed
hypergraph structure-aware distance Dhyper can be defined
by the Euclidean distance as Dhyper = ||Ŝ − S||, where Ŝ
and S are the hypergraph structure-aware matrices denoted
as:

S = (Y TΘY )⊘ (Y TΘE), Ŝ = (Ŷ TΘŶ )⊘ (Ŷ TΘE),
(10)
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Algorithm 1: Hypergraph neural architecture search
Input: Search space A, number of gradient descent itera-
tions T , edge set E of supernet S .
Output: A HGNN model with the set of selected operations
α∗ = {α∗

v, α
∗
h, α

∗
s}.

1: for t = 1, · · ·, T do
2: Compute the validation loss Lval;
3: Update αv , αh and αs by gradient descend rule (9)

with (4), (5) and (6) respectively;
4: Compute the training loss Ltra;
5: Update weights w by descending ∇wLtra(w,α) with

the architecture α = {αv, αh, αs};
6: end for
7: while |E| > 0 do
8: Randomly remove an edge e ∈ E ;
9: for all operations o ∈ O on edge e do

10: Calculate Dhyper(\o) when o is removed;
11: end for
12: Select the best operation by argmino Dhyper(\o);
13: end while
14: return The best operation α∗ = {α∗

v, α
∗
h, α

∗
s}.

Dataset Nodes Edges Features Classes
Cora 2,708 5,278 1,433 7

Citeseer 3,327 4,552 3,703 6
Pubmed 19,717 44,324 500 3

Coauthor-CS 18,333 81,894 6,805 15
Photos 7,650 119,081 745 8

Computers 13752 245,861 767 10

Table 2: Details of datasets with graph structure.

where Y and Ŷ are the ground-truth and predicted label ma-
trix for all nodes, E is the all-ones matrix, and ⊘ denotes
the Hadamard division. Θ represents the adjacency matrix
of the hypergraph, which is defined as:

Θ = HWD−1
e HT , (11)

where W represents the hyperedge weight matrix. The
proposed hypergraph structure-aware distance Dhyper con-
strains the discrepancy between the predicted label and the
ground-truth label by virtue of the hypergraph structure in-
formation. The smaller Dhyper is, the better the ability of the
candidate operation to discriminate the node class. Guided
by Dhyper, we select the optimal HGNN architecture from
the pre-trained supernet Sc. Furthermore, inspired by (Wang
et al. 2021; Zheng et al. 2023), we adopt the leave-one-out
method to directly evaluate the contribution of each candi-
date operation to the supernet. In general, HyperNAS first
constructs a comprehensive hypergraph search space, and
then uses gradient descent to train. After that, HyperNAS se-
lects the final HGNN architecture guided by the hypergraph
structure-aware distance. The main process of HyperNAS is
listed in Algorithm 1.

Dataset DBLP Cora-CA
Nodes 43413 2708

Hyperedges 22535 1072
Avg. hyperedge size 4.7±6.1 4.2±4.1

Feature 1425 1433
Classes 6 7

Table 3: Details of co-authorship hypergraph datasets.

Experiments
Datasets
Since graph is a special case of hypergraph, the proposed
model is employed on a typical graph-structured dataset: Ci-
tation Network dataset (Sen et al. 2008). The label rate (LR)
represents the number of labeled vertices used for training.

To understand whether the model generated by Hyper-
NAS can be generalized to different tasks, we apply Hy-
perNAS to the node classification on different datasets in-
cluding the Coauthor-CS, Amazon-Photos and Amazon-
Computers (Shchur et al. 2018). The Details of the graph
structure datasets are shown in Table 2

Furthermore, we apply HyperNAS to real-world hyper-
graph datasets: DBLP and Cora Co-authorship(Cora-CA),
as shown in Table 3. Each hyperedge represents all docu-
ments co-authored by an author in co-authorship dataset.

Baselines
We compare the proposed HyperNAS with two categories
of the baseline methods including the human-designed GN-
N/HGNN models and the graph NAS methods including
GCN (Welling and Kipf 2017), GAT (Velickovic et al.
2017), HGNN (Feng et al. 2019), DHGNN (Jiang et al.
2019), HCHA (Bai, Zhang, and Torr 2021), HGNN+ (Gao
et al. 2022), GraphNAS (Gao et al. 2021), SANE (Huan,
Quanming, and Weiwei 2021), HGNAS++ (Gao et al. 2023).
For the transfer learning, we select six state-of-the-art mod-
els as baseline: GCN, GAT, GMI (Peng et al. 2020), MV-
GRL (Hassani and Khasahmadi 2020), GCA (Zhu et al.
2021), DHGNN and SANE. We use the node classification
accuracy as the metric to evaluate the performance of differ-
ent methods.

Experimental Settings
Train/Validation/Test Split For the Cora citation dataset,
we follow (Jiang et al. 2019) as the experimental setup of
the proposed method. We choose the standard split (Yang,
Cohen, and Salakhudinov 2016) and randomly select differ-
ent proportions (2%, 5.2%, 10%, 20%, 30%, and 44%) of
data as training sets to evaluate the performance of the com-
pared methods. For the Citeseer and Pubmed datasets, we
follow the experimental setup in (Welling and Kipf 2017),
where 3.6% in the Citeseer dataset is used for training and
0.3% in the Pubmed dataset. For the Coauthor and Ama-
zon datasets, we randomly select 30 nodes from each class
to build the training and validation sets, and then use the
remaining nodes as the test set. For two co-authorship hy-
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Type Method Accuracy(%)
Cora Citeseer Pubmed

Human-designed models

GCN (Welling and Kipf 2017) 81.4 70.9 79.0
GAT (Velickovic et al. 2017) 83.0 72.5 79.0

HGNN (Feng et al. 2019) 81.6 71.9 80.1
DHGNN (Jiang et al. 2019) 82.5 70.0 79.9

HCHA (Bai, Zhang, and Torr 2021) 82.7 71.2 78.4
HGNN+ (Gao et al. 2022) 83.3 73.0 80.7

Graph NAS
GraphNAS (Gao et al. 2021) 83.2 73.5 80.3

SANE (Huan, Quanming, and Weiwei 2021) 83.6 73.9 81.0
HGNAS++ (Gao et al. 2023) 83.5 73.8 81.1

Hypergraph NAS
Random (ours) 82.8 73.6 80.7

HyperNAS-RL (ours) 83.3 73.7 80.9
HyperNAS (ours) 83.9 74.1 81.3

Table 4: Comparison of accuracies on citation networks. ”Random” and ”HyperNAS-RL” represent two variants of HyperNAS.

LR(%) #Train Accuracy(%)
GCN GAT HGNN DHGNN HyperNAS

std 140 81.4 83.0 81.6 82.5 83.9
2 54 69.6 74.8 75.4 76.9 79.1

5.2 140 77.8 79.4 79.7 80.2 82.4
10 270 79.9 81.5 80.0 81.6 84.5
20 540 81.4 83.5 80.1 83.6 84.9
30 812 81.9 84.5 82.0 85.0 85.6
44 1200 82.0 85.2 81.9 85.6 86.1

Table 5: Node classification accuracies for different splits on Cora. ”LR” represents label rate, ”#Train” represents the number
of training samples and ”std” represents Cora standard split. The standard split experiment is a fixed training set, whereas the
training sets of the other experiments are randomly selected. Regardless of how the train set is chosen, the experiments share
the same validation and test sets.

Method Accuracy(%)
DBLP Cora-CA

HGNN (Feng et al. 2019) 74.9 66.3
HyperGCN (Yadati et al. 2019) 76.3 69.1
HyperSAGE (Arya et al. 2020) 77.2 72.1

HGNN+ (Gao et al. 2022) 77.3 72.2
HyperNAS(ours) 77.6 72.6

Table 6: Performance of HyperNAS and other hypergraph
learning methods on hypergraph datasets.

pergraph datasets, We use the same train-test split provided
by (Yadati et al. 2019) in their public implementation.

Hypergraph Construction The hypergraph construction
technique introduced in (Jiang et al. 2019) is employed
for generating hypergraphs from graph datasets. When con-
structing the hyperedges, 400 cluster centers are used in the
k-means and each hyperedge consists of 64 vertices.

Training Details Following the setup in (Huan, Quan-
ming, and Weiwei 2021), we search with different random
seeds and fine-tune the hyperparameters on the validation
data. Dropout layers with the dropout rate of 0.5 are applied
to avoid the over-fitting. We use Adam optimizer to optimize
our cross-entropy loss function with a learning rate of 0.01.

All experiments are performed on a single NVIDIA 3090.

Results and Discussions
For the node classification problem, we build the HyperNAS
model as shown in Fig. 2. For the proposed HyperNAS, we
conduct the node classification experiments with 30 standard
splits on Cora, Citeseer, and Pubmed, and report the average
results. The experimental and comparison results of semi-
supervised node classification are listed in Table 4.

As shown in Table 4, the proposed HyperNAS method
consistantly outperforms the baseline methods. The Hy-
perNAS approach exhibits remarkable performance gains
in comparison to prevailing human-designed methods and
Graph NAS methods when evaluated on standard splits.

We further compare the architectures designed by Hyper-
NAS with the graph/hypergraph-based neural network base-
lines on the different dataset splits. The experimental results
are listed in Table 5.

As shown in Table 5, when 2%, 5.2%, 10%, 20%, 30%,
and 44% of randomly sampled data are used as training sets
for the Cora dataset, the proposed HyperNAS outperforms
the DHGNN by a margin of 2.2%, 2.2%, 2.9%, 1.3%, 0.6%,
0.5%, respectively. Compared to graph neural networks, the
performance enhancement of hypergraph neural networks is
more evident when the size of training set is small. These
experimental results further demonstrate that the model de-
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Method Accuracy(%)
Coauthor-CS Photos Computers

GCN (Welling and Kipf 2017) 85.8 92.4 75.3
GAT (Velickovic et al. 2017) 85.9 91.0 76.1

GMI (Peng et al. 2020) 83.9 91.7 78.2
MVGRL (Hassani and Khasahmadi 2020) 86.1 89.7 79.6

GCA (Zhu et al. 2021) 89.4 91.8 81.5
DHGNN (Jiang et al. 2019) 89.1 92.1 81.9

SANE (Huan, Quanming, and Weiwei 2021) 89.4 92.5 82.1
HyperNAS (ours) 89.7 92.7 82.5

Table 7: Performance comparisons of transferring HyperNAS architectures designed on Citation Network to the other datasets.

Selection strategy Accuracy(%)
Cora Citeseer Pubmed

Weight size-based 83.5 73.8 80.9
Validation loss-based 83.3 73.6 80.8
Hyper-guided (ours) 83.9 74.1 81.3

Table 8: Comparison of the proposed hypergraph-guided ar-
chitecture selection with other selection methods.

signed by hypergraph neural architecture search has the su-
perior performance than the existing hypergraph neural net-
work. Specifically, as the size of training set increases, the
performance gain of the proposed method is still evident.

Furthermore, we evaluate the proposed method on two
co-authorship hypergraph datasets to investigate their ability
to solve hypergraph-related problems. The results, as pre-
sented in Table 6, show that HyperNAS exhibits superior
performance in hypergraph-based node classification tasks,
surpassing the performance of existing methods.

For transfer learning, we apply the architectures obtained
by HyperNAS in the citation networks to employ the node
classification task on the different datasets including the
Coauthor network Coauthor-CS and the product networks of
Amazon-Photos and Amazon-Computers. The experimental
results of transfer learning are listed in Table 7.

From Table 7, we observe that the model designed by
HyperNAS is competitive in predictive accuracy when the
derived architecture is transferred to new datasets for node
classification task. These experimental results demonstrate
that the proposed HyperNAS can train more expressive
HGNNs, which can easily be transferred to the other graph
datasets to employ the node classification task.

Variants of HyperNAS
We construct two variants: (1) Random search (denoted as
“Random”) (Bergstra and Bengio 2012): architectures are
randomly selected; (2) Reinforcement learning (denoted as
“HyperNAS-RL”) (Zoph and Le 2017): hypergraph NAS is
implemented using reinforcement learning.

Table 4 lists the results of the architectures designed by
two variants on citation networks. We further conduct exper-
iments for different splits on Cora dataset and show the per-
formance in Figure 5. Experimental results show that Hyper-
NAS has the best test accuracy, which means our proposed

Figure 5: Classification accuracy of Random, HyperNAS-
RL and HyperNAS for different splits on Cora dataset.

method outperforms other variants.

Ablation Experiments

The effectiveness of hypergraph-guided architecture selec-
tion. We compare the proposed hypergraph-guided architec-
ture selection with two alternative methods, namely weight
size-based (Liu, Simonyan, and Yang 2018) and validation
loss-based (Wang et al. 2021) approaches. The compari-
son results are listed in Table 8. In general, our proposed
hypergraph-guided scheme with hypergraph structure-aware
distance criteria achieves the best classification performance
consistently on all datasets, illustrating its effectiveness in
architecture selection.

Conclusion

In this paper, we have proposed a novel hypergraph neural
architecture search (HyperNAS), which is the first attempt
to apply neural architecture search to hypergraph neural net-
works. The propose method is designed to automatically de-
sign the optimal hypergraph neural architecture via the NAS
approach. The extensive experimental results on the bench-
mark graph and hypergraph datasets demonstrates the effi-
cacy of the proposed method. For the future work, we note
that the scalability of the proposed method is an important
issue, specifically for the large-scale graph datasets.
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