
Ahpatron: A New Budgeted Online Kernel Learning Machine
with Tighter Mistake Bound

Yun Liao, Junfan Li, Shizhong Liao∗, Qinghua Hu, Jianwu Dang
College of Intelligence and Computing, Tianjin University, Tianjin 300350, China

{yliao,junfli,szliao,huqinghua}@tju.edu.cn, jdang@jaist.ac.jp

Abstract
In this paper, we study the mistake bound of online kernel
learning on a budget. We propose a new budgeted online ker-
nel learning model, called Ahpatron, which significantly im-
proves the mistake bound of previous work and resolves an
open problem related to upper bounds of hypothesis space
constraints. We first present an aggressive variant of Percep-
tron, named AVP, a model without budget, which uses an ac-
tive updating rule. Then we design a new budget maintenance
mechanism, which removes a half of examples, and projects
the removed examples onto a hypothesis space spanned by
the remaining examples. Ahpatron adopts the above mech-
anism to approximate AVP. Theoretical analyses prove that
Ahpatron has tighter mistake bounds, and experimental re-
sults show that Ahpatron outperforms the state-of-the-art al-
gorithms on the same or a smaller budget.

Introduction
Online kernel methods are popular approaches to solving
both online machine learning and offline machine learning
problems (Kivinen, Smola, and Williamson 2001; Cram-
mer, Kandola, and Singer 2003; Lu et al. 2016; Koppel
et al. 2019). Let (xt, yt) be a sequence of examples, where
xt ∈ Rd is an instance, and yt ∈ {−1, 1} is its label,
t = 1, 2, . . . , T . Online kernel learning algorithms pro-
cess the examples on the fly, and produce a sequence of
hypotheses {ft}T+1

t=1 from a reproducing kernel Hilbert s-
pace (RKHS) H. At any round t, the algorithms main-
tain ft =

∑t−1
τ=1 aτκ (xτ , ·) and thus must store St =

{(xτ , yτ) , aτ 6= 0, τ ≤ t− 1} in memory. St is called the
active set (Dekel, Shalev-Shwartz, and Singer 2005). The
examples in the active set play a similar role to the support
vectors in Support Vector Machine (SVM) (Vapnik 1998).
The size of ft is linear with respect to t, and the compu-
tational complexity (space complexity and per-round time
complexity) is in O(dt), which hinders the deployment of
online kernel learning algorithms on computing devices with
bounded memory resources.

For bounded memories, many algorithms that only store
B ≥ 1 examples have been proposed (Crammer, Kandola,
and Singer 2003; Weston, Bordes, and Bottou 2005; Dekel,

∗Corresponding author.
Copyright c© 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Shalev-Shwartz, and Singer 2005; Cheng et al. 2006; Cesa-
Bianchi and Gentile 2006; Wang, Crammer, and Vucetic
2012; Li and Liao 2023), where B is the budget. Although
the algorithms guarantee constant memory and per-round
running time, it also poses a critical question: How does the
prediction performance of the algorithms vary with the bud-
get? From the experimental perspective, many results have
empirically showed that the larger the budget is, the bet-
ter the algorithms will perform (Dekel, Shalev-Shwartz, and
Singer 2005; Zhao et al. 2012; Wang, Crammer, and Vucetic
2012; He and Kwok 2014; Zhang and Liao 2019). From the
theoretical perspective, the algorithms that only store B ex-
amples have worse regret bounds or mistake bounds than
those that store all of the examples (Dekel, Shalev-Shwartz,
and Singer 2005; Cesa-Bianchi and Gentile 2006; Orabona,
Keshet, and Caputo 2008; Zhao et al. 2012; Wang, Cram-
mer, and Vucetic 2012; He and Kwok 2014). Let MT =
{t ∈ [T] : xt is misclassfied}, H = {f ∈ H : ‖f‖H ≤ U},
U =

√
B+1

4
√

ln (B+1)

1, and `Hinge(·, ·) be the hinge loss func-

tion. For any f ∈ H, the Forgetron algorithm (Dekel,
Shalev-Shwartz, and Singer 2005) enjoys a mistake bound
as follows.

|MT | ≤ 4LT (f) + 2‖f‖2H,

LT (f) =
T∑
t=1

`Hinge(f(xt), yt).
(1)

And given f ∈ H, the RBP algorithm (Cesa-Bianchi and
Gentile 2006) enjoys an expected mistake bound as follows.

E [|MT |] ≤ γLT (f)+γUB+0.5γU
√
B ln

(
0.5γB2

)
, (2)

where U ≤ γ−1
γ+1

√
B 2. The mistake bound is far from op-

timal since it becomes worse while B increases. For in-
stance, if B = O (T), then E [|MT |] = O(T). The POM-
DR algorithm (Li and Liao 2023) enjoys a regret bound

1There is an open problem in (Dekel, Shalev-Shwartz, and
Singer 2005): whether it is possible to remove the ln− 1

2 (B + 1)
factor in U . We have solved the open problem in this paper.

2Although RBP removes the ln− 1
2 (B + 1) factor in U , the

mistake bound is an expected bound that is weaker than the de-
terministic bound. Thus the problem is still open (Dekel, Shalev-
Shwartz, and Singer 2008).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13782

of O
(
U
√
ATT/B + U

√
AT
)

, where AT is a complexi-
ty called kernel alignment. For any f ∈ H, the above regret
bound naturally implies the following mistake bound.

|MT | = LT (f) +O

(
U
√
AT +

U√
B

√
ATT

)
. (3)

The convergence rate of the mistake bound is O
(

1√
B

)
. The

larger B is, the smaller the mistake bound will be.
In summary, previous work does not give a satisfied an-

swer to the fundamental question. There are two reasons.
(i) The mistake bounds in (1) and (2) do not give the con-
vergence rates with respect to B. (ii) Although the mistake
bound in (3) gives a convergence rate ofO

(
1√
B

)
, the coeffi-

cient depends on
√
ATT and is unsatisfied. It can be proved

that AT ≥ inff∈H LT (f) in certain conditions.
In this paper, we will propose a new algorithm, Ahpatron,

and answer the question better. We first consider the case of
no budget, and propose a variant of Perceptron (Rosenblat-
t 1958), called AVP, using a more active updating strategy.
We prove that AVP improves the mistake bound of Percep-
tron. Then we propose Ahpatron that approximates AVP and
enjoys a LT (f) + O

(
LT (f)√

B

)
mistake bound that is better

than all of previous results. Ahpatron uses a very simple but
effective budget maintaining approach proposed in (Li and
Liao 2023), i.e., removing a half of examples. The novelties
of Ahpatron include a strategy that selects the removed ex-
amples and a projection scheme that keeps the information
of the removed examples.

Main Results
Our main results are summarized as follows.

Mistake Bound of AVP For any f ∈ H, the mistake
bounds of AVP and Perceptron are

|MT | ≤ 2LT (f) + ‖f‖2H + ∆T

and

|MT | ≤ 2LT (f) + ‖f‖2H
respectively, where ∆T ≤ 0. AVP improves the mistake
bound of Perceptron, and the improvement is non-trivial.

Mistake Bound of Ahpatron Given f ∈ H, the mistake
bound of Ahpatron is

|MT | ≤ LT (f) + ∆T+

max

{
12U√
B
LT (f),

0.9U√
B
LT (f) +

√
B

2U
‖f‖2H

}
,

(4)

where ∆T ≤ 0. We improve the result in (1), since the co-
efficient on LT (f) can be smaller. We improve the result in
(2), since the dependence onB is better. We also improve the
result in (3), since minf∈H LT (f) = O(

√
ATT) in certain

conditions.

Resolving Open Problem Let U =
√
B
4 in (4). Then the

mistake bound of Ahpatron is

|MT | ≤ max
{

4LT (f), 1.3LT (f) + 2 ‖f‖2H
}

+ ∆T .

Here, we remove the ln−
1
2 (B + 1) factor in U , and improve

the mistake bound in (1). Thus we resolve the open problem
posed by Dekel, Shalev-Shwartz, and Singer (2005).

Refined Mistake Bound of Ahpatron We further prove
an algorithm-dependent mistake bound for Ahpatron, which
can be much better than the mistake bound in (4).

The mistake bound in (4) depends on the selected kernel
function and the structure of the examples via LT (f). In cer-
tain benign environments where we have minf∈H LT (f)�
T , Ahpatron performs well using a small budget. For in-
stance, the examples are linearly separable in the feature s-
pace induced by the kernel function. In the worst case, i.e,
minf∈H LT (f) ≈ T , our result still coincides with the result
in (3).

Related Work

Instead of using a fixed budget, the Projectron and Projec-
tron++ algorithm (Orabona, Keshet, and Caputo 2008) use
the approximate linear dependence condition (Engel, Man-
nor, and Meir 2004) to add the current example into the ac-
tive set. However, the two algorithms can not precisely con-
trol the size of the active set, and may suffer a computational
complexity inO(dT 2). The mistake bounds of the two algo-
rithms are also similar to the result in (1).

Besides the budget maintaining technique, there are many
other techniques that can keep constant memory for online
kernel learning algorithms, such as random features (Rahi-
mi and Recht 2007), Nyström approximation (Williams and
Seeger 2001) and matrix sketching (Charikar, Chen, and
Farach-Colton 2002). The FOGD algorithm (Wang et al.
2013; Lu et al. 2016) uses random features to approxi-
mate kernel function and enjoys a O

(√
T + T√

D

)
regret

bound 3, where D is the number of random features. The
NOGD algorithm (Wang et al. 2013; Lu et al. 2016) us-
es the Nyström technique, and enjoys a regret bound of
O
(√

T + T√
B

)
. The two regret bounds imply a LT (f) +

O
(√

T + T√
B

)
mistake bound, which is much worse than

our mistake bound. The SkeGD algorithm (Zhang and Liao
2019) uses randomized sketching and enjoys a regret bound
of O

(√
TB
)

under the assumption that the eigenvalues of
the kernel matrix decay exponentially. Although the result
is better by a constant B, it becomes worse in the case of
B = Θ (Tµ), 0 < µ < 1.

3The original regret bound is O
(
‖f‖1

√
T + εT‖f‖1

)
, where

‖f‖1 =
∑T

t=1 |at| and f =
∑T

t=1 atκ (xt, ·), and holds with
probability 1− 28 (σp/ε)

2 exp
(
−Dε2/(4d+ 8)

)
.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13783

Problem Setting and Preliminaries
Notations
Let IT := {(xt, yt)}t∈[T] be a sequence of examples, where
xt ∈ X ⊆ Rd is an instance, yt ∈ {−1, 1} is the label, and
[T] = {1, . . . , T}. Let κ(·, ·) : X × X → R be a positive
semidefinite kernel function andH be the associated RKHS,
such that, (i) H = span(κ(xt, ·) | t ∈ [T]), and (ii) for any
f ∈ H,x ∈ X , it must be 〈f, κ(x, ·)〉H = f(x). Denote by
〈·, ·〉H the inner product inH. For any f ∈ H, there exists a
weight vector a ∈ RT such that f =

∑T
t=1 atκ(xt, ·). For

another g =
∑T
t=1 btκ(xt, ·) ∈ H, we define

〈f, g〉H =
T∑
t=1

T∑
τ=1

atbτκ (xt,xτ) .

The inner product induces the norm ‖f‖H =
√
〈f, f〉H.

We further assume that maxx∈X κ(x,x) ≤ 1. Let X be
bounded. Usual kernel functions, such as polynomial ker-
nels and radial basis kernels, satisfy the assumption. Our
results are suitable for any κ such that maxx∈X κ(x,x) is
bounded. Denote by `Hinge(u, y) = max{0, 1 − uy} and
LT (f) =

∑T
t=1 `Hinge (f (xt) , yt), f ∈ H.

Budgeted Online Kernel Learning
The protocol of online kernel learning can be defined as a
game between a learner and an adversary. At any round t,
the adversary sends an instance xt ∈ X . Then the learner
selects a hypothesis ft ∈ H and makes a prediction ŷt =
sign(ft(xt)). After that the adversary gives the label yt. The
game proceeds to the next round. We rewrite MT = {t ∈
[T] : ŷt 6= yt}. The learner aims to minimize |MT |. For any
f ∈ H, we use an upper bound on the mistakes to measure
the performance of the learner,

|MT | ≤ h (IT , f) ,

where h(IT , f) depends on IT and f .
At any round t, ft =

∑t−1
τ=1 aτκ (xτ , ·). To s-

tore ft in memory, the learner must store St =
{(xτ , yτ) , aτ 6= 0, τ ≤ t− 1}. The memory cost may be
unbounded. To keep the memory bounded, we would lim-
it |St| ≤ B. We call B the budget. The budget also weakens
the performance of the learner. It is impossible to provide a
non-trivial mistake bound for any f ∈ H without additional
assumptions on the problem, so we maintain a competitive
hypothesis space (Dekel, Shalev-Shwartz, and Singer 2005),

H = {f ∈ H : ‖f‖H ≤ U} ,
where U is a constant.

The state-of-the-art mistake bound is (Li and Liao 2023)

h (IT , f) = LT (f) +O

(
U

√
ATT
B

)
.

Our goal is to design an algorithm that achieves

h (IT , f) = LT (f) +O

(
U√
B
LT (f)

)
.

Such an upper bound is tighter than previous results.

Perceptron
We first consider online kernel learning without budget. A
classical algorithm with non-trivial mistake bounds is Per-
ceptron (Rosenblatt 1958). At any round t, Perceptron pre-
dicts ŷt = sign(ft(xt)). The key is the update rule,

ft+1 = ft + ytκ (xt, ·) · Iŷt 6=yt .

Theorem 1 (Dekel, Shalev-Shwartz, and Singer (2005)).
For any sequence of examples IT and for any f ∈ H, the
mistake bound of Perceptron satisfies

|MT | ≤ 2LT (f) + ‖f‖2H.

Theorem 2 (Shalev-Shwartz (2007)). For any IT and for
any f ∈ H, the mistake bound of Perceptron satisfies

|MT | ≤ LT (f) + ‖f‖H
√
LT (f) + ‖f‖2H.

If LT (f) ≤ ‖f‖2H, then the mistake bound in Theo-
rem 1 is better than that in Theorem 2. Perceptron stores
all of the misclassified examples. Its space complexity is
in O (d|MT |), which would be O(dT) in the worst case.
Many algorithms approximate Perceptron via maintaining a
fixed budget, such as Forgetron (Dekel, Shalev-Shwartz, and
Singer 2005) and RBP (Cesa-Bianchi and Gentile 2006).

AVP
Perceptron uses a passive updating rule. A more active up-
dating rule is that ft makes a prediction at a low confidence,
i.e., ytft(xt) < βt, βt ∈ [0, 1]. The updating rule is adopt-
ed by ALMAp (Gentile 2001). If βt = 0, then it follows
Perceptron. If βt = 1, it follows Projectron++ (Orabona,
Keshet, and Caputo 2008) and the gradient descent family
of algorithms (Zhao et al. 2012; Lu et al. 2016; Zhang and
Liao 2019). However, no mistake bound shows that the ac-
tive updating rule is better than that of Perceptron. There are
two technical challenges,
C 1 how to set the value of βt;
C 2 how to give a tighter analysis.
We will carefully design βt, and give a novel and solid the-
oretical analysis of mistake bounds.

Let βt = 1− εt. We redefine the updating rule as follows.

ft+1 = ProjH
(
ft + λt · ytκ (xt, ·) · Iyt·ft(xt)<1−εt

)
,

ProjH(g) = min
{

1, U · ‖g‖−1H
}
· g,

where εt ∈ [0, 1] and λt is the learning rate. We will prove
that setting λt

2 < εt < 1 will give smaller mistake bounds.
We name this algorithm AVP (Aggressive Variant of Percep-
tron), and give the pseudo-code in Algorithm 1.
Theorem 3. Let

M ′T = {t ∈ [T] : ytft (xt) ≤ 0} ,
NT = {t ∈ [T] : 0 < ytft (xt) < 1− εt} .

Set U > 0, λt < 2, δt = ‖ft − f‖2H − ‖ft+1 − f‖2H, and

λt
2
< εt < 1. (5)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13784

Algorithm 1: AVP

Input: {λt, εt}Tt=1, U
Initialization: f1 = 0, S1 = ∅
1: for t = 1,. . . ,T do
2: Receive xt;
3: Compute ŷt = sign (ft(xt));
4: if yt · ft(xt) < 1− εt then
5: Update ft+1 = ProjH (ft + λtytκ (xt, ·))
6: St+1 = St ∪ {(xt, yt)}
7: end if
8: end for

For any f ∈ H, the mistake bound of AVP satisfies
|M ′T | − LT (f)

≤
∑

t∈M ′T∪NT

δt
2λt

+
∑
t∈M ′T

λt
2

+
∑
t∈NT

(
λt
2
− εt

)
.

Note that U = +∞ implies H = H. Recalling the def-
inition of MT , we have M ′T = MT ∪ {t ∈ [T] : ŷt =
yt, ft(xt) = 0}. Thus |MT | ≤ |M ′T |.

Eq. (5) solves the first challenge C 1. To rise to the second
challenge C 2, our theoretical analysis makes use of the gap
between mistake bounds and cumulative hinge losses, which
is given as follows.∑

t∈M ′T∪NT

`Hinge (ft (xt) , yt)− |M ′T |

≥
∑
t∈NT

1− ytft(xt)

≥
∑
t∈NT

εt.

We will use the non-positive term −
∑
t∈NT εt to counter-

act the increase of
∑
t∈NT

λt
2 on the upper bound. This non-

positive term naturally improves the mistake bound of Per-
ceptron and solves C 2.
Corollary 1. Let U = +∞, λt = 1, εt = ε ∈ (1

2 , 1). For
any f ∈ H, the mistake bound of AVP satisfies

|MT | ≤ 2LT (f) + ‖f‖2H + (1− 2ε) |NT |.
Note that (1− 2ε) |NT | ≤ 0. Compared with Theorem 1,

AVP improves the mistake bound of Perceptron. It is worth
mentioning that |NT | depends on ε. It seems that setting
ε = 1 minimizes (1− 2ε) |NT |. However, if ε = 1, then
|NT | = 0. It is hard to give the exact value of |NT |. The
only information is that |NT | ≥ 0 for all ε ∈ [0, 1). Accord-
ing to the upper bound, it is better to set 1

2 < ε < 1. In this
case, |NT | > 0 unless all instances are classified with a high
confidence. We will empirically verify that |NT | � 1.
Corollary 2. Let U < +∞, λt = U√

U2+
∑t
τ=1 Iyτ fτ (xτ)≤0

,

t ≥ 1 and λt
2 < εt < 1. For any f ∈ H, the mistake bound

of AVP satisfies
|MT | ≤max

{
LT (f) + 2U2 + ∆T , 0

}
+ 9U2+

3U
√

max {LT (f) + 2U2 + ∆T , 0},
where ∆T =

∑
t∈NT

(
λt
2 − εt

)
.

Compared with Theorem 2, the non-positive term ∆T

makes that AVP improves the mistake bound of Perceptron.
AVP stores |M ′T | + |NT | instances in memory. In the worst
case, the memory cost of AVP is also in O(dT). In the next
section, we will approximate AVP by limiting |St| ≤ B.

Remark 1. The updating rule of AVP is similar to ALMA2

(Gentile 2001). The essential differences are the values of βt
and λt. ALMA2 sets

βt =
(1− α)B

‖xt‖−12

√
k
, λt =

Ck−
1
2

‖xt‖2
, k = 1 +

t−1∑
τ=1

Iyτfτ (xτ)≤βτ ,

where α, B and C are tunable parameters. In Corollary 2,
AVP sets βt = 1− εt and λt = U√

U2+
∑t
τ=1 Iyτ fτ (xτ)≤0

.

The values of βt and λt in ALMA2 make its mistake
bound be similar to Theorem 2 (see Theorem 3 in Gentile
(2001)). Thus ALMA2 did not prove that more active up-
dating rule is better than Perceptron. AVP also significantly
improves the mistake bound of ALMA2.

Ahpatron
Forgetron and RBP approximate Perceptron by limiting
|St| ≤ B. If |St| = B and we will add (xt, yt) into St, then
Forgetron removes the oldest example, and RBP randomly
removes an example. A recent algorithm POMDR (Li and
Liao 2023) adopts a very simple technique that removes a
half of examples. We will approximate AVP by removing a
half of examples. There are still two technical challenges. (1)
How to select the examples that will be removed. (2) How
to keep the information of the removed examples. We will
propose a heuristic example selecting strategy and a novel
projection scheme to address the two challenges.

At any round t, if |St| = B and ytft(xt) < 1 − ε,
then we will remove B

2 examples from St. Let ft =∑B
i=1 αriκ(xri , ·), where (xri , yri) ∈ St. Denote by St =

St,1∪St,2 satisfying (i) St,1∩St,2 = ∅; (ii) |St,1| = B
2 ; (iii)

∀(xri , yri) ∈ St,2 and ∀(xrj , yrj) ∈ St,1, |αri | ≥ |αrj |. We
rewrite ft = ft,1 + ft,2, where

ft,1 =
∑

(xri ,yri)∈St,1

αriκ (xri , ·) ,

ft,2 =
∑

(xri ,yri)∈St,2

αriκ (xri , ·) .

We will remove the examples in St,1. If we directly re-
set ft,1 = 0, then much of information may be lost. To
keep as much information as possible, we propose a new
projection scheme. The main idea is to project ft,1 onto
Ht,2 = span(κ(x, ·) : (x, y) ∈ St,2). Let Ht,2 = {f ∈
Ht,2 : ‖f‖H = ctU} where ct ∈ (0, 1]. ∀f ∈ Ht,2,
f =

∑
(xri ,yri)∈St,2

θriκ(xri , ·). The projection scheme is

f̂t,1 = arg min
f∈Ht,2

‖f − ft,1‖2H + η‖θ‖22, (6)

f̄t,2 =ProjHt,2

(
ft,2 + f̂t,1

)
, (7)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13785

Algorithm 2: Ahpatron

Input: B, U , λ, ε, η, {ct}Tt=1

1: Initialize f0 = 0, S1 = ∅
2: for t = 1, . . . , T do
3: Receive xt

4: Compute ŷt = sign(ft(xt))
5: if ytft(xt) < 1− ε then
6: if |St| < B then
7: Update ft+1 = ProjH (ft + λtytκ (xt, ·))
8: Update St+1 = St ∪ {(xt, yt)}
9: else

10: Divide St = St,1 ∪ St,2

11: Compute f̂t,1, f̄t,2 following (6) and (7)
12: Remove St,1 and update ft+1 following (8)
13: end if
14: end if
15: end for

where η‖θ‖22 is a regularization term and aims to make (6)
solvable. We will explain more in (9).

Let f>t,1 = ft,1 − f̂t,1 and f>t,2 = (ft,2 + f̂t,1)− f̄t,2. We
further rewrite ft by

ft = ft,2 + ft,1 = ft,2 + f̂t,1 + f>t,1 = f̄t,2 + f>t,2 + f>t,1.

For the sake of clarity, denote by f̄t := f̄t,2. Then we execute

f̄t =ft − (f>t,1 + f>t,2),

ft+1 =ProjH
(
f̄t + λytκ(xt, ·)

)
.

(8)

It is obvious that (f>t,1 + f>t,2) is removed from ft. Recalling
that f̄t is a combination of B

2 examples. Thus the first step
in (8) will remove a half of examples from St. We name
this algorithm Ahpatron (approximating aggressive Percep-
tron via halving and projecting) and give the pseudo-code in
Algorithm 2.

The projection (6) can be rewritten as follows,

min
θ∈R

B
2

{
θ>(K2 + ηI)θ − 2θ>K21α

}
+ α>K1α,

where α = (αri)(xri ,yri)∈St,1 , K2 is the kernel matrix de-
fined on St,2, K1 is the kernel matrix defined on St,1, K21 is
the kernel matrix define on S2 and S1 satisfying K21[i, k] =
κ(xri ,xrk), (xri , yri) ∈ St,2 and (xrk , yrk) ∈ St,1. The
optimization problem has a closed-form solution,

θ∗ = (K2 + ηI)
−1

K21α, (9)

where η > 0 aims to keep (K2 + ηI)
−1 invertible. We fur-

ther have

f̂t,1 =
∑

(xri ,yri)∈St,2

θ∗riκ (xri , ·) ,

f̄t =
ctU

‖ft,2 + f̂t,1‖H

∑
(xri ,yri)∈St,2

(
αri + θ∗ri

)
κ (xri , ·) .

The time complexity of computing θ∗ is O
(
B3
)

since there
is a matrix inversion operation. Note that we solve θ∗ only if

|St| = B, that is, the time interval between two continuous
matrix inversion operations is at least B2 . Thus the average
per-round time complexity is only O

(
max{dB,B2}

)
. The

space complexity of Ahpatron is also O
(
max{dB,B2}

)
.

Theoretical Analysis
Lemma 1 upper bounds the times of removing operation,
which is critical to the mistake bound analysis.
Lemma 1. For any sequence IT , the times of removing op-
eration executed by Ahpatron is at most

max

{
2 (|M ′T |+ |NT |)

B
− 1, 0

}
,

where M ′T and NT are defined in Theorem 3.
Theorem 4 (Mistake Bound). Let ct = 0.6 for all t ∈ [T],
λ =

√
2U√
B

, B ≥ 50, U ≤
√
B
4 and 3U√

B
< ε < 1. Given

f ∈ H, for any sequence IT , the mistake bound of Ahpatron
satisfies
|MT | ≤ LT (f)+

max

{
12U√
B
LT (f) + ∆,

0.9U√
B
LT (f) +

√
B

2U
‖f‖2H + ∆

}
,

where

∆ =

3U√
B
− ε

1− 3U√
B

|NT |, ∆ =

U√
2B
− ε

1− U√
2B

|NT |.

Note that ∆ ≤ 0 and ∆ ≤ 0. Omitting the constant fac-
tors, we obtain a mistake bound as follows.

LT (f) +O

(
U√
B
LT (f) +

√
B

U
‖f‖2H + max

{
∆,∆

})
.

Since B � T , we can obtain a mistake bound of

LT (f) +O

(
U√
B
LT (f)

)
,

which explicitly gives the trade-off between mistake bound
and budget.

Comparison with Previous Results
In the following, we assume f ∈ H. The BOGD algorith-
m (Zhao et al. 2012) enjoys an expected regret bound of
O
(
UT√
B

+ U
√
T
)

. Note that Iŷt 6=yt ≤ `Hinge(ft(xt), yt),
we have

E [|MT |] = LT (f) +O

(
UT√
B

+ U
√
T

)
.

Ahpatron significantly improves the mistake bound of
BOGD, since LT (f) = O(T). Besides, our mistake bound
is deterministic.

The mistakes of POMDR (Li and Liao 2023) satisfy

|MT | = LT (f) +O

(
U
√
ATT√
B

+
√
AT
)
,

whereAT =
∑T
t=1 κ(xt,xt)− 1

TY
>
TKTYT is called “ker-

nel alignment”, YT = (y1, . . . , yT)> and KT is the kernel
matrix on IT .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13786

Theorem 5. Assume for any x ∈ X , κ (x,x) = 1. Let U ≥
1. Then AT ≥ minf∈H LT (f).

Theorem 5 implies minf∈H LT (f) = O(
√
ATT), and

Ahpatron improves the mistake bound of POMDR.
Let U =

√
B+1

4
√

ln(B+1)
. Then the mistake bound of For-

getron (Dekel, Shalev-Shwartz, and Singer 2005) satisfies

|MT | ≤ 4LT (f) + 2‖f‖2H.

Let U =
√
B
4 in Theorem 4. The mistake bound of Ahpatron

satisfies
|MT | ≤
max

{
4LT (f) + ∆, 1.3LT (f) + 2‖f‖2H + ∆

}
.

(10)

We can see that Ahpatron improves the mistake bound of
Forgetron. Note that U =

√
B
4 >

√
B+1

4
√

ln(B+1)
, where we re-

move the ln−
1
2 (B + 1) factor. Thus we solve the open prob-

lem posed by Dekel, Shalev-Shwartz, and Singer (2005).

A Refined Result
Now we explain why Ahpatron may obtain smaller mis-
take bounds via removing a half of examples. Let J =
{t ∈M ′T ∪NT : |St| = B}. At any round t ∈ J , we re-
move a half of examples. We can prove that the mistake
bound of Ahpatron depends on the following term

U + λ

λ

∑
t∈J

∥∥ft − f̄t∥∥H ≤ U + λ

λ
· ζU · |J |, (11)

where ζ ∈ (0, 2]. In the worst case, i.e.,
∥∥ft − f̄t∥∥H = 2U ,

we have ζ = 2. It is natural that if f̄t is close to ft for most
of t ∈ J , then ζ � 2 is possible. In this case, Ahpatron
enjoys smaller mistake bounds.
Theorem 6 (Algorithm-dependent Mistake Bound). As-
sume the inequality (11) holds with 0 < ζ ≤ 2. Let
ct = ‖ft‖H

U , B ≥ 16, λ = U
2
√
B

. For any γ ∈ (0, 1), let

U ≤ (1−γ)
√
B

1
4+

9
2 ζ

and
(

1
4 + 9ζ

2

)
U√
B
< ε < 1. Then the mis-

take bound of Ahpatron satisfies

|MT | ≤ LT (f)+
1

γ

(
1

4
+

9ζ

2

)
U√
B
LT (f)+

1− 2ζ

γ

‖f‖2H
√
B

U
+ ∆T (ζ),

where

∆T (ζ) =
|NT |

1−
(

1
4 + 9ζ

2

)
U√
B

·
((

1

4
+

9ζ

2

)
U√
B
− ε
)
.

Theorem 6 clearly shows that the mistake bound of Ah-
patron depends on the value of ζ, i.e., the distance between
f̄t and ft. If ζ � 2, then Ahpatron can use a larger value of
U and enjoy a smaller mistake bound. For instance, assume
ζ ≤ 1

16 , and let γ = 2
3 and U = (1−γ)

√
B

1
4+

9
2 ζ
≥
√
B

1.6 , we obtain
1
3 < ε < 1, and the mistake bound of Ahpatron satisfies

|MT | ≤
3

2
LT (f) + 2.1‖f‖2H + ∆T (ζ),

Datasets #sample # Feature Classes
phishing 11,055 68 2
a9a 48,842 123 2
w8a 49,749 300 2
SUSY 50,000 18 2
ijcnn1 141,691 22 2
cod-rna 271,617 8 2

Table 1: Datasets used in the experiments

which improves the result in (10), including: (i) The value
of U is larger, i.e., U =

√
B

1.6 >
√
B
4 . The larger the value of

U is, the larger H will be. (ii) The mistake bound is smaller
in the case of LT (f) > ‖f‖2H.

Remark 2. Theorem 6 also gives a criterion to select f̄t. To
be specific, the optimal f̄t must be

arg min
f∈Ht,2,St,2⊆St,|St,2|=B

2

‖f − ft‖H .

However, obtaining the optimal solution is computationally
infeasible. Our algorithm constructs an approximation solu-
tion using a heuristic method.

Experiments
We aim to verify Ahpatron performs better than the state-of-
the-art algorithms on the same budget or a smaller budget.

We adopt the Gaussian kernel κ(u,v) = exp(−‖u−v‖
2
2

2σ2),
where σ is the width. We download six binary classification
datasets from UCI machine learning repository 4 and LIB-
SVM website 5, as shown in Table 1. We uniformly select
50000 instances from the original SUSY dataset. All algo-
rithms are implemented in R on a Windows machine with
2.8 GHz Core(TM) i7-1165G7 CPU 6. We execute each ex-
periment 10 times with random permutation of all datasets.

The state-of-the-art algorithms we compare with are listed
as follows.

• Projectron and Projectron++ (Orabona, Keshet, and Ca-
puto 2008)
The two algorithms do not remove examples, but use the
approximate linear dependence condition (Engel, Man-
nor, and Meir 2004) to add examples. The two algorithm-
s may maintain a very large budget and thus suffer high
memory costs and running time.
• BOGD++ (Zhao et al. 2012), POMDR (Li and Liao

2023)
When the size of the active set reaches the budget,
BOGD++ randomly removes one example, while POM-
DR removes a half of the examples.
• NOGD (Lu et al. 2016)

NOGD first selects B examples and constructs the cor-
responding kernel matrix KB . Then it constructs a new

4http://archive.ics.uci.edu/ml/datasets.php
5https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

binary.html
6Codes and datasets: https://github.com/alg4ml/Ahpatron.git

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13787

Algorithm phishing, σ = 1 SUSY, σ = 1 ijcnn1, σ = 1
AMR (%) B|D Time (s) AMR (%) B|D Time (s) AMR (%) B|D Time (s)

Projectron++ 7.42 ± 0.15 571 3.04 22.05 ± 0.07 4898 1330.83 3.01 ± 0.04 1577 58.58
Projectron 9.52 ± 0.16 422 1.71 29.10 ± 0.17 2111 108.87 4.14 ± 0.04 1136 28.22
FOGD 7.48 ± 0.16 2000 3.30 26.70 ± 0.60 2000 10.04 3.74 ± 0.23 2000 19.12
BOGD++ 10.30 ± 0.20 400 1.01 28.30 ± 0.12 400 3.09 9.21 ± 0.02 600 10.55
NOGD 8.12 ± 0.23 400 3.02 25.49 ± 0.47 400 3.92 4.47 ± 0.06 600 20.71
POMDR 7.36 ± 0.16 400 1.29 25.36 ± 0.25 400 2.79 5.76 ± 0.09 600 9.33
Ahpatron 7.27 ± 0.13 400 1.01 23.66 ± 0.17 400 3.62 3.72 ± 0.03 600 8.51

Algorithm cod-rna, σ = 1 w8a, σ = 2 a9a, σ = 2
AMR (%) B|D Time (s) AMR (%) B|D Time (s) AMR (%) B|D Time (s)

Projectron++ 10.13 ± 0.03 5100 2786.98 2.03 ± 0.03 1279 94.37 16.45 ± 0.07 152 4.22
Projectron 14.43 ± 0.03 2686 453.49 2.90 ± 0.06 306 14.15 21.13 ± 0.17 135 3.46
FOGD 12.72 ± 1.05 2000 47.41 4.18 ± 0.23 300 6.28 16.69 ± 0.11 300 3.71
BOGD++ 14.01 ± 0.04 600 12.78 2.76 ± 0.08 300 14.25 19.91 ± 0.12 150 3.34
NOGD 15.85 ± 0.72 600 30.61 2.69 ± 0.04 300 15.04 16.56 ± 0.15 150 3.56
POMDR 11.76 ± 0.11 600 11.58 2.59 ± 0.11 300 15.00 17.09 ± 0.15 150 4.33
Ahpatron 12.33 ± 0.08 600 14.85 2.23 ± 0.06 300 11.68 16.42 ± 0.06 150 3.14

Table 2: Comparison with the state-of-the-art algorithms

representation in Rk for each instance by the best rank-k
approximation of KB , where k ≤ B. The space com-
plexity of NOGD is in O

(
max

{
B2, Bd

})
.

• FOGD (Lu et al. 2016)
FOGD uses random features (Rahimi and Recht 2007) to
approximate kernel functions, and runs online gradient
descent in RD. D is the number of random features. The
computational complexity of FOGD is in O(Dd).

We do not compare with Forgetron and RBP, since their
performances are much worse than FOGD and NOGD. For
BOGD++, NOGD, and FOGD, we choose the stepsize of
gradient descent from

{
10[−3:1:3]
√
T

}
. The other parameters of

BOGD++ and NOGD follow the original paper. All param-
eters of POMDR also follow the original paper. For Projec-
tron and Projectron++, there is a parameter 0 < η < 1 bal-
ancing the memory costs and prediction performance. We
choose η ∈ {0.1, 0.9}. The smaller η is, the larger the size
of the active set is and the better the prediction performance
is. For Ahpatron, we set the parameters following Theorem
6, that is, η = 0.0005, λ = U√

4B
and U =

√
B
2 . We choose

the best ε ∈ {0.5, 0.6, 0.7, 0.8, 0.9} in hindsight, and set
σ = 1 for all datasets. If the per-round running time of Pro-
jectron++ is larger than 1 hour, then we set σ = 2.

Table 2 shows the results. We record the average mistake
rates (AMR) and AMR := |MT |

T . As a whole, Ahpatron
performs best on most of datasets on a small budget. Al-
though there are some datasests on which Projectron++ en-
joys a lower AMR than Ahpatron, the budget maintained by
Projectron++ is very large, such as on the SUSY, ijcnn1, cod-
rna and w8a datasets. The main reason is that Projectron
and Projectron++ only add examples. In practice, it must
be careful to choose Projectron++ and Projectron. In con-
trast, Ahpatron can precisely control the budget and show
a comparable performance on all datasets. Specially, Ahpa-
tron even performs better than Projection++ on the phishing
datasets using a smaller budget. In the supplementary ma-

phishing SUSY cod-rna w8a ijcnn1 a9a
|NT | 1429 23045 129497 1525 5204 9234

Table 3: The value of |NT | in Ahpatron

terial, we further compare with Projectron++ on the SUSY,
ijcnn1, cod-rna and w8a dataset. We aim to show that Ah-
patron performs better than Projectron++ on the same or a
smaller budget.

Ahpatron performs better than BOGD++ on all datsets.
BOGD++ approximates gradient descent and removes one
example, while Ahpatron approximates AVP and removes a
half of examples. The results prove that AVP is better than
gradient descent and our budget maintaining approach is al-
so better. Ahpatron also performs better than POMDR on
most of datasets, since it adopts a different strategy to re-
move the examples and projection scheme to keep the infor-
mation of the removed examples. Ahpatron also performs
better than NOGD and FOGD on all datasets.

We also report the value of |NT | in Ahpatron. Table 3
shows the results. It is obvious that |NT | � 1 on all datasets.
Thus the negative terms in Theorem 4 and Theorem 6 can
significantly reduce the mistake bound.

Conclusion
In this paper, we have proposed a new budgeted online k-
ernel learning model, called Ahpatron, which has a tighter
mistake bound, and resolved the open problem posed by
Dekel, Shalev-Shwartz, and Singer (2005). The key of Ah-
patron is the half removing and half projecting budget mech-
anism, which keeps as more information of the removed ex-
amples as possible. We also have proved that the active up-
dating rule can improve the mistake bound.

The mistake bound of Ahpatron explicitly gives the trade-
off between the mistake bound and the budget, which is im-
portant for online learning, and is left for future research.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13788

Acknowledgements
This work was supported in part by the National Natural
Science Foundation of China (No.62076181). We thank all
anonymous reviewers for their valuable comments and sug-
gestions.

References
Cesa-Bianchi, N.; and Gentile, C. 2006. Tracking the best
hyperplane with a simple budget perceptron. In Proceedings
of the 19th Annual Conference on Learning Theory, 483–
498.
Charikar, M.; Chen, K. C.; and Farach-Colton, M. 2002.
Finding frequent items in data streams. In Proceedings of
the 29th International Colloquium on Automata, Languages
and Programming, 693–703.
Cheng, L.; Vishwanathan, S. V. N.; Schuurmans, D.; Wang,
S.; and Caelli, T. 2006. Implicit online learning with kernel-
s. Advances in Neural Information Processing Systems, 19:
249–256.
Crammer, K.; Kandola, J. S.; and Singer, Y. 2003. Online
classification on a budget. Advances in Neural Information
Processing Systems, 16: 225–232.
Dekel, O.; Shalev-Shwartz, S.; and Singer, Y. 2005. The
Forgetron: A kernel-based perceptron on a fixed budget. Ad-
vances in Neural Information Processing Systems, 18: 259–
266.
Dekel, O.; Shalev-Shwartz, S.; and Singer, Y. 2008. The
Forgetron: A kernel-based perceptron on a budget. SIAM
Journal on Computing, 37(5): 1342–1372.
Engel, Y.; Mannor, S.; and Meir, R. 2004. The kernel recur-
sive least-squares algorithm. IEEE Transactions on Signal
Processing, 52(8): 2275–2285.
Gentile, C. 2001. A new approximate maximal margin clas-
sification algorithm. Journal of Machine Learning Research,
2: 213–242.
He, W.; and Kwok, J. T. 2014. Simple randomized algo-
rithms for online learning with kernels. Neural Networks,
60: 17–24.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2001. On-
line learning with kernels. Advances in Neural Information
Processing Systems, 14: 785–792.
Koppel, A.; Warnell, G.; Stump, E.; and Ribeiro, A. 2019.
Parsimonious online learning with kernels via sparse pro-
jections in function space. Journal of Machine Learning
Research, 20(3): 1–44.
Li, J.; and Liao, S. 2023. Improved kernel alignment re-
gret bound for online kernel kearning. In Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelligence,
8597–8604.
Lu, J.; Hoi, S. C. H.; Wang, J.; Zhao, P.; and Liu, Z. 2016.
Large scale online kernel learning. Journal of Machine
Learning Research, 17(47): 1–43.
Orabona, F.; Keshet, J.; and Caputo, B. 2008. The Projec-
tron: A bounded kernel-based Perceptron. In Proceedings
of the Twenty-Fifth International Conference on Machine
Learning, 720–727.

Rahimi, A.; and Recht, B. 2007. Random features for large-
scale kernel machines. Advances in Neural Information Pro-
cessing Systems, 20: 1177–1184.
Rosenblatt, F. 1958. The Perceptron: A probabilistic model
for information storage and organization in the brain. Psy-
chological Review, 65: 386–408.
Shalev-Shwartz, S. 2007. Online learning: Theory, algo-
rithms, and applications. Ph.D. thesis, The Hebrew Univer-
sity of Jerusalem.
Vapnik, V. N. 1998. Statistical learning theory, volume 1.
New York: Wiley & Sons.
Wang, J.; Hoi, S. C. H.; Zhao, P.; Zhuang, J.; and Liu, Z.
2013. Large scale online kernel classification. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence, 1750–1756.
Wang, Z.; Crammer, K.; and Vucetic, S. 2012. Breaking the
curse of kernelization: budgeted stochastic gradient descent
for large-scale SVM training. Journal of Machine Learning
Research, 13(1): 3103–3131.
Weston, J.; Bordes, A.; and Bottou, L. 2005. Online (and
offline) on an even tighter budget. In Proceedings of the
Tenth International Workshop on Artificial Intelligence and
Statistics, 413–420.
Williams, C. K. I.; and Seeger, M. 2001. Using the Nyström
method to speed up kernel machines. Advances in Neural
Information Processing Systems, 13: 682–688.
Zhang, X.; and Liao, S. 2019. Incremental randomized s-
ketching for online kernel learning. In Proceedings of the
36th International Conference on Machine Learning, 7394–
7403.
Zhao, P.; Wang, J.; Wu, P.; Jin, R.; and Hoi, S. C. H. 2012.
Fast bounded online gradient descent algorithms for scalable
kernel-based online learning. In Proceedings of the 29th In-
ternational Conference on Machine Learning, 1075–1082.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13789

