Racing Control Variable Genetic Programming for Symbolic Regression

Nan Jiang, Yexiang Xue
Department of Computer Science, Purdue University, USA
{jiang631, yexiang}@purdue.edu

Abstract
Symbolic regression, as one of the most crucial tasks in AI for science, discovers governing equations from experimental data. Popular approaches based on genetic programming, Monte Carlo tree search, or deep reinforcement learning learn symbolic regression from a fixed dataset. These methods require massive datasets and long training time especially when learning complex equations involving many variables. Recently, Control Variable Genetic Programming (CVGP) has been introduced which accelerates the regression process by discovering equations from designed control variable experiments. However, the set of experiments is fixed a-priori in CVGP and we observe that sub-optimal selection of experiment schedules delay the discovery process significantly. To overcome this limitation, we propose Racing Control Variable Genetic Programming (Racing-CVGP), which carries out multiple experiment schedules simultaneously. A selection scheme similar to that used in selecting good symbolic equations in genetic programming is implemented to ensure that promising experiment schedules eventually win over the average ones. The unfavorable schedules are terminated early to save time for the promising ones. We evaluate Racing-CVGP on several synthetic and real-world datasets corresponding to true physics laws. We demonstrate that Racing-CVGP outperforms CVGP and a series of symbolic regressors which discover equations from fixed datasets.

1 Introduction
Automatically discovering scientific laws from experimental data has been a long-standing aspiration of Artificial Intelligence. Its success holds the promise of significantly accelerating scientific discovery. A crucial step towards achieving this ambitious goal is symbolic regression, which involves learning explicit expressions from the experimental data. Recent advancements in this field have shown exciting progress, including works on genetic programming, Monte Carlo tree search, deep reinforcement learning and their combinations (Schmidt and Lipson 2009; Virgolin, Alderliesten, and Bosman 2019; Guimerà et al. 2020; Petersen et al. 2021; Mundhenk et al. 2021; Petersen et al. 2021; Razavi and Gamazon 2022; He et al. 2022; Sun et al. 2023; Tohme, Liu, and Youcef-Toumi 2023).

Despite remarkable achievements, the current state-of-the-art approaches are still limited to learning relatively simple expressions, typically involving only a few independent variables. The real challenge lies in symbolic regression involving multiple independent variables. The aforementioned approaches learn symbolic equations from a fixed dataset. As a result, these methods require massive datasets and extensive training time to discover complex equations.

Recently, a novel approach called Control Variable Genetic Programming (CVGP) (Jiang and Xue 2023) is introduced to accelerate symbolic regression. Instead of learning from fixed datasets collected a-priori, CVGP carries out symbolic regression using customized control variable experiments. As a motivating example, to learn the ideal gas law $nRT = pV$, one can hold n (gas amount) and T (temperature) as constants. It is relatively easy to learn p (pressure) is inversely proportional to V (volume). Indeed, CVGP
Figure 2: The favorable experiment schedule π_g is survived while the unfavorable schedule π_r is early stopped under our racing experiment schedule scheme. (a) Multiple steps of edits are needed to transform from a randomly initialized expression “x_1” to a complex expression “$c_1 + c_2 \cos(x_1)$”. The newly inserted parts (by genetic programming algorithm) are highlighted in blue. (b) The red experiment schedule π_r is unfavorable because it requires many edits to reach the expression tree in the red box (shown in (a)). The red schedule is thus stopped early. (c) The green experiment schedule π_g is promising since it is relatively easy to discover, and every change in the expression tree is reasonable. Section 3 provides a detailed explanation.

discovers a chain of simple-to-complex symbolic expressions; e.g., first an expression involving only p and V, then involving p, V, T, etc. In each step, learning is carried out on specially collected datasets where a set of variables held constant. The major difference between CVGP and previous approaches is that CVGP actively explores the space of all expressions via control variable experiments, instead of learning passively from a pre-collected dataset.

However, the set of experiments is fixed a-priori in CVGP. It first learns an equation involving only the first variable, then involving the first two variables, etc. In particular, CVGP works with a fixed experiment schedule (noted as π), that is the sequences of controlled variables. We observe that the sub-optimal selection of experiment schedules delays the discovery process significantly. In Figure 1, we run CVGP with all 24 possible experiment schedules and report the quartiles of normalized mean squared errors (NMSE) of the discovered top 20 expressions. We see that certain experiment schedules (such as π_1) are significantly better than others including the default schedule π_1.

To overcome this limitation, we propose Racing-CVGP, which automatically discovers good experiment schedules that lead to accurate symbolic regression. A selection scheme over the experiment schedules is implemented, similar to that used in selecting good symbolic equations in genetic programming, to ensure that promising experiment schedules eventually win over the average schedules. The unfavorable schedules are terminated early to save time for promising schedules. Racing-CVGP allows flexible control variables experiments to be performed during the discovery process. If a specific set of controlled variable experiments fails to discover a good expression, it is ranked at the bottom and is eventually removed by the selection scheme. Our idea allows the algorithm to avoid spending excessive time on unfavorable experiment schedules and to focus on exploring promising experiment schedules.

In experiments, we compare Racing-CVGP against several popular symbolic regression baselines using challenging datasets with multiple variables. On several datasets, we observe that Racing-CVGP discovers higher quality expressions in terms of the NMSE metric against several baselines. Our Racing-CVGP also takes less computational time than all the baselines. Our Racing-CVGP stops those unfavorable schedules early, which commonly leads to a longer training time. Notably, our method scales well to expressions with 8 variables while the GP, CVGP, and GPMeld methods take more than 48 hours and thus are time-consuming. Our contributions can be summarized as follows:

- We identify that a sub-optimal selection of the experiment schedule greatly delays the discovery process of symbolic regression. We propose Racing-CVGP to accelerate scientific discovery by maintaining good experiment schedules during learning challenging symbolic regression tasks.
- Under our racing schedule, a favorable schedule is survived while unfavorable schedules are stopped early. We show the time complexity of our Racing-CVGP is approximately close to that of the CVGP, under mild assumptions.
- In experiments, we showcase that our Racing-CVGP leads to faster discovery of symbolic expressions with smaller NMSE metrics, compared to current popular baselines over
several challenging datasets\(^1\).

2 Preliminaries

Symbolic Regression for Scientific Discovery

A symbolic expression \(\phi \) is expressed as variables \(x = \{x_1, \ldots, x_n\} \) and constants \(c = \{c_1, \ldots, c_m\} \), connected by a set of binary operators (like \(\{+, -, \times, \div\} \)) and/or unary operators (like \(\{\sin, \cos, \log, \exp\} \)). The operator set is noted as \(O_p \). Each operand of an operator is either a variable, a constant, or a self-contained sub-expression. For example, \(x_1 + x_2 \) is an expression with 2 variables \(x_1 \text{ and } x_2 \) and one binary operator \(+ \). A symbolic expression can be equivalently represented as a binary expression tree, where the leaf nodes correspond to variables and constants and the inner nodes correspond to those operators. Figure 3 presents two example expression trees.

Given a dataset \(D = \{(x_i, y_i)\}_{i=1}^N \) and a loss function \(\ell(\cdot, \cdot) \), the task of symbolic regression is to find the optimal symbolic expression \(\phi^* \) with minimum loss over dataset \(D \), among the set of all candidate expressions (noted as \(\Pi \)):

\[
\phi^* \leftarrow \arg\min\limits_{\phi \in \Pi} \frac{1}{N} \sum_{i=1}^{N} \ell(\phi(x_i, c), y_i),
\]

where the values of the open constants \(c \) in \(\phi \) are determined by fitting the expression to the dataset \(D \). The loss function \(\ell(\cdot, \cdot) \) measures the distance between the output from the candidate expression \(\phi(x_i, c) \in \mathbb{R} \) and the ground truth \(y_i \in \mathbb{R} \). A common choice of the loss function is Normalized Mean Squared Error (NMSE). Symbolic regression is shown to be NP-hard (Virgolin and Pissis 2022), due to the exponentially large size of all the candidate expressions \(\Pi \).

Genetic Programming for Symbolic Regression

Genetic Programming (GP) has been a popular method for solving symbolic regression. The core idea of GP involves managing a pool of candidate expressions, noted as \(\mathcal{P} \). In each generation, these candidates undergo mutation and mating steps with certain probabilities. The mutation operations randomly replace, insert a node in the expression tree, or delete a sub-tree. The mating operations pick a pair of parent expression trees and exchange their two random subtrees. In the selection step, expressions with the highest fitness scores, are chosen as candidates for the next generation. Here the fitness scores (noted as \(\alpha \in \mathbb{R}^N \)) indicate the closeness of the predicted outputs to the ground-truth outputs, like the negative NMSE. Over several generations, the expressions that fit the data well, exhibiting high fitness scores, survive in the pool of candidate solutions. The best expressions discovered throughout all generations are recorded as hall-of-fame solutions, noted as \(\mathcal{H} \).

Control Variable Trials

In a regression problem, control variable trials study the relationship between a few input variables and the output with the remaining input variables fixed to be the same (Lehman, Santner, and Notz 2004). The control variable idea was historically proposed to discover natural physical law, known as the BACON system (Langley 1977, 1979; Langley, Bradshaw, and Simon 1981). Recently, this idea has been explored for solving multivariable symbolic regression problems (Jiang and Xue 2023), i.e., CVGP.

Let \(x_c \subseteq x \) denote those control variables, and the rest are free variables. The values of controlled variables are fixed in each trial, which behaves exactly the same as constants for the learning method. In the controlled setting, the ground-truth expression behaves the same after setting those controlled variables as constants, which is noted as the reduced form expression. See Figure 3 for two reduced form expressions with different control variable settings.

For a single control variable trial in symbolic regression, the corresponding dataset \(D = \{(x_{c,i}, y_i)\}_{i=1}^m \) is first generated, where the controlled variables are fixed to one value and the remaining variables are randomly assigned. That is \(x_{c,k} = x_{j,k} \) for the control variable \(x_k \) \((x_k \in x_c) \) and \(1 \leq i, j \leq N \). Figure 3 gives two example datasets generated from different control variable trials. Given a reduced form expression and corresponding dataset, the values of open constants in the expression are determined by gradient-based optimizers, like the BFGS algorithm. In Figure 3(a), the optimal values of open constants are \(c_1 = 0.5, c_2 = 0.16 \). Similarly in Figure 3(b), we have \(c_1 = 1.8 \). The loss values (defined in Equation (1)) of these two controlled variable trials over the dataset \(D_1 \) and dataset \(D_2 \) are equal to 0, indicating the optimal fitness scores.

The CVGP is built on top of the above control variable trials and the GP algorithm. To fit an expression of \(n \) variables, CVGP initially only allows variable \(x_1 \) to vary and controls the values of all \(n - 1 \) variables (i.e., \(x_c = x \{x_1\} \)). Using GP as a subroutine, CVGP finds a pool of expressions \(\{\phi_1, \ldots, \phi_{N_p}\} \) which best fit the data from this controlled experiment. Notice \(\{\phi_1, \ldots, \phi_{N_p}\} \) are restricted to contain

\[\begin{align*}
\text{Dataset } D_1 & : x_1 \quad x_2 \quad x_3 \quad y \\
-1.0 & 0.5 \quad 0.16 \quad 0.20 \\
0.92 & 0.5 \quad 0.16 \quad 0.21 \\
0.72 & 0.5 \quad 0.16 \quad 0.22
\end{align*}\]

Controlled to be the same

\[\begin{align*}
\text{Dataset } D_2 & : x_1 \quad x_2 \quad x_3 \quad y \\
0.62 & 1.0 \quad 0.1 \quad 0.18 \\
0.62 & 1.0 \quad 0.2 \quad 0.36 \\
0.62 & 1.0 \quad 0.3 \quad 0.54
\end{align*}\]

Controlled to be the same.

only one free variable \(x_1 \) and \(N_p \) is the pool size. This fact
renders fitting them a lot easier than directly fitting the ex-
pressions involving all \(n \) variables. A small error implies that
\(\phi_1 \) is close to the ground truth reduced to the one free vari-
able. In the 2nd round, CVGP adds a second free variable \(x_2 \)
and starts fitting \(\{ \phi_1, \ldots, \phi_{N_p} \} \) using the data from control
variable experiments involving the two free variables \(x_1, x_2 \).
After \(n \) rounds, the expressions in the CVGP pool consider
all \(n \) variables. Note that CVGP assumes the existence of a
DataOracle that allows for query a batch data with spec-
ified control variables.

3 Methodology

We first brief the issue with a fixed experiment schedule for
the existing CVGP method in discovering symbolic regression.
Then we present our racing experiment schedule for
control variable genetic programming (Racing-CVGP).

Motivation

We define an experiment schedule, noted as \(\pi \), as a se-
quence of variables controlled over all the rounds in CVGP.
We use Figure 2 to demonstrate different experiment sched-
ules for the discovery of the ground-truth expression \(\phi =
\cos(x_1)x_2 + x_3 \). In Figure 2(c), CVGP runs an experiment
schedule with control variables \(\{ x_1, x_2 \} \) in the first round
and runs with control variables \(\{ x_1 \} \) in the second round and
with no variable control \(\emptyset \) in the last round. The corresponding
experiment schedule is \(\pi = (\{ x_1, x_2 \}, \{ x_1 \}, \emptyset) \).
Similarly, Figure 2(b) shows the default experiment schedule
of CVGP that control variables \(\{ x_2, x_3 \} \) initially and then con-
trol variable \(x_3 \), finally control no variable \(\emptyset \), which is de-
noted as \(\pi = (\{ x_2, x_3 \}, \{ x_3 \}, \emptyset) \).

Our key observations are as follows: (1) The exper-
iment schedule plays a vital impact on the perform-
ance of CVGP than other components in the algo-
rithm. (2) Some experiments are much easier to detect
for specific experiment schedules. The existing CVGP
method only considers a fixed experiment schedule \(\pi =
(\{ x_2, \ldots, x_n \}, \{ x_3, \ldots, x_n \}, \ldots, \{ x_n \}, \emptyset) \)
for discovering expression involving \(n \) variables. This fixed experiment
schedule leads to sub-optimal performance of CVGP over
some expressions, requiring more training data and compu-
tational time than other alternative schedules. See Figure 1
for an empirical evaluation of different experiment sched-
ules over the final identified expressions by the same CVGP
method. See more examples in Appendix D.

In Figure 2, we use the discovery of an expression \(\phi =
\cos(x_1)x_2 + x_3 \) from the Feynman dataset as an exam-
ple. The alternative (green) experiment schedule \(\pi_g \) in Figure
2(c) is favorable while the default (red) schedule \(\pi \), in Figure
2(b) is not. In Figure 2(a), we visualize 3 necessary steps to
reach from randomly initialized expression tree “\(x_1 \)” to the final tree “\(c_1 + c_2 \cos(x_1) \)” in Figure 2(b). Every
step of editing is conducted by the GP and requires draw-
ing batches of training data to fit every intermediate expres-
sion. The edited subtrees are highlighted in blue. In compar-
ison, it takes 1 step of edits in the tree to reach the first expres-
sion “\(c_1 + x_3 \)” in the green experiment schedule, which
leads to faster discovery using less training data. Following
the green experiment schedule \(\pi_g \), it takes 1 step of edits to
reach the expression at the second round “\(c_1x_2 + x_3 \)” and the last
round “\(\cos(x_1)x_2 + x_3 \)”. Therefore, CVGP needs much
more data and time in the 1st round following the default
(red) experiment schedule \(\pi \). The alternative (green) exper-
iment schedule \(\pi_g \) is easier for the GP algorithm to discover
the ground-truth expression using less data and time.

Directly evoking CVGP as a subroutine with multiple ex-
periment schedules will not solve the problem. The expres-
sion in Figure 1 has 24 different experiment schedules. The
total running time is summarized in Figure 6. In general, for
an expression involving \(n \) variables, there are \(n! \) many ex-
periment schedules. It is time-intractable to run CVGP with
all the experiment schedules for real-world scale problems.

To tackle the above issue, we propose a racing scheme
over the experiment schedules. Our main principles are (1)
maintaining multiple experiment schedules rather than one,
and (2) allowing promising experiment schedules to survive
while letting unfavorable schedules early stop. Our Racing-
CVGP has a much higher chance of detecting high-quality
expression using less training data and computational time
than the existing CVGP.

Specifically, we implement a schedule selection proce-
dure. Every expression in the population pool \(\phi \in P \) is
attached with its own experiment schedule. In each round,
we execute GP over all the expressions in the population
pool for several generations. At the end of every round, the
racing selection scheme removes (resp. preserves) those ex-
pressions with bad (resp. good) experiment schedules, based
on their fitness scores. So those schedules that lead to higher
fitness scores have a higher probability of survival.

We use Figure 2 to visualize the process of our Racing-
CVGP. We first initialize the population pool \(P \) in GP with
several expressions for each control variable setting. We
randomly generate simple expressions involving only \(x_1 \)
with the control variables being \(\{ x_2, x_3 \} \), where every
expression is attached with a (partial) experiment schedule
\(\pi = (\{ x_2, x_3 \}) \). We repeat this random expression gen-
eration for all the rest \(n-1 \) control variable settings. For
the 1st round, the GP algorithm is evoked over the popula-
tion pool for several generations. Then we rank the expres-
sions in the pool by the fitness score of the expression, where
those expressions with higher fitness scores rank at the top
of the pool. We only preserve top \(N_p \) expressions in pop-
ulation pool \(P \). Since it is much easier to detect \(c_1 + x_3 \)
under control variable \(\{ x_1, x_2 \} \) setting, the preserved ma-
jority expressions are attached with the experiment schedule
\(\pi_1 = (\{ x_1, x_2 \}) \). This ensures that we early stop the unfavor-
able experiment schedule \(\pi = (\{ x_2, x_3 \}) \) in Figure 2(b). Prior
to the 2nd round, we randomly set free one variable from \(\pi_1 \).
Figure 2(c) set the free variable \(x_2 \) and only variable \(x_1 \) is
controlled in the 2nd round. In the 3rd round, the majority
of the expressions in the population is attached to the exper-
iment schedule \(\pi_g = (\{ x_1, x_2 \}, \{ x_1 \}, \emptyset) \), since every change
over the expression tree is reasonable. The total computa-
tional resources are saved from spending time searching for
the expression tree in Figure 2(b) to explore expressions with
experiment schedule \(\pi = (\{ x_1, x_2 \}, \{ x_1 \}) \) in Figure 2(c).
Racing Control Variable Genetic Programming

The high-level idea of Racing-CVGP is building simple to complex symbolic expressions involving increasingly more variables following those promising experiment schedules.

Notations. Denote K multiple control variable trials as a tuple $\langle \phi, o, c, x_i, \pi, \{ D_k \}_{k=1}^K \rangle$. Here ϕ stands for the symbolic expression; the fitness scores $o \in \mathbb{R}^K$ for expression ϕ indicates the closeness of predicted outputs to the ground-truth outputs; $c \in \mathbb{R}^{K \times L}$ are the best-fitted values (by gradient-based optimizers) to open constants. Here L is the number of open constants in the expression ϕ; $x \subseteq x$ is the set of control variables; π is the (partial) experiment schedule that leads to the current expression ϕ. $D_k = \{ (x_i, y_i) \}_{i=1}^m$ is a randomly sampled batch of data from DataOracle with control variables x_i. m denotes the batch size of the data.

Initialization. For single variable $x_i \in x$, we create a set of candidate expressions that only contain variable x_i and save them into the population pool P. Then we apply a GP-based algorithm to find the best-fitted expressions, which is referred to as the BuildGP function. The initialization step corresponds to Lines 2-6 in Algorithm 1.

Execution Pipeline. Given the current control variables x_i, we first evoke the DataOracle to generate data batches $\{ D_k \}_{k=1}^K$. This corresponds to changing experimental conditions in real science experiments. We then fit open constants in the candidate expression ϕ_{new} with the data batches by gradient-based optimizers like BFGS (Fletcher 2000). This step is noted as the Optimize function. Then we obtain the fitness score vector o and solutions to open constants c. We save the tuple $\langle o, c, \pi, x_i \rangle$ into new population pool P_{new}. This step corresponds to Lines 8-11 in Algorithm 1. Then GP algorithm is applied for $\#Gen$ generations to search for optimal structures of the expression trees in the population pool P_{new}. The function GP is a minimally modified genetic programming algorithm for symbolic regression, which is detailed in Appendix B. The key differences between classic GP and our Racing-CVGP are:

1. During mutation, our Racing-CVGP only alters the mutable nodes of the candidate expression trees. In classic GP, all the tree nodes are mutable, while in Racing-CVGP, the mutable nodes of the expression trees and set of operators O_p are preset by the FreezeEquation.
2. Mating is only applied over a pair of expressions with the same set of controlled variables in our Racing-CVGP. Classic GP, a random pair of expressions is selected for the mating operation.
3. Optimize operation in Racing-CVGP dynamically samples data with oracle D_i under control variable setup, whereas classic GP uses data with no variable controlled.

We preserve N_p best equations in the population P. Every expression is evaluated with the different data from its own control variables. An unfavorable (partial) experiment schedule will be removed at this step when the corresponding expression ϕ has a low fitness score. The schedules in the pruned population pool P indicate that they are favorable.

Key information is obtained by examining the outcomes of K-trials control variable experiments: (1) Consistent close-to-zero fitness value, implies that the fitted expression is close to the ground-truth equation in the reduced form. That is $\sum_{k=1}^K \| o_k - e \| \leq \epsilon$ should equal to K, where $\| \cdot \|$ is an indicator function and ϵ is a threshold for the fitness scores. (2) Given that the equation is close to the ground truth, an open constant having similar best-fitted values across K trials suggests that the open constants are standalone. Otherwise, that open constant is a summary constant, that corresponds to a sub-expression involving those control variables x_i. The j-th open constant is a standalone constant when the empirical variance of its fitted values across K trials is less than a threshold ϵ'. The above steps are noted as FreezeEquation function. This freezing operation reduces the search space and accelerates the discovery.

Finally, we randomly drop a control variable in x_i and update the schedule π for each equation ϕ in the population pool P. After n rounds, we return the equations in hall-of-fame H with best fitness values over all the schedules. Equations in H are evaluated on data with no variable controlled.

Running Time Analysis. The major hyper-parameters that impact the running time of Racing-CVGP are 1) the number of genetic operations per rounds $\#Gen$; 2) total rounds n; 3) the maximum size of population pool N_p. A rough estimation of the time complexity of the proposed Racing-CVGP is $O(nMN_p)$, which is the same as the CVGP algorithm.

Another implicit factor of running time is the number of open constants $|c|$ for every expression $\phi(x, c)$. An expression with more open constants needs more time for optimizers (like BFGS and CG) or more advanced optimizers (like Basin Hopping (Wales and Doye 1997)) to find the solutions. We leave it to the empirical time evaluation in Figure 6.

Connection to Existing Methods. Our work is relevant to a line of work (Langley 1977, 1979; Langley, Bradshaw, and Simon 1981; King et al. 2004, 2009; Cerraro et al. 2023) that implemented human scientific discovery using AI, pioneered by the BACON systems (Langley 1977, 1979; Langley, Bradshaw, and Simon 1981). While BACON’s discovery
was driven by rule-based engines, our Racing-CVGP uses modern learning approaches such as genetic programming.

4 Related Work

Early works in symbolic regression (Langley 1981; Lenat 1977) use heuristic search. Genetic programming is effective in searching for good candidates (Udrescu and Tegmark 2020; Virgolin, Alderliesten, and Bosman 2019; He et al. 2022). Reinforcement learning-based methods use a risk-seeking policy gradient to find the expressions (Petersen et al. 2021; Mundhenk et al. 2021). Other works use RL to adjust the probabilities of genetic operations (Chen, Wang, and Gao 2020). Some works reduce the search space by considering the composition of base functions (McConaghy 2011; Chen, Luo, and Jiang 2017).

Current research efforts are devoted to searching for polynomials with a few variables (Uy et al. 2011), time series equations (Balcan et al. 2018), and equations in physics (Udrescu and Tegmark 2020). Multivariable symbolic regression is challenging since the search space increases exponentially w.r.t. the number of input variables. Existing works for multi-variable regression are based on pre-trained encoder-decoder methods with a massive training dataset (e.g., millions of data points (Biggio et al. 2021)), and even larger generative models (e.g., millions of parameters (Kamienny et al. 2022)). Our Racing-CVGP is a tailored algorithm to solve multi-variable symbolic regression.

The choice of variables is an important topic in AI, including variable ordering in decision diagrams (Cappart et al. 2022), variable selection in tree search (Song et al. 2022a), variable elimination in probabilistic inference (Dechter 2019; Derkinderen et al. 2020) and backtracking search in constraint satisfaction problems (Ortiz-Bayliss et al. 2018; Li, Feng, and Yin 2020; Song et al. 2022b). Our method is one variant of variable ordering in symbolic regression.

Our work is also relevant to experiment design, which considers drawing a minimum amount of data for determining coefficients in linear regression models (Dette and Röder 1997; Yang and Stufken 2012; Attia and Ahmed 2023). Our work considers reducing the amount of total data needed to uncover the ground truth expression.

5 Experiments

This section demonstrates that Racing-CVGP finds the expressions with the smallest Normalized Mean-Square Errors (NMSE) (in Table 1 and Table 2) and takes less computational time (in Figure 4), among all competing approaches on several noiseless datasets. In the ablation studies, we show our Racing-CVGP is consistently better than the baselines when evaluated in different metrics (in Figure 5). Also, our Racing-CVGP methods save a great portion of time than evoke CVGP with all the possible schedules.

Experimental Settings

Datasets. **We consider several publicly available and multi-variable datasets, including 1) Trigonometric datasets (Jiang and Xue 2023), 2) Livermore2 datasets (Petersen et al. 2021), and 3) Feynman datasets (Matsubara et al. 2022).**

Evaluation Metrics. **We consider two evaluation criteria for the learning algorithms: 1) The goodness-of-fit measure (NMSE), indicates how well the learning algorithms perform in discovering symbolic expressions. The medians (50%) and 75%-percentiles of the NMSE are reported. We report median values instead of means due to outliers (see Ablation Studies). This is a common practice for combinatorial optimization problems. 2) The total running time of each learning algorithm.**

Experimental Result Analysis

Goodness-of-fit Benchmark. **Our Racing-CVGP attains the smallest median (50%) and 75%-quantile NMSE values among all the baselines when evaluated on selected Trigonometric, Livermore2, and Feynman datasets (Table 1). This**

Table 1: On Trigonometric datasets, median (50%) and 75%-quantile NMSE values of the expressions found by all the algorithms. Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. “T.O.” implies the algorithm is timed out for 48 hours. The 3-tuples at the top (·, ·, ·) indicate the number of input variables, singular terms, and cross terms in the expression.
Empirical Running Time Analysis. We summarize the running time analysis in Figure 4. Our Racing-CVGP method takes less time than CVGP as well as the rest baselines. The main reason is early stop those unfavorable experiment schedules. See Appendix D for more figures.

Ablation Studies We collect the benchmark of different evaluation metrics in Figure 5, i.e., MSE and NRMSE, during testing over the selected Trigonometric datasets. The RMSE and NRMSE evaluation metrics are available in Appendix D.

We further collect the time comparison between our Racing-CVGP and the CVGP with all the experiment schedules in Figure 6. The quartiles of time distribution over 10 random expressions with 4 variables show that Our Racing-CVGP saves a great portion of the time compared with CVGP with all the schedules.

Table 2: On Livermore2 and Feynman datasets, median (50%) and 75%-quantile NMSE values of the symbolic expressions found by all the algorithms. Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. \(n \) is the number of independent variables in the expression.

![Figure 4: On selected Trigonometric datasets, quartiles of the total running time of all the methods. Our Racing-CVGP method takes less time than CVGP by early stopping those unfavorable experiment schedules.](image)

![Figure 5: On selected Trigonometric datasets, MSE and NMSE evaluation metrics of the expressions found by different algorithms.](image)

![Figure 6: On a selected Trigonometric dataset, quartiles of the total running time of Racing-CVGP, CVGP, and CVGP with all the experiment schedules. Our Racing-CVGP saves a great portion of time compared with CVGP with all the schedules for expressions with \(n = 4 \) variables.](image)

6 Conclusion

In this research, we propose Racing Control Variable Genetic Programming (Racing-CVGP) for symbolic regression with many independent variables. Our Racing-CVGP can accelerate the regression process by discovering equations from promising experiment schedules and early stop those unfavorable experiment schedules. We evaluate Racing-CVGP on several synthetic and real-world datasets corresponding to true physics laws. We demonstrate that Racing-CVGP outperforms CVGP and a series of symbolic regressors that discover equations from fixed datasets.
Acknowledgments
We thank all the reviewers for their constructive comments. This research was supported by NSF grant CCF-1918327 and DOE – Fusion Energy Science grant: DE-SC0024583.

References
He, B.; Lu, Q.; Yang, Q.; Luo, J.; and Wang, Z. 2022. Taylor genetic programming for symbolic regression. In GECCO, 946–954. ACM.
regression: Recovering mathematical expressions from data via risk-seeking policy gradients. In ICLR. OpenReview.net.
Song, L.; Xue, K.; Huang, X.; and Qian, C. 2022a. Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization. In NeurIPS.