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Abstract

In this work, we rigorously investigate the robustness of
graph neural fractional-order differential equation (FDE) mod-
els. This framework extends beyond traditional graph neural
(integer-order) ordinary differential equation (ODE) models
by implementing the time-fractional Caputo derivative. Utiliz-
ing fractional calculus allows our model to consider long-term
memory during the feature updating process, diverging from
the memoryless Markovian updates seen in traditional graph
neural ODE models. The superiority of graph neural FDE
models over graph neural ODE models has been established in
environments free from attacks or perturbations. While tradi-
tional graph neural ODE models have been verified to possess
a degree of stability and resilience in the presence of adver-
sarial attacks in existing literature, the robustness of graph
neural FDE models, especially under adversarial conditions,
remains largely unexplored. This paper undertakes a detailed
assessment of the robustness of graph neural FDE models.
We establish a theoretical foundation outlining the robustness
characteristics of graph neural FDE models, highlighting that
they maintain more stringent output perturbation bounds in
the face of input and graph topology disturbances, compared
to their integer-order counterparts. Our empirical evaluations
further confirm the enhanced robustness of graph neural FDE
models, highlighting their potential in adversarially robust
applications.

1 Introduction
Graph Neural Networks (GNNs) (Kipf and Welling 2017;
Veličković et al. 2018; Ji et al. 2023; Lee, Ji, and Tay 2022;
She et al. 2023) have emerged as an influential tool capable of
extracting meaningful representations from intricate datasets,
such as social networks (Huang et al. 2021) and molecular
structures (Guo et al. 2023). Despite their impressive ca-
pability, GNNs have been found susceptible to adversarial
attacks (Dai et al. 2018; Ma, Ding, and Mei 2020; Zügner,
Akbarnejad, and Günnemann 2018), with modifications or in-
jections into the graph often causing significant degradation
in performance. In real-world scenarios, it is common for
data to be perturbed during the training or testing phases (Dai
et al. 2023; Wang et al. 2019), highlighting the importance of
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studying the robustness of GNNs. For instance, in financial
systems, fraudulent activities may introduce slight perturba-
tions into transactional data, making it paramount for the
underlying models to remain robust against these adversarial
changes. Similarly, in social networks, misinformation or the
presence of bots can skew the data, which can subsequently
impact the insights drawn from it. Therefore, the robustness
of GNNs is not just a theoretical concern but a practical ne-
cessity. Several defensive strategies have been established to
counteract the damaging implications of adversarial attacks
on graph data. Approaches such as GARNET (Deng et al.
2022), GNN-Guard (Zhang and Zitnik 2020), RGCN (Zhu
et al. 2019), and Pro-GNN (Jin et al. 2020) are grounded
in preprocessing techniques that aim to remove adversarial
alterations to the structure before GNN training commences.
Nonetheless, these methods often necessitate the exploration
of graph structure properties, leading to higher computational
costs. Furthermore, these strategies are more suitably tailored
to combat poisoning attacks.

Recent advances have witnessed a growing use of dy-
namical system theory in designing and understanding
GNNs. Models like CGNN (Xhonneux, Qu, and Tang 2020),
GRAND (Chamberlain et al. 2021b), GRAND++ (Thorpe
et al. 2021), GraphCON (Rusch et al. 2022b), HANG (Zhao
et al. 2023a) and CDE (Zhao et al. 2023b) employ ordinary
differential equations (ODEs) to offer a dynamical system
perspective on graph node feature evolution. Typically, these
dynamics can be described by:

dX(t)

dt
= F(W,X(t)). (1)

In this formulation, X(t) represents the evolving node fea-
tures with X(0) as the initial input node features, while W is
the graph’s adjacency matrix. The function, F , is specifically
tailored for graph dynamics. As a case in point, GRAND
(Chamberlain et al. 2021b) deploys an attention-based aggre-
gation mechanism akin to heat diffusion on the graph. Moti-
vated by the Beltrami diffusion equation (Sochen, Kimmel,
and Malladi 1998), the paper (Song et al. 2022) introduces a
model based on the Beltrami flow (abbreviated as GraphBel)
and designed for enhanced robustness, particularly in the face
of topological perturbations. In the study (Zhao et al. 2023a),
graph feature updates are conceptualized as a Hamiltonian
flow, endowed with Lyapunov stability, to effectively counter
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adversarial perturbations. GraphCON (Rusch et al. 2022b)
presents a approach by introducing a second-order graph cou-
pled oscillator for modeling feature updates. This model can
be decomposed into two first-order equations, aligning with
the principle that higher integer-order ODEs can be expressed
as a system of first-order ODEs through auxiliary variables,
effectively encapsulated in (1).

Recent studies have ventured into the intersection of GNNs
and fractional calculus (Diethelm and Ford 2010; Kang
et al. 2023c). One prominent example is the FRactional-
Order graph Neural Dynamical network (FROND) frame-
work (Kang et al. 2023a). Distinct from conventional graph
neural ODE models, FROND leverages fractional-order dif-
ferential equations (FDEs), with dynamics represented as:

Dβ
t X(t) = F(W,X(t)), β > 0. (2)

The function F(W,X(t)) maintains its form as in (1). Typ-
ically, we set β ∈ (0, 1]. The Caputo fractional derivative,
denoted by Dβ

t , infuses memory into the temporal dynamics
(see Section 3.3 for more details). For β = 1, the equation
reverts to the familiar first-order dynamics as in (1). The dis-
tinction lies in the fact that the conventional integer-order
derivative measures the function’s instantaneous change rate,
concentrating on the proximate vicinity of the point. In con-
trast, the fractional-order derivative is influenced by the en-
tire historical trajectory of the function, which substantially
diverges from the localized impact found in integer-order
derivatives.

Incorporating a fractional derivative provides GNNs an
avenue to mitigate the prevalent oversmoothing problems
by enabling slow algebraic convergence (Kang et al. 2023a),
different from the standard fast exponential convergence. Fur-
ther, with the integration of fractional dynamics, FROND can
effortlessly merge with existing graph neural ODE frame-
works, potentially increasing their effectiveness, especially
with diverse β values, without incorporating any additional
training parameters to the underlying graph neural ODE mod-
els. Critically, β acts as a proxy for the extent of memory
in the feature dynamics: a value of β = 1 corresponds to
memoryless Markovian dynamics, while β < 1 denotes non-
Markovian dynamics with memory. This nuance is further
visualized in Fig. 1, where a β < 1 signifies nontrivial dense
connections across model discretization timestamps.

Though FROND showcases proficiency in decoding com-
plex graph data patterns, its robustness against adversarial
perturbations remains an area of exploration. By broadening
the order of time derivatives from integers to real numbers,
fractional calculus can encapsulate more intricate dynamics
and data relationships, such as long-range memory effects,
where the system’s current state is influenced by its compre-
hensive history, not merely its recent states. This capability
augments a GNN’s ability to more accurately represent the
node features across layers, rendering them less susceptible
to noise and perturbations. In this work, we delve deeply
into the ramifications of the fractional order parameter β on
the robustness attributes of FROND. Our analysis suggests
a monotonic relationship between the model’s perturbation
bounds and the parameter β, with smaller β values indicating
augmented robustness.

time discretization

X(0)

X(t1)

X(t2)

X(tn)

X(tn−1)

Figure 1: Model discretization in FROND. Unlike the Euler
discretization in graph neural ODE models, FROND incor-
porates connections to historical times, introducing memory
effects. Specifically, the dark blue connections observed in
FROND at β < 1 are absent in ODEs (corresponding to
β = 1). The weight of these skip connections correlates with
bj,k+1(β) as detailed in (12).

Our contributions are summarized as follows:
• We rigorously investigate the robustness characteristics of

graph neural FDE models, i.e., FROND models. We show
that FROND models exhibit tighter output perturbation
bounds compared to their integer-order counterparts in
the presence of input and topology perturbations.

• Through extensive experimental evaluations, including
graph modifications and injection attacks, we empirically
demonstrate the superior robustness of FROND models
in contrast to conventional graph neural ODE models.

2 Related Work
2.1 Graph Neural ODE Models
The interplay between ODEs and neural networks has re-
cently shed light on the potential of continuous dynamical
systems in deep learning frameworks. This concept is ini-
tially explored in the work of (Weinan 2017). A landmark
study by (Chen et al. 2018b) further cements this notion,
presenting neural ODEs equipped with open-source solvers.
This methodology allows for a more precise alignment of
the inputs and outputs of neural networks with established
physical principles, thereby increasing the networks’ inter-
pretability. This field continues to evolve, with notable ad-
vancements in enhancing neural network efficiency (Dupont,
Doucet, and Teh 2019), bolstering robustness (Yan et al. 2018;
Kang et al. 2021), and stabilizing gradient functions (Haber
and Ruthotto 2017). In parallel, (Avelar et al. 2019; Poli
et al. 2021) demonstrate the utilization of continuous resid-
ual GNN layers, leveraging neural ODE solvers to optimize
output. Recently, GraphCON (Rusch et al. 2022b) has im-
plemented the coupled oscillator model, which effectively
maintains the Dirichlet energy of graphs over time, address-
ing the prevalent issue of over-smoothing in these networks.
The diffusion theory, as conceptualized in (Chamberlain et al.
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2021b), likens information propagation to the diffusion pro-
cess of substances. The Beltrami diffusion models, as utilized
in (Chamberlain et al. 2021a; Song et al. 2022), have been piv-
otal in improving the rewiring and robustness of graphs. Con-
currently, ACMP (Wang et al. 2022) draws inspiration from
particle reaction-diffusion processes, accounting for both re-
pulsive and attractive interactions among particles. The graph
CDE model, as outlined in (Zhao et al. 2023b), addresses het-
erophilic graph challenges, inspired by convection-diffusion
processes. Similarly, GREAD (Choi et al. 2023) introduces
an approach based on reaction-diffusion equations, tailored to
effectively manage heterophilic datasets. GRAND++ (Thorpe
et al. 2021) employs heat diffusion with sources for training
models more efficiently, especially when there is a scarcity
of labeled data. Further enriching this field, recent research
(Zhao et al. 2023a; Kang et al. 2023b) adopts the Hamiltonian
mechanism for updating node features, thereby augmenting
the networks’ adaptability to graph structures and enhancing
their robustness.

2.2 Adversarial Attacks and Defenses on Graphs

A plethora of research has consistently underscored the vul-
nerability of graph deep learning models to adversarial per-
turbations. Essentially, even inconspicuous alterations to the
input data can misdirect a graph neural network into pro-
ducing fallacious predictions. Adversarial attacks on GNNs
typically fall into two categories based on the method of per-
turbation: Graph Modification Attacks (GMA) and Graph
Injection Attacks (GIA). GMA involves manipulating the
topology of a graph, primarily by adding or removing edges
(Chen et al. 2018a; Waniek et al. 2018; Du et al. 2018; Ma
et al. 2021; Geisler et al. 2021). This category also encom-
passes perturbations to node features (Zügner, Akbarnejad,
and Günnemann 2018; Zügner and Günnemann 2019; Ma
et al. 2021; Ma, Deng, and Mei 2022; Finkelshtein et al.
2022). In contrast, Graph Injection Attacks (GIA) permit
adversaries to incorporate malicious nodes into the original
graph (Wang et al. 2020; Zou et al. 2021; Sun et al. 2020;
Hussain et al. 2022; Chen et al. 2022). GIA is considered a
stronger form of attack on graph data (Chen et al. 2022) as
it introduces both structural and feature perturbations to the
graph.

The defensive strategies employed in GNNs can be broadly
categorized into pre-processing methods and the design of
robust architectures. Methods such as GNN-GUARD (Zhang
and Zitnik 2020), Pro-GNN (Jin et al. 2020),GARNET(Deng
et al. 2022) and GCN-SVD (Entezari et al. 2020) focus on
cleansing or pruning the graph, with the aim of maintaining
the integrity of the original adjacency matrix, thereby mitigat-
ing perturbations. On another front, methods like RGCN (Zhu
et al. 2019) and Soft-Median-GCN (Geisler et al. 2021) are
tailored to enhance the inherent architecture of GNNs, mak-
ing them more resilient to feature perturbations. Distinctly,
our approach diverges from these conventional defense mech-
anisms. Instead of proposing an entirely new defensive tech-
nique, our focus is on bolstering the robustness of existing
graph neural ODE models by seamlessly integrating the prin-
ciples of FDEs.

3 Preliminaries
3.1 Notation
Let us consider a graph G = (V ,W), in which V =
{1, . . . , N} represents a set of N nodes. The N ×N matrix
W := (Wij) has elements Wij indicating the original edge
weight between the i-th and j-th nodes with Wij = Wji.
The node features at any given time t can be denoted by
X(t) ∈ R|V|×N , where N corresponds to the dimension of
the node feature. In this matrix, the feature vector for the i-th
node in V at time t can be represented as the i-th row of X(t),
indicated by x⊺i (t).

3.2 Graph Neural ODE Models
Existing research encompasses various continuous dynamics-
informed GNNs, with unique configurations of F in (1) tai-
lored for graph dynamics. This section provides a succinct
overview of several graph neural ODE models that we will
employ in this study. For an extensive review of these and
related GNNs, readers are referred to a recent comprehensive
survey (Han et al. 2023).

GRAND (Chamberlain et al. 2021b) incorporates the fol-
lowing dynamical system for graph learning:

dX(t)

dt
= div(D(X(t), t)⊙∇X(t))

= (A(X(t))− I)X(t) (3)
The initial condition X(0) is provided by the graph input
features. Here, ⊙ represents the element-wise product, and
D is a diagonal matrix with elements diag(a(xi(t),xj(t))).
The function a(·) serves as a measure of similarity for node
pairs (i, j) linked by an edge, that is, when Wij ̸= 0. As
such, the diffusion equation can be reframed as (3), where
A(X(t)) = (a (xi(t),xj(t))) constitutes a learnable atten-
tion matrix to depict the graph structure. I is the identity
matrix. One way to calculate a(xi,xj) is based on the Trans-
former attention (Vaswani et al. 2017):

a(xi,xj) = softmax

(
(WKxi)

⊤WQxj

dk

)
(4)

where WK and WQ are learned matrices, and dk is a hyper-
parameter determining the dimension of WK .

By extending the concepts of Beltrami flow (Sochen, Kim-
mel, and Malladi 1998; Song et al. 2022), a stable graph
neural flow GraphBel is formulated as:
dX(t)

dt
= (AS(X(t))⊙BS(X(t))−Ψ(X(t)))X(t) (5)

where ⊙ represents element-wise multiplication. Both AS(·)
and BS(·) serve distinct purposes: the former acts as a learn-
able attention function, while the latter operates as a nor-
malized vector map. Ψ(X(t)) is a diagonal matrix where
Ψ(xi,xi) =

∑
xj
(AS ⊙BS)(xi,xj).

Using a graph coupled dynamical system, GraphCON
(Rusch et al. 2022a) is given by

dY(t)

dt
= σ(Fθ(X(t), t))− γX(t)− αY(t)

dX(t)

dt
= Y(t)

(6)
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where Fθ(·) is a learnable 1-neighborhood coupling function,
σ denotes an activation function, γ and α are adjustable
parameters.
Remark 1. By leveraging the numerical solvers introduced
in (Chen et al. 2018b), one can efficiently solve (3), (5), and
(6) where the initial X(0) represents the input features. This
yields the terminal node embeddings, denoted as X(T ), at
time T . Subsequently, X(T ) can be utilized for downstream
tasks such as node classification or link prediction.

3.3 Fractional-Order Differential Equation
Within the FROND framework, the fractional time derivative
is typically characterized using the Caputo derivative (Caputo
1967), a prevalent choice for modeling real-world phenomena
(Diethelm and Ford 2010). It is expressed as:

Dβ
t f(t) =

1

Γ(n− β)

∫ t

0

(t− τ)n−β−1 dnf

dτn
dτ, (7)

where β is the fractional order, n is the smallest integer
greater than β, Γ is the gamma function, f is a scalar func-
tion defined over some interval that includes [0, t], and dnf

dτn

is the standard n-th order derivative. A distinguishing trait of
the Caputo derivative is its capability to incorporate memory
effects. This is underscored by observing that the fractional
derivative at time t in (7) aggregates historical states span-
ning the interval 0 ≤ τ ≤ t. For the special case where
β = 1, the definition collapses to the standard first-order
derivative as Dβ

t f = df
dτ . For a vector-valued function, the

fractional derivative is defined component-wise for each di-
mension, similar to the integer-order derivative. Thus, while
our discussion centers on scalar functions in Sections 3.3
and 3.4, its extension to vector-valued functions is straight-
forward. A more detailed, self-contained exposition of the
Caputo derivative can be found in the supplementary mate-
rial.

A crucial concept in fractional calculus and its applica-
tions is the Mittag-Leffler function Eβ(z) (Diethelm and
Ford 2010). Recognized as a natural extension of the ex-
ponential function within fractional domains, it enables the
modeling of complex phenomena with increased sophistica-
tion. The Mittag-Leffler function is a crucial component in
the solutions to numerous fractional differential equations,
thus playing an essential role in the analysis and applica-
tion of such systems. Specifically, as per (Diethelm and Ford
2010)[Theorem 4.3], given y(t) := En

(
λtβ

)
, x ≥ 0, then

Dβ
t y(t) = λy(t). (8)

We present the formal definition of the Mittag-Leffler func-
tion below:
Definition 1 (Mittag-Leffler function). Let β > 0. The func-
tion Eβ defined by

Eβ(z) :=
∞∑
j=0

zj

Γ(jβ + 1)
, (9)

whenever the series converges, is called the Mittag-Leffler
function of order β.

The extension of the Mittag-Leffler function from the expo-
nential function is apparent when considering the case β = 1,
which simplifies to the well-known exponential function:

E1(z) =
∞∑
j=0

zj

Γ(j + 1)
=

∞∑
j=0

zj

j!
= exp(z). (10)

It is also well-recognized that exp(z) acts as the eigenfunc-
tion for ODEs. Specifically, exp(λt) solves (8) for β = 1,
assuming appropriate initial conditions are met.

3.4 Numerical Solvers for FDEs
In the context of discrete numerical solvers, FDEs can
be solved analogously to ODEs as illustrated in (Chen
et al. 2018b). Particularly noteworthy is the fractional
Adams–Bashforth–Moulton method solver, which shares sim-
ilarities with the Adams–Bashforth–Moulton technique for
ODEs, as expounded in (Diethelm, Ford, and Freed 2004).

For clarity, consider an FDE characterized by β ∈ (0, 1]:

Dβ
t y(t) = f(t, y(t)), y(0) = y0. (11)

Here, f(t, y(t)) delineates the dynamics of the system, and
y0 specifies the initial condition at t = 0.

Delving into numerical approximations and drawing upon
(Diethelm, Ford, and Freed 2004), the basic predictor solu-
tion yPk+1 (where P signifies the concept of the "Predictor")
derives from the fractional Adams–Bashforth method as:

yP (tk+1) = y0 +
1

Γ(β)

k∑
j=0

bj,k+1(β)f(tj , yj). (12)

In this context, k stands for the current iteration or time step
in the discretization sequence. Further, with h denoting the
step size or time interval between subsequent approxima-
tions, tj is given by tj = hj. The coefficients bj,k+1(β),
expressed as functions of β, are elaborated in the supple-
mentary material. The reader is directed to Fig. 1, where
the role of bj,k+1(β) as a weighted skip connection in time
discretization, underscoring memory effects, is evident.

4 Methodology
In this section, we present the theoretical analysis of the
output boundary of (13) under specific perturbation scenar-
ios. By leveraging the characteristics of the Mittag-Leffler
function, we detail the response of the FROND, noting that
it undergoes smaller output perturbations compared to the
graph neural ODE framework when exposed to the same
disturbances. We furnish three pivotal theorems underscoring
the inherent resilience of the FROND paradigm:
• Theorem 1 (Diethelm and Ford 2010) establishes the out-

put perturbation bounds of the FDEs under small per-
turbations in the initial conditions, which, in our case,
correspond to input feature changes of FROND models.

• Theorem 2 (Diethelm and Ford 2010) extends the discus-
sion to include perturbations in the function that governs
the system’s dynamics. In the context of graph learning,
such perturbations include the changes in the topology of
the graph, which can occur due to the addition, deletion,
or modification of edges.
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• Finally, Theorem 3 provides important insights into how
the choice of the fractional order β can influence the sys-
tem’s robustness. Our analysis suggests a monotonic rela-
tionship between the model’s perturbation bounds and the
parameter β, with smaller β values indicating augmented
robustness.

Together, these results provide a strong theoretical basis for
the robustness of FROND, setting the stage for its deployment
in various practical applications.

4.1 FROND: Graph Neural FDE Framework
Building upon the foundation of FDEs, recall that FROND
incorporates the Caputo fractional-order time derivative into
the model for feature evolution:

Dβ
t X(t) = F(W,X(t)), X(0) = X0, 0 < β ≤ 1. (13)

In equation (13), Dβ
t X(t) represents the fractional deriva-

tive of the state X(t) with respect to feature evolution time
t, where β is a real number in the interval (0, 1]. This frac-
tional derivative introduces memory effects, which enrich the
capacity of the model to interpret complex patterns in data.
The term F(W,X(t)) denotes the dynamic function mod-
eling the interactions between nodes given graph topology
W. With the system initialized from input node features as
X(0) = X0, the model’s output is X(T ) at a specified time
T .

One intrinsic characteristic of FROND is the long-memory
property from fractional derivative. This property encapsu-
lates the system’s ability to “remember” its historical states.
This inherent memory effect contributes significantly to the
robustness of the system, particularly when faced with pertur-
bations. When the system encounters disturbances or noise,
the extensive memory of FROND serves as a protective buffer.
It mitigates the immediate effects of these disruptions by inte-
grating the system’s past states into its response, rather than
amplifying the disturbances.

4.2 Robustness of FROND under Perturbation
In this subsection, we delve into a theoretical analysis of
the model output perturbations. We begin by highlighting
two central theorems from (Diethelm and Ford 2010), which
provide bounds on output perturbations, grounded in the
properties of the Mittag-Leffler function. Following this, we
analyze the bound outlined in Theorem 3, shedding light on
the notion that a smaller β contributes to enhanced robustness
of the model, particularly when faced with perturbations in
input node features and graph topology.

Theorem 1. (Diethelm and Ford 2010, Theorem 6.20) Let
X(t) be the solution of the initial value problem (13), and let
X̃(t) be the solution of the initial value problem

Dβ
t X̃(t) = F(W, X̃(t)),

X̃(0) = X̃0,
(14)

where ε := ∥X0 − X̃0∥. Then, if ε is sufficiently small, there
exists some h > 0 such that both the functions X and X̃ are

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6
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12

E
(L
T
)

L=0.1
L=0.2
L=0.3
L=0.4
L=0.5

Figure 2: Plot of the Mittag-Leffler function Eβ(LT
β)

against β with T = 10. Distinctively, for varying L, it dis-
plays monotonic increase over interval [ϵ, 1].

defined on [0, h], and

sup
0≤t≤h

∥X(t)− X̃(t)∥ = c1εEβ(Lh
β) (15)

where L is the Lipschitz constant of F and c1 is a constant.
Remark 2. In our FROND framework, Theorem 1 provides
an upper bound for the perturbation in system trajectory. This
encompasses the perturbation of the FROND output X(T )
at time T if T < h, in situations of slight perturbations to
the input features, specifically when the system’s initial input
features shift to X̃0.
Theorem 2. (Diethelm and Ford 2010, Theorem 6.21) Let
X(t) be the solution of the initial value problem (13), and let
X̃(t) be the solution of the initial value problem

Dβ
t X̃(t) = F̃(W̃,X(t)),

X̃(0) = X0

(16)

Moreover, let ε := supX∈A ∥F(W,X)− F̃(W̃,X)∥, with
A being an appropriate compact set where solutions for both
systems exist. Then, if ε is sufficiently small, there exists some
h > 0 such that both the functions X and X̃ are defined on
[0, h], and

sup
0≤t≤h

∥X(t)− X̃(t)∥ = c2εEβ(Lh
β), (17)

where L is the Lipschitz constant of F and c2 is a constant.
Remark 3. Within the framework of FROND, the discussion
relates to how the model’s output reacts to perturbations in
functional elements (such as learned parameters in F) and
changes in graph structure W. In our paper, we consider
topological changes in the graph structure, such as edge
additions, deletions, or modifications. Further investigation
into attacks related to functional perturbations that directly
alter the parameters of the neural network F is earmarked
for future work.

Theorem 3. Let f(β) = Eβ(LT
β). For any ϵ > 0, if T is

sufficiently large and L < 1, f(β) is monotonically increas-
ing on the interval [ϵ, 1].
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Dataset Ptb(%) F-GRAND GRAND F-GraphBel GraphBel F-GraphCON GraphCON GAT GCN

Cora

0 81.25±0.89 82.24±1.82 79.05±0.73 80.28±0.87 80.91±0.54 83.10±0.79 83.97±0.65 83.50±0.44
5 78.84±0.57 78.97±0.49 76.10±0.74 77.70±0.66 77.80±0.44 77.90±1.14 80.44±0.74 76.55±0.79
10 76.61±0.68 75.02±1.25 74.03±0.47 74.30±0.88 74.63±1.42 72.53±1.08 70.39±1.28 70.39±1.28
15 73.42±0.97 71.43±1.09 73.01±0.75 72.14±0.69 73.01±0.78 69.83±0.68 65.10±0.71 65.10±0.71
20 69.27±2.10 60.53±1.99 69.35±1.23 65.41±0.99 69.23±1.35 57.28±1.62 59.56±2.72 59.56±2.72
25 64.47±1.83 55.26±2.14 67.63±0.93 62.31±1.13 65.27±1.33 53.17±1.52 47.53±1.96 47.53±1.96

Citeseer

0 71.37±1.34 71.50±1.10 68.90±1.15 69.46±1.15 71.49±0.71 70.48±1.18 73.26±0.83 71.96±0.55
5 71.47±0.96 71.04±1.15 68.36±0.93 68.45±1.02 70.77±1.15 69.75±1.63 72.89±0.83 70.88±0.62
10 69.76±0.71 68.88±0.60 67.22±1.52 66.72±1.31 69.54±0.82 67.40±1.78 70.63±0.48 67.55±0.89
15 67.94±1.42 66.35±1.37 63.56±1.95 63.63±1.67 67.37±0.87 65.78±1.97 69.02±1.09 64.52±1.11
20 64.18±0.93 58.71±1.42 63.38±0.96 58.90±0.84 66.52±0.68 56.79±1.46 61.04±1.52 62.03±3.49
25 65.46±1.12 60.15±1.37 64.60±0.48 61.24±1.28 66.72±1.12 57.30±1.38 61.85±1.12 56.94±2.09

Pubmed

0 87.28±0.23 85.06±0.26 86.34±0.15 84.02±0.26 87.12±0.21 84.65±0.13 83.73±0.40 87.19±0.09
5 87.05±0.17 84.11±0.30 86.17±0.12 83.91±0.26 86.72±0.23 83.06±0.22 78.00±0.44 83.09±0.13
10 86.74±0.23 84.24±0.18 86.01±0.18 84.62±0.26 86.64±0.20 82.25±0.12 74.93±0.38 81.21±0.09
15 86.51±0.14 83.74±0.34 85.92±0.13 84.83±0.20 86.40±0.14 81.26±0.33 71.13±0.51 78.66±0.12
20 86.50±0.12 83.58±0.20 85.73±0.18 84.89±0.45 86.32±0.12 81.58±0.41 68.21±0.96 77.35±0.19
25 86.47±0.15 83.66±0.25 86.11±0.30 85.07±0.15 86.15±0.26 80.75±0.32 65.41±0.77 75.50±0.17

Table 1: Node classification accuracy (%) under modification, poisoning, non-targeted attack (Metattack) in transductive learning.
The best and the second-best results for each criterion are highlighted in bold and underlined, respectively.

Proof. See the supplementary material for the proof.

Remark 4. In conjunction with Theorems 1 and 2, Theorem 3
shows that the fractional order β of the FROND plays a cru-
cial role in the model’s robustness. With an appropriately
chosen β, the model can reduce the discrepancy between the
clean and perturbed states, thereby improving the robustness.
Particularly, a smaller β is associated with a smaller dis-
crepancy, signifying enhanced robustness of FROND against
perturbations when β < 1 compared to graph neural ODE
models with β = 1. Please refer to Fig. 3 for an illustration.
The monotonicity suggests that a larger β results in a larger
perturbation bound for the FROND solution at time T , thus
expecting a larger perturbed output at the same time under
identical input/graph topology perturbations.

4.3 Algorithms
Our proposed approach enhances the robustness of integer-
order graph neural ODE models by introducing fractional-
order derivatives into the model framework. Specifically, we
extend three prominent graph neural ODE models, GRAND,
GraphBel, and GraphCON through this method.

We upgrade the GRAND framework with a fractional-
order derivative, resulting in the Fractional-GRAND (F-
GRAND) model. The F-GRAND formulation is as follows:

Dβ
t X(t) = (A(X(t))− I)X(t). (18)

Following a similar approach, the GraphBel model is mod-
ified to incorporate a fractional-order derivative, resulting in
the Fractional-GraphBel (F-GraphBel) model. This model is
expressed as:

Dβ
t X(t) = (AS(X(t))⊙BS(X(t))−Ψ(X(t)))X(t).

(19)

Additionally, we introduce the Fractional-GraphCON (F-
GraphCON) model, described by the following equations:

Dβ
t Y(t) = σ(Fθ(X(t), t))− γX(t)− αY(t),

Dβ
t X(t) = Y(t).

(20)

The order β of these fractional derivatives serves as a hyper-
parameter, introducing extra flexibility to these models. This
flexibility allows for adaptation to specific data characteris-
tics, enhancing the robustness of the learning process.

5 Experiments
To empirically validate the robustness of FROND, we carry
out a series of experiments where real-world graphs are sub-
jected to various attack methods. The objective of these ex-
periments is to showcase that FROND models, even in the
face of such adversarial perturbations, maintain stable perfor-
mance in downstream tasks, without the need for any addi-
tional preprocessing steps to handle the perturbed data. For a
comprehensive and fair evaluation, we perform two distinct
evaluations: a poisoning Graph Modification Attack (GMA),
where training occurs directly on the perturbed graph; and
an evasion attack for Graph Injection Attack (GIA), taking
place during the inference phase.

We emphasize that the primary objective of this paper is
to investigate the robustness imparted by FROND and to
establish that fractional methods exhibit superior robustness
compared to GNNs governed by integer-order dynamical
systems. Accordingly, our comparisons focus primarily on
standard integer-order graph neural ODE models, along with
several specific non-ODE-based methods, including GCN
(Kipf and Welling 2017), GAT (Vaswani et al. 2017), and
GraphSAGE (Hamilton, Ying, and Leskovec 2017). It is
worth noting that FROND models can be further integrated
with other defense techniques, including adversarial training
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Dataset Attack F-GRAND GRAND F-GraphBel GraphBel F-GraphCON GraphCON GAT GCN

Cora

clean 86.44±0.31 85.87±0.59 77.55±0.79 79.07±0.46 82.42±0.89 83.10±0.63 86.37±0.56 85.09±0.26
PGD 56.38±6.39 36.80±1.86 69.50±2.83 63.93±3.88 56.70±4.36 48.38±2.44 38.82±2.48 40.11±0.70

TDGIA 54.88±6.72 40.0±3.52 56.94±1.82 53.22±2.95 54.24±2.54 46.43±2.82 32.76±3.30 40.43±1.76
MetaGIA 53.36±5.31 37.89±1.56 71.98±1.32 66.74±3.23 63.97±2.09 52.21±2.71 42.23±4.19 42.52±0.90

Citeseer

clean 71.91±0.43 72.52±0.73 71.09±0.30 74.75±0.28 73.50±0.43 72.07±0.93 73.10±0.39 74.48±0.66
PGD 61.26±1.23 42.20±2.77 60.78±2.37 47.73±5.87 54.47±1.0 37.71±7.0 35.12±12.44 30.49±0.80

TDGIA 50.74±1.20 30.02±1.33 65.52±0.55 47.88±1.83 54.71±1.69 30.93±3.00 28.64±4.05 28.88±2.07
MetaGIA 55.50±1.72 30.42±1.87 60.85±1.88 39.13±1.19 48.82±3.27 29.09±2.01 30.17±2.71 32.74±1.00

Computers

clean 92.61±0.20 92.53±0.34 88.02±0.24 88.12±0.33 91.86±0.38 91.30±0.20 91.42±0.22 91.83±0.25
PGD 89.90±1.33 70.45±11.03 87.60±0.33 87.38±0.37 91.36±0.74 81.28±7.99 38.82±5.53 33.43±0.21

TDGIA 84.71±1.52 65.45±14.30 87.81±0.28 87.67±0.40 90.45±0.71 68.70±15.67 42.04±9.01 39.83±3.15
MetaGIA 87.50±3.17 70.01±9.32 87.37±0.23 87.77±0.22 90.51±0.88 82.43±8.42 41.86±8.33 34.03±0.36

Pubmed

clean 88.39±0.47 88.44±0.34 89.51±0.12 88.18±1.89 90.30±0.11 88.09±0.32 87.41±1.73 88.46±0.20
PGD 59.62±11.66 44.61±2.78 82.09±0.83 67.81±12.23 51.16±6.04 45.85±1.97 48.94±12.99 39.03±0.10

TDGIA 54.31±2.38 46.26±1.32 82.72±0.47 68.66±10.64 55.50±4.03 45.57±2.02 47.56±3.11 42.64±1.41
MetaGIA 61.62±9.05 44.07±2.11 79.16±0.87 64.64±9.70 52.03±5.53 45.81±2.81 44.75±2.53 40.42±0.17

Table 2: Node classification accuracy (%) on graph injection, evasion, non-targeted attack in inductive learning. The best and
the second-best results for each criterion are highlighted in bold and underlined, respectively.

and pre-processing strategies. We delve into this aspect in the
supplementary material.

5.1 GMA
Our experimental setup involves the execution of graph
modification adversarial attacks employing the Metattack
method (Zügner and Günnemann 2019). Within the Metat-
tack paradigm, the graph’s adjacency matrix is perceived not
just as a static structure but as a malleable hyperparameter.
This perspective allows for attack optimization through meta-
gradients to effectively address the inherent bilevel problem.
For the sake of ensuring a consistent and unbiased com-
parative landscape, our experiments strictly conform to the
attack parameters as outlined in the paper (Jin et al. 2020).
To achieve a comprehensive evaluation, we vary the perturba-
tion rate, representing the proportion of edge modifications.
We source the perturbed graph data from the comprehensive
DeepRobust library (Li et al. 2020). The perturbation rate
is adjusted in consistent increments of 5%, starting from
an untouched graph (0%) and extending up to significant
alterations at 25%.

5.2 GIA
As elucidated in the paper (Chen et al. 2022), GIA presents a
considerably potent challenge to GNNs because of its ability
to introduce new nodes and establish new edges within the
original graph. Executing a GIA entails a two-step process:
the injection of nodes and the subsequent update of features.
During the node injection phase, new edges are established
for the inserted nodes, driven by either gradient data or heuris-
tic methods. Drawing inspiration from the methods proposed
in (Chen et al. 2022), we have incorporated three distinct
GIA techniques: PGD-GIA, TDGIA(Zou et al. 2021), and
MetaGIA. The PGD-GIA method predominantly relies on a
randomized approach for node injection. Once these nodes
are in place, their features are meticulously curated using

the Projected Gradient Descent (PGD) algorithm (Mądry
et al. 2018). The Topological Deficiency Graph Injection
Attack (TDGIA) (Zou et al. 2021) exploits inherent topologi-
cal weaknesses in graph structures. This approach harnesses
these vulnerabilities to guide edge creation, optimizing a spe-
cific loss function to devise suitable features. MetaGIA (Chen
et al. 2022) continually refines the adjacency matrix and node
features, leaning heavily on gradient information to guide
these refinements. We conduct inductive learning for GIA in
line with the data partitioning approach of the GRB frame-
work (Zheng et al. 2021), allocating 60% for training, 10%
for validation, and 20% for testing purposes. To maintain
a balanced attack landscape, we pre-process the data using
methods from (Zheng et al. 2021), which involve excluding
the 5% of nodes with the lowest degrees (more susceptible to
attacks) and the 5% with the highest degrees (more resistant
to attacks).

5.3 Results

Table 1 presents the results of GMA for transductive learning.
As can be observed from the table, our proposed fractional-
order methods outperform the original GRAND, GraphBel,
and GraphCON in terms of robustness accuracy. These re-
sults validate and resonate with our theoretical findings, as
discussed in Theorem 3. Notably, these empirical observa-
tions underscore the capability of the FROND paradigm in
enhancing a system’s resilience, particularly when faced with
input perturbations. The GIA results are presented in Ta-
ble 2. We note that the fractional-order approach significantly
improves post-attack accuracy relative to its integer-order
graph neural ODE counterparts. Among these neural ODE
models, (Song et al. 2022) demonstrated that GraphBel pos-
sesses superior robustness, which is further amplified by our
fractional-order differential technique.
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Figure 3: The impact of β on the robust test accuracy.

Dataset Attack F-GRAND GRAND F-GraphBel GraphBel F-GraphCON GraphCON

Computers
clean 90.0±0.05 92.78±0.13 88.36±1.05 90.14±0.27 89.99±0.28 91.70±0.25
PGD 75.29±1.17 16.44±0.11 86.35±0.10 67.04±1.28 71.64±2.33 13.11±4.73

TDGIA 71.99±0.73 15.10±0.76 86.21±0.21 53.75±2.84 66.35±1.94 4.33±4.21

Table 3: Node classification accuracy (%) on graph injection, evasion, non-targeted, white-box attack in inductive learning.

5.4 White-Box Attack
White-box attacks, which directly target the model, are
stronger than the black-box attacks used in Table 2. To demon-
strate that our graph neural FDE model can consistently im-
prove the robustness of graph neural ODE models, we also
conducted white-box GIA. The results are presented in Ta-
ble 3. Although the accuracy under white-box GIA is lower
than under black-box GIA, our graph neural FDE models still
outperform the graph neural ODE models. This observation
aligns with our theoretical findings presented in Section 4
of our main paper. Our graph neural FDE models indeed
enhance the robustness of neural ODE models under both
black-box and white-box scenarios.

5.5 Ablation Study
Influence of β We assess the robustness accuracy of our
fractional-order method across varying β values. The find-
ings are depicted in Fig. 3. A discernible trend emerges: as β
increases, the accuracy under the three GIA methods dimin-
ishes. This observation aligns with our theoretical insights
presented in Theorem 3.

Model Complexity A comparison of inference times be-
tween our models and the baseline models is presented in
Table 4. The results indicate that fractional-based models
have similar inference times to graph neural ODE models.
Notably, fractional-based models maintain the same training
parameters as integer ODE models, avoiding any extra param-
eters. These findings highlight the efficiency and flexibility
of our approach.

6 Conclusion
In this paper, we have undertaken a comprehensive explo-
ration of robustness against adversarial attacks within the

Model Inf. Time(s)

F-GRAND 18.74
GRAND 16.40

F-GraphBel 64.90
GraphBel 78.51

F-GraphCON 21.33
GraphCON 18.27

Table 4: Inference time of models on the Cora dataset: integral
time T = 10 and step size of 1.

framework of the graph neural FDE models, i.e., FROND
models, leading to substantial insights. Our investigation has
yielded significant revelations, notably demonstrating the
heightened robustness of the FROND models when com-
pared to existing graph neural ODE models. Moreover, our
work has contributed theoretical clarity, shedding light on
the underlying reasons behind the heightened robustness of
the FROND models in contrast to the graph neural ODE
counterparts.
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Geisler, S.; Schmidt, T.; Şirin, H.; Zügner, D.; Bojchevski,
A.; and Günnemann, S. 2021. Robustness of Graph Neural
Networks at Scale. In Adv. Neural Inform. Process. Syst.
Guo, Z.; Guo, K.; Nan, B.; Tian, Y.; Iyer, R. G.; Ma, Y.;
Wiest, O.; Zhang, X.; Wang, W.; Zhang, C.; and Chawla,
N. V. 2023. Graph-based Molecular Representation Learning.
arXiv:2207.04869.
Haber, E.; and Ruthotto, L. 2017. Stable architectures for
deep neural networks. Inverse Problems, 34(1): 1–23.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In Adv. Neural
Inform. Process. Syst.
Han, A.; Shi, D.; Lin, L.; and Gao, J. 2023. From Continuous
Dynamics to Graph Neural Networks: Neural Diffusion and
Beyond. arXiv:2310.10121.
Huang, C.; Xu, H.; Xu, Y.; Dai, P.; Xia, L.; Lu, M.; Bo,
L.; Xing, H.; Lai, X.; and Ye, Y. 2021. Knowledge-aware
coupled graph neural network for social recommendation. In
Proc. AAAI Conf. Artificial Intell., volume 35, 4115–4122.
Hussain, H.; Cao, M.; Sikdar, S.; Helic, D.; Lex, E.;
Strohmaier, M.; and Kern, R. 2022. Adversarial Inter-Group
Link Injection Degrades the Fairness of Graph Neural Net-
works. In IEEE International Conference on Data Mining
(ICDM). IEEE.
Ji, F.; Lee, S. H.; Meng, H.; Zhao, K.; Yang, J.; and Tay,
W. P. 2023. Leveraging Label Non-Uniformity for Node
Classification in Graph Neural Networks. In Proc. Int. Conf.
Mach. Learn., volume 202, 14869–14885.
Jin, W.; Ma, Y.; Liu, X.; Tang, X.; Wang, S.; and Tang, J. 2020.
Graph structure learning for robust graph neural networks. In
Proc. Int. Conf. Knowl. Discovery Data Mining, 66–74.
Kang, Q.; Song, Y.; Ding, Q.; and Tay, W. P. 2021. Stable
neural ODE with Lyapunov-stable equilibrium points for
defending against adversarial attacks. In Adv. Neural Inform.
Process. Syst.
Kang, Q.; Zhao, K.; Ding, Q.; Ji, F.; Li, X.; Liang, W.; Song,
Y.; and Tay, W. P. 2023a. Unleashing the Potential of Frac-
tional Calculus in Graph Neural Networks. In Adv. Neural
Inform. Process. Syst. Workshop on Machine Learning and
the Physical Sciences.
Kang, Q.; Zhao, K.; Song, Y.; Wang, S.; and Tay, W. P. 2023b.
Node Embedding from Neural Hamiltonian Orbits in Graph
Neural Networks. In Proc. Int. Conf. Mach. Learn., 15786–
15808.
Kang, Q.; Zhao, Y.; Zhao, K.; Li, X.; Ding, Q.; Tay, W. P.;
and Wang, S. 2023c. Advancing Graph Neural Networks
Through Joint Time-Space Dynamics. In Adv. Neural Inform.
Process. Syst. Workshop on The Symbiosis of Deep Learning
and Differential Equations III.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Proc. Int.
Conf. Learn. Represent.
Lee, S. H.; Ji, F.; and Tay, W. P. 2022. SGAT: Simplicial
Graph Attention Network. In Proc. Inter. Joint Conf. Artificial
Intell.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13057



Li, Y.; Jin, W.; Xu, H.; and Tang, J. 2020. DeepRobust:
A PyTorch Library for Adversarial Attacks and Defenses.
arXiv:2005.06149.
Ma, J.; Deng, J.; and Mei, Q. 2022. Adversarial Attack
on Graph Neural Networks as An Influence Maximization
Problem. In Proc. of the 15th ACM Int. Conf. Web Search
and Data Min., 675–685.
Ma, J.; Ding, S.; and Mei, Q. 2020. Towards more practical
adversarial attacks on graph neural networks. In Adv. Neural
Inform. Process. Syst., 4756–4766.
Ma, Y.; Wang, S.; Derr, T.; Wu, L.; and Tang, J. 2021. Graph
Adversarial Attack via Rewiring. In Proc. Int. Conf. Knowl.
Discovery Data Mining, 1161–1169.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2018. Graph attention networks. In Proc.
Int. Conf. Learn. Represent., 1–12.
Wang, D.; Lin, J.; Cui, P.; Jia, Q.; Wang, Z.; Fang, Y.; Yu,
Q.; Zhou, J.; Yang, S.; and Qi, Y. 2019. A semi-supervised
graph attentive network for financial fraud detection. In IEEE

International Conference on Data Mining (ICDM), 598–607.
IEEE.
Wang, J.; Luo, M.; Suya, F.; Li, J.; Yang, Z.; and Zheng, Q.
2020. Scalable attack on graph data by injecting vicious
nodes. Data Mining and Knowledge Discovery, 34: 1363–
1389.
Wang, Y.; Yi, K.; Liu, X.; Wang, Y. G.; and Jin, S. 2022.
ACMP: Allen-Cahn Message Passing with Attractive and
Repulsive Forces for Graph Neural Networks. In Proc.Int.
Conf. Learn. Represent.
Waniek, M.; Michalak, T. P.; Wooldridge, M. J.; and Rahwan,
T. 2018. Hiding individuals and communities in a social
network. Nature Human Behaviour, 2(1): 139–147.
Weinan, E. 2017. A proposal on machine learning via dy-
namical systems. Commun. Math. Statist., 1(5): 1–11.
Xhonneux, L.-P.; Qu, M.; and Tang, J. 2020. Continuous
graph neural networks. In Proc. Int. Conf. Mach. Learn.,
10432–10441.
Yan, H.; Du, J.; Tan, V. Y.; and Feng, J. 2018. On robustness
of neural ordinary differential equations. In Adv. Neural
Inform. Process. Syst., 1–13.
Zhang, X.; and Zitnik, M. 2020. Gnnguard: Defending graph
neural networks against adversarial attacks. Adv. Neural
Inform. Process. Syst., 33: 9263–9275.
Zhao, K.; Kang, Q.; Song, Y.; She, R.; Wang, S.; and Tay,
W. P. 2023a. Adversarial Robustness in Graph Neural Net-
works: A Hamiltonian Energy Conservation Approach. In
Adv. Neural Inform. Process. Syst. New Orleans, USA.
Zhao, K.; Kang, Q.; Song, Y.; She, R.; Wang, S.; and Tay,
W. P. 2023b. Graph neural convection-diffusion with het-
erophily. In Proc. Inter. Joint Conf. Artificial Intell. Macao,
China.
Zheng, Q.; Zou, X.; Dong, Y.; Cen, Y.; Yin, D.; Xu, J.;
Yang, Y.; and Tang, J. 2021. Graph Robustness Benchmark:
Benchmarking the Adversarial Robustness of Graph Machine
Learning. Adv. Neural Inform. Process. Syst. Track Datasets
Benchmarks.
Zhu, D.; Zhang, Z.; Cui, P.; and Zhu, W. 2019. Robust graph
convolutional networks against adversarial attacks. In Proc.
Int. Conf. Knowl. Discovery Data Mining, 1399–1407.
Zou, X.; Zheng, Q.; Dong, Y.; Guan, X.; Kharlamov, E.; Lu,
J.; and Tang, J. 2021. TDGIA: Effective Injection Attacks on
Graph Neural Networks. In Proc. Int. Conf. Knowl. Discovery
Data Mining, 2461–2471.
Zügner, D.; Akbarnejad, A.; and Günnemann, S. 2018. Ad-
versarial Attacks on Neural Networks for Graph Data. In
Proc. Int. Conf. Knowl. Discovery Data Mining.
Zügner, D.; and Günnemann, S. 2019. Adversarial Attacks
on Graph Neural Networks via Meta Learning. In Proc. Int.
Conf. Learn. Represent.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13058


