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Abstract

Time-series generation has crucial practical significance for
decision-making under uncertainty. Existing methods have
various limitations like accumulating errors over time, sig-
nificantly impacting downstream tasks. We develop a novel
generation method, DT-VAE, that incorporates generalizable
domain knowledge, is mathematically justified, and signifi-
cantly outperforms existing methods by mitigating error accu-
mulation through a cumulative difference learning mechanism.
We evaluate the performance of DT-VAE on several down-
stream tasks using both semi-synthetic and real time-series
datasets, including benchmark datasets and our newly curated
COVID-19 hospitalization datasets. The COVID-19 datasets
enrich existing resources for time-series analysis. Additionally,
we introduce Diverse Trend Preserving (DTP), a time-series
clustering-based evaluation for direct and interpretable assess-
ments of generated samples, serving as a valuable tool for
evaluating time-series generative models.

Introduction
Time-series generation provides augmented datasets that can
be used for testing and validating models, improving the ac-
curacy of predictive models, avoiding model overfitting based
on limited observations, as well as for generating scenarios
for decision-making (e.g., demand scenarios for evaluating
staffing level) (van Dyk and Meng 2001; Forestier et al. 2017;
Wen et al. 2021). These benefits are highly valuable within
various domains. For example, generated synthetic data has
been shown to benefit significantly healthcare and medicine
fields (Abbasimehr, Paki, and Bahrini 2022; Chellasamy and
Nagarathinam 2022; Er, Yang, and Zhao 2023; Kiyasseh et al.
2020), by addressing the concerns about data privacy and
restricted data access limit, and thus boosting model compar-
isons and the development of new models.

This work is motivated by the burgeoning need to synthe-
size hospital census (number of hospitalized patients in dif-
ferent units/hospitals/regions) since the COVID-19 pandemic
outbreak. Learning the census distribution and generating
future census sample paths, rather than just point estimates, is
crucial for downstream prediction tasks and decision-making,
e.g., bed capacity planning, nurse staffing, and medical equip-
ment allocation via stochastic optimization.

Copyright © 2024, Association for the Advancement of Artificial
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(a) DT-VAE (Ours)
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(b) PSA-GAN
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(c) TimeGAN

Figure 1: The mean of the generated series (dark blue) and
0.95 confidence interval (light blue range) align with the true
mean (orange). However, significantly more samples (grey
curves in (b) and (c)) from the PSA-GAN and TimeGAN
deviate from the original trend with chaotic shapes. For better
visualization, up to 50 of the 500 generated samples that
notably deviated are highlighted.

Existing methods fall short in addressing the challenges
that arise in meeting this pressing demand, prompting the ini-
tiation of this research. Yet, these challenges are not unique to
the healthcare domain; they are pervasive in many other appli-
cations such as crime prediction, financial trading, and traffic
flow (Calatayud, Jornet, and Mateu 2023; Gontis, Ruseckas,
and Kononovičius 2010; Tahmasbi and Hashemi 2014). The
two primary challenges are (i) the errors tend to accumu-
late over time due to generation in an autoregressive/recur-
sive manner (Yoon, Jarrett, and Van der Schaar 2019; Jeha
et al. 2021) and (ii) general-purpose (non-domain specific)
generative methods often ignore problem structure and lack
theoretical justification or interpretability.

Figure 1 illustrates the prevailing issue (i) via compari-
son using synthetic data. At each time step, the synthetic
data is drawn from a Gaussian distribution with time-varying
means, which produces a distinct “V-shaped” trend. While
the means of generated data from all models align closely
with the ground truth mean, a substantial portion of sam-
ples generated by general-purpose methods deviates from the
trend in synthetic data, as shown in plots (b) and (c), primar-
ily due to early-stage errors accumulating over time, resulting
in disruptions to the trends. Notably, even though samples
generated by PSA-GAN shown in (b) exhibit relatively more
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resilience to errors compared to samples from TimeGAN
in (c), issue (i) still significantly harms its performance: the
early-stage generation errors cause the large misalignment
with the crucial trend where the minimum occurs and lead
to chaotic patterns in later stages. More details are in the
“Gaussian Synthetic Data” section in the appendix. Issue (ii)
imposes another layer of challenge to general-purpose gener-
ative methods. The time series observations are often driven
by unobserved variables with complex interactions in various
domains. For instance, the daily hospital census is driven
by daily patient arrivals (i.e., inflow) and discharges (i.e.,
outflow). The arrivals and discharges are correlated, result-
ing in highly complex spatial-temporal correlations in the
census, but their records are often absent. General-purpose
methods either rely on step-wise learning (causing the issue
(i)) or otherwise have to impose assumptions on temporal
correlation structures in the time series observations, which
might inadequately capture the complexities. Disregarding
the interactions between the unobserved and observed vari-
ables may also risk misinterpreting the true drivers behind
the time-series patterns and thereby affect decision-making.

In this work, our method, named DT-VAE, addresses
the above issues by leveraging a mathematically justified,
domain-aware time-series framework that adeptly integrates
generalizable domain knowledge. Our analytical framework
focuses on the type of time series driven by temporally (and
potentially spatially) correlated and unobservable inflow and
outflow variables. The common problem structure follows
a relationship in which the observation of a new time step
arises from the preceding time step, with inflow added and
outflow subtracted.

To overcome the issue (i), we utilize the inflow/outflow
structure to mathematically transform the original learning
task to learn the cumulative difference between the observa-
tion on any time step t and the initial time step (the DT part),
achieving success as demonstrated in Figure 1(a). Meanwhile,
our framework captures the interplay between unobserved
variables and time series observations through its generative
structure, overcoming issue (ii). This framework allows us to
mathematically derive the learning objective, which guides
the design of the encoder and decoder networks of the VAE
part. This not only provides theoretical justification and inter-
pretability that contrast purely black-box models or heuristic
designs, but also offers a versatile foundation for capturing
complex correlation structures. We demonstrate this latter
point by empirically comparing with direct methods such
as ARIMA and Temporal-VAE (which applies VAE to learn
the census directly with assumed correlation structure); see
the “Experiment” section. Our framework is generally appli-
cable across various domains, including healthcare (Littig
and Isken 2007), traffic management (Lebacque 2005), and
energy collection (Mugi and Chandramohan 2021). For other
domains, our framework may lose some interpretability but
remain applicable. We establish the broad applicability of
our framework conceptually in the “Method” section and
empirically validate it using five public benchmark datasets
from various domains.

We introduce additional key contributions and summarize
our contributions as follows:

• We propose a new theoretical modeling framework that
incorporates generalizable domain knowledge by assum-
ing the observed time series are driven by temporally
linked inflow and outflow variables.

• We propose a novel a VAE-based method called cumula-
tive Difference Temporal VAE (DT-VAE), which merges
VAE with cumulative learning, addressing prevalent is-
sues with existing methods. DT-VAE also maintains high
flexibility, demonstrated by connecting DT-VAE with a
GAN (DT-VAE-GAN) to enhance time series generation.

• Our methods are evaluated on popular benchmark datasets
and two of our newly curated COVID-19 hospitaliza-
tion datasets. To the best of our knowledge, these two
datasets are the first publicly accessible complied datasets
focused on COVID-19 hospitalization.

• Beyond standard evaluations, we propose a time-series
clustering based evaluation metric named Diverse Trend
Preserving (DTP) evaluation. This provides not just nu-
merical results but also a visually interpretable assessment
of generated sample quality.

Related Work
Variational Autoencoder
This work is related to VAE (Kingma and Welling 2013).
VAE learns a probabilistic mapping between input and desig-
nated latent spaces. Combining VAE with Generative Adver-
sarial Networks (GAN) (Goodfellow et al. 2020) facilitates
the VAE-GAN (Larsen et al. 2016), in which the decoder
serves the role of the GAN’s generator. Refer to the “VAE”
section and “VAE-GAN Preliminary” in the appendix for
more information.

Time-series Generation and Issues
Existing methods of time-series generation fall into three ma-
jor categories: (i) Monte Carlo simulation that samples from
prior defined distributions; (ii) deep-learning-based meth-
ods to learn the distribution from real-world data; and (iii)
discrete-event simulation. Desai et al. (2021) summarized the
pros and cons of approaches in (i)-(ii)

Simulations in (iii) need precise data calibration. For exam-
ple, in the healthcare domain, while calibrating simulations
requires patient flow attributes such as arrivals and departures,
many datasets, such as COVID-19 hospitalization (Regen-
strief Institute COVID-19 Dashboard 2023; WHO COVID-
19 Dashboard 2023; CDC COVID-19 Tracking 2023), offer
just the daily census. This unobservable issue is prevalent
across different domains such as in social justice (Calatayud,
Jornet, and Mateu 2023), traffic management (Dheeru and
Karra Taniskidou 2017; Cuturi 2011), and energy conserva-
tion (Lai et al. 2018a), making (iii) impractical to realize.
Contrasting (iii), direct methods like ARIMA or RNN over-
look the dependence between the observed data and the in-
/outflow variables, missing the spatial-temporal correlations.

The majority of methods in (ii) can be divided into two
categories, GANs- or VAEs-based generative models. These
frameworks improved solutions and enhanced flexibility for
the aforementioned challenge. Early models, C-RNN-GAN
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(Mogren 2016) and RCGAN (Esteban, Hyland, and Rätsch
2017), integrated RNNs and GANs for music and eICU
data generation, respectively. TimeGAN (Yoon, Jarrett, and
Van der Schaar 2019) aligns latent representations of real and
generated data, considered as state-of-art. COT-GAN (Xu
et al. 2020) employs optimal transport for adversarial train-
ing. PSA-GAN (Jeha et al. 2021) uses self-attention for long
time-series generation and presents Context-FID, inspired
by the FID score (Heusel et al. 2017). TsT-GAN (Srinivasan
and Knottenbelt 2022) integrates transformers with GANs.
VAE-based methods include Variational Recurrent AutoEn-
coder (Fabius and Van Amersfoort 2014) for classical songs,
Stochastic WaveNet (Lai et al. 2018b) for adaptive prior dis-
tribution learning, and Stochastic TCN (Aksan and Hilliges
2019) merging ELBO with TCN (Bai, Kolter, and Koltun
2018). TimeVAE (Desai et al. 2021) uses interpretable com-
ponents for time series generation, while CR-VAE (Li, Yu,
and Principe 2023) used VAE to combine the causality and
RNN. Other time-series generation methods involve gener-
ative models with Fourier Flows (Alaa, Chan, and van der
Schaar 2020) or Contrastive Imitation (Jarrett, Bica, and
van der Schaar 2021).

Method
Problem Definition
Consider a collection of random variables that form a time-
series sequence {Xt, t = 0, 1, . . . , T} with the length of
T + 1. We denote this sequence as X0:T . The training
dataset D consists of N observed sequences, denoted as
D = {x(1)

0:T , . . . , x
(N)
0:T }. For a given sequence, the observa-

tion at time t, xt, is a vector in Rk, where k is the feature
space dimension. Going forward, N and k will be omitted
unless explicitly mentioned. Our goal is to learn the joint
distribution p(X0:T ) from the training data.

Problem Formulation
We adopt the generative modeling framework, where the
dependency structure between the latent variables and ob-
servations is summarized in Figure 2 and are specified as
follows. We assume that each random variable Xt is driven
by the previous random variable Xt−1, an “inflow” variable
At, and an “outflow” variable Dt. The relationship of Xt,
Xt−1, At, Dt is described as

Xt|Xt−1, At, Dt = Xt−1 +At −Dt + ϵ,

t = 0, . . . , T, ϵ ∼ N(0, τ),
(1)

where τ denotes the covariance matrix in the Gaussian
distribution. Note that the noise may change over time as
ϵt ∼ N(0, τt) with τt being time-varying. We continue with
the fixed covariance matrix τ for now. Since the random vari-
able Xt is dependent on other unobserved variables, we will
refer to Xt as the “dependent variable”.

The inflow and outflow variables At and Dt are further
driven by some underlying “environmental factors” {Zt}.
We use the following dependence formulation, which is com-
monly used in deep latent Gaussian models (Rezende, Mo-
hamed, and Wierstra 2014) and is a discretized version of

(a) Original Generation View (b) Cum. Diff. Learning View 

Figure 2: Geneative model structure.

stochastic differential equations (SDE) for variational infer-
ence in neural-SDE (Tzen and Raginsky 2019). The auto-
regressive updates capture how the inflow and outflow vari-
ables change over time, similar to the evolution of a diffusion
process described by SDE (Song et al. 2020).

A0 = a0; D0 = d0;

At = At−1 + ba(At−1) + σaZ
a
t , t = 1, . . . , T ; (2)

Dt = Dt−1 + bd(Dt−1) + σdZ
d
t , t = 1, . . . , T. (3)

Here, the sequences of latent variables Za
1 , . . . , Z

a
T ∼iid

N (0, Ik) and Zd
1 , . . . , Z

d
T ∼iid N (0, Ik) are all i.i.d. stan-

dard Gaussian vectors in Rk. The drift function ba(·) and
bd(·) and diffusion terms σaZ

a
t and σdZ

d
t drive the inflow

and outflow processes and the temporal correlations. Addi-
tionally, it can integrate spatial correlations via the diffusion
terms σaZ

a
t and σdZ

d
t depending on the application domains.

The formulation in (1)-(3) is generally applicable in vari-
ous domains. We illustrate the applicability with a few exam-
ples. In healthcare, Xt corresponds to the daily patient census,
i.e., the count of hospitalized patients in a specific hospital
unit, county, or region on day t. The census changes with
daily patient arrivals At and discharges Dt. In traffic manage-
ment, Xt corresponds to the volume of traffic flow at time t,
which is determined by incoming vehicles At and outgoing
vehicles Dt. In the energy sector, Xt signifies the observed
energy volume at time t. This amount is driven by the newly
collected energy At and energy loss or consumption Dt. Xt

for crime incidents can be interpreted similarly (Calatayud,
Jornet, and Mateu 2023).

The parameters to be learned include those parametrizing
the drift and the diffusion terms. This learning task poses chal-
lenges since the inflow and outflow variables are often absent
in observed datasets and only values of Xt’s are recorded. In
other words, we cannot directly learn the parameters from
inflow variable {At} and outflow variable {Dt} but need
to learn from {Xt} via the dependence structures given in
Equations (1) and (2)-(3).

Cumulative Difference Learning
Beyond the unobserved inflow and outflow variables, a key
challenge arises from the accumulation of errors. A common
approach to learning the joint distribution of Xt within the
generative modeling framework is through step-wise learning,
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specifically, learning the conditional distribution Xt|X0:t−1.
However, this approach encounters a prominent challenge.
For each time step l < T , a highly inaccurate estimation of
the dependent variable Xl results in considerable deviations
in the estimation of all subsequent values from l + 1 to time
T . This is due to the recursive nature of step-wise learning,
where the calculation of the dependent variable Xt depends
on Xt−1. In simpler terms, errors accumulate over time, and
their effect on the dependent variable amplifies significantly
for more distant future time points.

To overcome this issue, we develop a novel cumulative
difference learning scheme, specified as follows. First, we
define a new variable that captures the cumulative difference:

Γt =
t∑

i=1

∆i =
t∑

i=1

Ai −
t∑

i=1

Di. (4)

Here, ∆t = At − Dt represents the difference between
inflow and outflow variables At and Dt (i.e., the changes in
Xt’s from Xt−1’s), and Γt represents the cumulative differ-
ence (i.e., the net changes in Xt’s). In the training dataset,
this cumulative difference can be observed by γt = xt − x0

(with measurement errors). The new relationship between
X0, Xt, and Γt can be described as follows:

Xt|(X0,Γt) = X0 + Γt + ϵ′t, ϵ′t ∼ N(0, τ ′t). (5)

It is important to note that, different from (1), the noise ϵ′t
must change over time as the covariance matrix τ ′t is time-
varying when learning the cumulative difference.

From (5), it appears that the currently observed variable
Xt only depends on the current information of Γt for any
given starting census X0. However, this is not the case as the
correlations are encapsulated in all latent variables up to time
t, as they drive the cumulative difference Γt. This becomes
evident from the following recursive equations for Γt:

Γ0 = ∆0 = a0 − d0

Γt =
t∑

i=1

∆i =
t−1∑
i=1

∆i +∆t = Γt−1 +∆t

= Γt−1 + b∆(∆t−1) + σ∆Z
∆
t , t = 1, . . . , T. (6)

Note that (5)-(6) present an equivalent transformation of
the original learning task, with the unknown parameters to be
learned as the drift function b∆(·) and diffusion matrix σ∆.

The relationship presented in (5)-(6) reveals the complex
temporal correlations. Due to interactions between inflow
and outflow variables described in (1)-(3), such complexity
hinders any heuristic assumptions on correlation structures
between Xt and Xt−1. However, by expanding (6), the cor-
relation structure becomes clear. The difference variables
∆1:t−1 with the drift function b∆(·) contributes to Γt, demon-
strating that the temporal correlations Xt and Xt−1 are also
influenced by the sequence of difference variables ∆1:t−1.

Furthermore, using (5)-(6), reconstructing Xt from Γt pre-
vents error accumulation, as Γt is a cumulative difference
and only needs the initial value X0 to reconstruct Xt, by-
passing the recursive reconstruction in step-wise learning.
By expanding (6), it becomes clear that Γt is driven by the

DT-Encoder

DT-Decoder

Training

Generate

Recon.

Cum. Diff.

Figure 3: The architecture of DT-VAE with training and gen-
eration procedure. Encoder qϕ encodes input data to latent
space, while decoder pθ generates data from encoder samples
during training and a prior distribution during generation.

latent variable sequence Z∆
1:t. Therefore, we are essentially

learning a mapping from the sequence of latent variables
Z∆
1:t to the variable Γt. This means potential biases in the

learned Γ̂t−1 will not affect Γt learning since it is solely deter-
mined by latent variables. Meanwhile, as discussed, temporal
correlations within sequences are not lost. This is because
the dependence of Γt on Z∆

1:t naturally encodes temporal
correlations between Γt−1 and Γt.

Cumulative Difference Temporal VAE (DT-VAE)
We develop a VAE-based framework, DT-VAE, to learn (5)
and (6).

ELBO. For any given X0 = x0, denote the observed
sequence of cumulative difference variables Γ1:T as γ1:T =
{γ1, . . . , γT }. As from (6), Γt is driven by latent vari-
ables Z∆

1:t at each time step t = {1, · · · , T}. Let z1:T =
(z1, . . . , zT ) denote the sequence of prior variables from prior
distribution p(z1:T ).

To overcome the intractability of the likelihood function
pθ
(
γ1:T

)
, VAE optimizes the evidence lower bound (ELBO)

as the surrogate objective:

log pθ
(
γ1:T

)
= log

∫
pθ
(
γ1:T , z1:T

)
dz1:T

= log

∫
pθ
(
γ1:T , z1:T

)qϕ(z1:T | γ1:T
)

qϕ
(
z1:T | γ1:T

)dz1:T
≥ Ez1:T∼qϕ

[
log

(
pθ(γ1:T , z1:T )

qϕ(z1:T |γ1:T )

)]
= Ez1:T∼qϕ

[
log

(∏T
t=1 pθ(γt|z1:t))p(zt|z1:t−1)∏T

t=1 qϕ(zt|z1:t−1,γ1:t)

)]
=

T∑
t=1

Ez1:t log pθ
(
γt|z1:t

)
− Ez1:t−1

DKL

(
qϕ(zt|z1:t−1, γ1:t)||N(0, I)

)
= L(γ1:T ).

(7)
The detailed derivation is given in the section A in the ap-
pendix. We describe the joint distribution pθ(γ1:T , z1:T ) as
the generative process for generating γ1:T , and qϕ(z1:T |γ1:T )
denotes the variational distribution with parameter ϕ that
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approximates the true posterior distribution. Next, we will
describe the generative process pθ(γ1:T , z1:T ) and variational
distribution qϕ(z1:T |γ1:T ) separately.

Decoder design. For the generative process, the decoder
of DT-VAE fθ(·), parameterized by θ, decodes latent vari-
ables z1:t to generate γt. In other words, the decoder fθ(·)
learns the conditional distribution pθ(γt|z1:t). Going forward,
we will use fθ(z1:t) and pθ(γt|z1:t) interchangeably and use
zprior to denote samples from the prior distribution

A key step in deriving the ELBO in (7), particularly from
line 3 to line 4, is via the decomposition for pθ(γ1:T , z1:T ):

pθ(γ1:T , z1:T ) = pθ(γ1:T |z1:T )p(z1:T )

=
( T∏

t=1

pθ(γt|z1:t)
)
p(z1:T )

=
T∏

t=1

pθ(γt|z1:t)
T∏

t=1

p(zt|z1:t−1),

(8)

where pθ(γt|z1:t) denotes the approximation of the true con-
ditional distribution p(γt|z1:t) and p(zt|z1:t−1) denotes the
conditional prior distribution for latent variables zt.

From (8), we make an important assumption on the con-
ditional distribution pθ(γ1:T |z1:T ) and prior distribution
p(z1:T ). As previously mentioned, for each γt, it solely de-
pends on latent variables z1:t to avoid error accumulation.
This essentially makes γt conditionally independent across
different time steps given the latent variables zprior1:t . That is,
for any two time steps w ̸= v ≤ T , the cumulative difference
variable (γw|z1:w) ⊥ (γv|z1:v) are independent conditional
on corresponding latent variables. This assumption is cru-
cial, allowing the transformation from pθ(γ1:T |z1:T ) to the
product form

∏T
t=1 pθ(γt|z1:t).

Following the VAE literature, we assume the conditional
distribution pθ(γt|z1:t) ∼ N(µt,θ, σt,θ), i.e., a Gaussian
distribution with a diagonal covariance matrix. Also note
that σt,θ is time-varying as from (5). For the prior distri-
bution, we assume it is an independent Gaussian, namely,
p(zt|z1:t−1) ∼ N(0, I). Though zpriort ’s are independent,
the decoder fθ still allows us to capture the underlying corre-
lation via the relationship between γt and zprior1:t . We design
the decoder via a recurrent network fθ1 , enclosing all time
steps information zprior1:t recursively, with a feedforward net-
work fθ2 , further transforming the input to µt,θ and σt,θ,
i.e.,

ht,θ1 = fθ1(ht−1,θ1 , zt) (µt,θ, σt,θ) = fθ2(ht,θ1) (9)

where ht,θ1 is the hidden state in the RNN structure fθ1 .
We stress that the decoder fθ can be parameterized by any

architecture, as long as the output γt depends on the latent
variables zprior1:t , such as self-attention structures (Vaswani
et al. 2017) or temporal convolutions (Oord et al. 2016).

Encoder design. Next, we will describe the posterior dis-
tribution, also known as the encoder. DT-VAE learns an en-
coder fϕ(·) with parameter ϕ to encode observed γ1:t into the
variational (posterior) distribution qϕ(z1:T |γ1:T ). We will use
fϕ(γ1:t) and pϕ(z1:t|γ1:t) interchangeably. To distinguish,
we denote zpost for samples from the posterior distribution.

We factor the posterior distribution qϕ(z1:T |Γ1:T ) as

qϕ(z1:T |γ1:T ) =
T∏

t=1

qϕ(zt|z1:t−1, γ1:t) (10)

During the training stage, we will sample zpostt from the
posterior distribution qϕ(zt|z1:t−1, γ1:t) and let the decoder
reconstruct the observed γt’s. For sampling from the posterior
distribution, at each time step t, we sample zpostt from the
distribution conditioned on the historical posterior variables
zpost1:t−1 and all observed γ1:t.

Following the VAE literature, we assume that variational
distribution qϕ(zt|z1:t−1, γ1:t) ∼ N(µt,ϕ, σt,ϕ), i.e. a Gaus-
sian distribution with a diagonal covariance matrix, where
the µt,ϕ and σt,ϕ are learned using the encoder fϕ. To capture
that the historical information relies on both zpost’s and γ’s,
we decompose fϕ into three functions with parameters ϕ1,
ϕ2 and ϕ3:

ht,ϕ1 = fϕ1(ht−1,ϕ1 , γt)
µt,ϕ = fϕ2(ht,ϕ1 , µt−1,ϕ)
σt,ϕ = fϕ3(ht,ϕ1 , σt−1,ϕ)

(11)

where ht,ϕ1 is the hidden state in RNN structure fϕ1 . For
each time step, ht,ϕ1 encodes all observed γ1:t. The RNN
structure fϕ2 will output the mean of posterior distribution
µt,ϕ by utilizing the ht,ϕ1 and previous µt−1,ϕ. Therefore, for
each time step, the current mean µt,ϕ contains information
of previous means µ1:t−1,ϕ, which resembles the conditional
structure in qϕ(zt|z1:t−1, γ1:t) from (10). Similarly, the RNN
structure fϕ3

outputs σt,ϕ by utilizing ht,ϕ1
and σt−1,ϕ that

contain prior information of γ1:t and zpost1:t−1.
DT-VAE-GAN. Our DT-VAE framework is general, flexi-

ble, and can be integrated with various generative models. We
demonstrate its effectiveness when paired with VAE-GAN
for improved generative accuracy. We use an RNN-based
discriminator network. Different from VAE-GAN, we still
maintain the original reconstruction loss as in DT-VAE (see
section L in the appendix).

Experiment
In this section, we evaluate our methods on five datasets
with various metrics and compare them with traditional
and state-of-the-art methods. Our code is available at
https://github.com/boilerchun/DT-VAE-codebase

Datasets and Baselines
Semi-Synthetic Data. We demonstrate the superiority of our
methods over traditional statistical approaches like AR model
by simulating the hospital census data. The daily arrivals
a(t) follow the discretized Cox-Ingersoll-Ross (CIR) process
(Cox, Ingersoll Jr, and Ross 2005) with the drift function
based on the day of the week, while daily discharges d(t) are
generated by simulating patient flow. See appendix section F.

COVID-19 County Daily Hospitalization (County-DH).
We collect 2-year COVID-19 county hospitalization data
from CA (CA Covid-19 Data Log 2023), NY (NY COVID-19
Data Log 2023), and PA (PA COVID-19 Data Log 2023), cov-
ering Medical/Surgical units and ICUs with our Week-of-day
Quantile-Min normalization. See section F in the appendix.
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(a) Real (I+E) (b) DT-VAE-GAN (c) DT-VAE (d) T-VAE-GAN (e) T-VAE (f) TimeGAN (g) PSA-GAN

Figure 4: First column provides the visualization for the groups of clusters (test set) in the State-DH dataset, including Increasing
(I) and Early Peak (E) trends. Each of the next columns represents one of the 6 benchmarks. The centroids of each cluster (red)
can represent the general trend for the corresponding time-series data (grey).

DTP Score (the lower the better)

Dataset Trends TimeGAN PSA-GAN T-VAE-GAN DT-VAE DT-VAE-GAN

County-DH
INC 0.4942±0.00001 0.4959±0.00009 0.4164±0.00054 0.8115±0.00055 0.3717±0.00017
FLV 1.085±0.00000 1.3065±0.00033 0.8186±0.000362 0.8501±0.00048 0.7636±0.00008
DEC 0.8640±0.00019 0.9469±0.00012 1.2546±0.00075 0.6259±0.00012 0.3271±0.00003
LTP 0.4954±0.00001 0.6506±0.00120 1.0099±0.000031 0.8759±0.00022 0.5225±0.00002

States-DH
INC 0.3252±0.00124 0.3420±0.00009 0.6570±0.00282 0.8852±0.00217 0.3240±0.00029
ERP 0.8574±0.00011 1.3928±0.00001 0.8067±0.11438 0.7603±0.00173 0.7564±0.00191
DEC 0.4392±0.00066 0.6419±0.00051 0.3359±0.00055 0.3178±0.00002 0.3135±0.00003
LTP 0.7095±0.02287 1.1213±0.00328 0.9031±0.00304 0.9356±0.00015 0.4566±0.00232

Energy INC 0.2286±0.00001 0.5515±0.00001 1.3726±0.00063 0.8860±0.00043 0.3897±0.00059
DEC 0.3780±0.00002 0.6840±0.00002 1.2716±0.01282 0.6679±0.00034 0.2366±0.00068

Traffic INC 0.2153±0.00000 0.4534±0.00017 1.5622±0.00165 0.6945±0.00002 0.2119±0.00000
DEC 0.7286±0.00006 0.9257±0.00023 1.9073±0.00596 1.0044±0.00005 0.3707±0.00003

Stock INC 0.6723 ± 0.01629 0.3246±0.00039 0.3066±0.00396 0.3135±0.00012 0.2601±0.00022
DEC 0.4796 ± 0.01595 0.3361±0.00022 0.3847±0.00213 0.3885±0.00302 0.2860±0.00023

Table 1: Results for MS units in County/States-DH and other benchmarks, with their trends: Increasing (INC), Flat Valley (FLV),
Decreasing (DEC), and Late Peak (LTP). Bold indicates the best performance, underlined shows the next-best performance

COVID-19 States Daily Hospitalization (States-DH).
Similarly, we obtain 2-year state-level hospitalization data
from US Health Department (Covid-19 Data by states 2023).

Solar Energy (Energy). Hourly solar energy collection
data in Alabama State from 137 stations (Lai et al. 2018a).

Traffic Management (Traffic). Hourly occupancy rates
within 963 lanes in San Francisco (Cuturi 2011).

Stock Market (Stock). Daily Google stock data from
2004-2023 (Yahoo Finance stock history 2023). Notably, the
lack of typical inflow/outflow assumptions in this domain
demonstrates the wide applicability of our methods.

Baselines. We compare with Autoregressive (AR) mod-
els and state-of-the-art models (TimeGAN and PSA-GAN
(Yoon, Jarrett, and Van der Schaar 2019; Jeha et al. 2021)).
Temporal VAE (T-VAE) and Temporal VAE-GAN (T-VAE-
GAN) denote the same structure as DT-methods but directly
learn from the data. See sections M and K in the appendix.

Evaluation Metrics

Accurate temporal patterns are crucial for downstream
tasks (Shi et al. 2022; Park, Yun, and Ahn 2009; Dalam-
agkidis et al. 2007). Our evaluation metrics follow two prin-
ciples: (i) assessing the extent to which the generative model
preserves patterns in real data, (ii) evaluating the performance
of using generated data in challenging downstream tasks.

Evaluation for Semi-Synthetic Data. For purposes (i)
and (ii), we employ Direct Comparison to assess since we
know the “ground-truth” temporal trend from the model pa-
rameters. We mainly compare our methods with traditional
statistical methods like auto-regressive models.

Evaluation for Real Dataset. Without ground truth, we
design new evaluation frameworks for purposes (i) and (ii).

Diverse Trend Preservation (DTP) evaluation. We use
the K-means Dynamic Time Warping Barycenter Averaging
(DBA) algorithm to identify distinct trend patterns in time-
series datasets (Tavenard et al. 2020; Petitjean, Ketterlin, and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13624



Long-term Prediction Score (the lower the better)

Dataset Trends Original TimeGAN PSA-GAN T-VAE-GAN DT-VAE DT-VAE-GAN

County-DH INC 0.2401±0.0951 0.9848±0.1055 1.4362±0.0822 6.2268±0.1393 3.1878±1.1980 0.9396±0.5801
DEC 0.0959±0.0144 1.8062±0.1364 0.7098±0.0665 2.5431±0.1062 0.5983±0.0546 0.6804±0.2742

State-DH INC 0.1252±0.0544 0.5258±0.0175 0.4873±0.0746 2.2192±0.2093 0.3223±0.0412 0.1666±0.0196
DEC 0.0186±0.0129 0.2020±0.0293 0.1639±0.0100 0.7234±0.1095 0.1642±0.0453 0.1091±0.0904

Energy INC 0.0159±0.0017 0.0196±0.0015 0.0612±0.0032 0.9028±0.4065 0.0646±0.0089 0.0152±0.0005
DEC 0.0034±0.0008 0.0059±0.0016 0.0357±0.0174 0.2949±0.1229 0.0311±0.0062 0.0056±0.0015

Traffic INC 0.0055±0.0002 0.0097±0.0022 0.0146±0.0023 0.0391±0.0056 0.0134±0.0010 0.0080±0.0003
DEC 0.0009±0.0000 0.0056±0.0013 0.0058±0.0015 0.0276±0.0073 0.0027±0.0007 0.0010±0.0001

Stock INC 0.2650±0.0179 0.3263±0.0042 0.3050±0.0111 1.1663±0.0168 0.2706±0.0084 0.2665±0.0081
DEC 0.2161±0.0114 0.3446±0.0154 0.4333±0.0486 1.9552±0.0956 0.3116±0.0160 0.2594±0.0307

Table 2: Results on long-term prediction task using first 40 time steps to predict next 9 time steps. MSE and corresponding
standard deviations are reported. Bold indicates the best performance, underlined indicates the next-best performance.
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Figure 5: t-SNE for original data (red) and generated data
(blue) in State DH’s decreasing trends with DT-VAE-GAN,
DT-VAE, T-VAE-GAN, T-VAE, TimeGAN, PSA-GAN.

Gançarski 2011). Using the Dynamic Time Warping (DTW)
distance, the DBA clusters similar patterns (Müller 2007).
Distinct trends are identified in each dataset; see section H in
the appendix. From the identified clusters, we construct train-
ing and test data by sampling sequences from combinations
of these distinct clusters. This introduces an input containing
multiple patterns. We then reapply the K-means DBA on the
generated data, examining its ability to represent the orig-
inal input patterns. Our Diverse Trend Preservation (DTP)
visualization portrays the trends detected in the hold-out test
dataset and the generated dataset. For a quantitative assess-
ment, we use the DTW distance to determine the DTP score,
measuring the resemblance between cluster centroids from
the test dataset and those in the generated dataset. Our DTP
evaluation, unlike PSA-GAN’s FID score and TimeGAN’s
discriminative score, provides visual insights into patterns in
generated data and operates independently from pre-trained
models. See section I in the appendix.

Evaluations on downstream tasks. For the “Long-term
Prediction” task, we use historical data to forecast future
values, which is a prevalent task in practice. We employ the
“Train on Synthetic, Test on Real” (TSTR) strategy (Esteban,
Hyland, and Rätsch 2017), training LSTM on generated data
and testing on a hold-out set. The post-hoc model predicts
future segments based on initial chunks, with performance
measured by Mean Square Error (MSE) on the hold-out set.

Results Comparison
Direct comparison. Figure 6 shows the mean and confidence
interval of generated samples. We can observe the superior
performance of our methods in capturing the temporal trend.

DTP Visualization and Score. Figure 4 shows our meth-
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Figure 6: Synthetic data’s mean from days 49-70 (test period)
is in red. Generated time series mean is in dark green, with
the 0.95 confidence interval in light green.

ods outperform other benchmarks in preserving the original
trends. The generated data closely matches the increasing
trend (first row) observed in the real data. This observation
is confirmed by the DTP scores in Table 1. Our methods
demonstrate up to a 30% ↓ improvement, averaging at 12% ↓
decrease. Additionally, our methods tend to perform equally
well for different clusters. See appendix table 3 and section I.

Prediction Scores. We use different periods of time-series
data to predict subsequent periods: the first 40 time steps pre-
dict the next 9 time steps in table 2, the first 49 time steps
predict the next 21 time steps in table 4 in the appendix,
and the first 56 predict the next 35 time steps in table 5 in
the appendix. As shown in table 2, our methods consistently
outperform benchmarks, achieving on average a 30% ↓ im-
provement and up to 65% ↓. More insights are provided in
the table 4, table 5, and the section J in the appendix. Note
that we reduce the number of clusters mainly to increase the
number of training/testing samples for the prediction task.

t-SNE visualization. Figure 5 demonstrates our methods
align better with the original data compared to benchmarks.
TimeGAN’s narrow t-SNE pattern indicates limited trend di-
versity, aligning with DTP results. See section N in appendix.
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