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Abstract
Ensuring fairness in machine learning (ML) is crucial, par-
ticularly in applications that impact diverse populations. The
majority of existing works heavily rely on the availability of
protected features like race and gender. However, practical
challenges such as privacy concerns and regulatory restric-
tions often prohibit the use of this data, limiting the scope
of traditional fairness research. To address this, we introduce
a Shared Latent Space-based Debiasing (SLSD) method that
transforms data from both the target domain, which lacks pro-
tected features, and a separate source domain, which contains
these features, into correlated latent representations. This al-
lows for joint training of a cross-domain protected group esti-
mator on the representations. We then debias the downstream
ML model with an adversarial learning technique that lever-
ages the group estimator. We also present a relaxed variant of
SLSD, the R-SLSD, that occasionally accesses a small subset
of protected features from the target domain during its train-
ing phase. Our extensive experiments on benchmark datasets
demonstrate that our methods consistently outperform exist-
ing state-of-the-art models in standard group fairness metrics.

Introduction
Recent years have witnessed a surge in evidence suggest-
ing that, when trained on historical data without necessary
precautions, ML systems can inadvertently exhibit discrim-
ination across various demographic groups (House 2016;
Barocas and Selbst 2016; O’neil 2016; Campolo et al. 2017;
Noble 2018). Such bias can have a serious impact on di-
verse aspects of everyday life, ranging from movie recom-
mendations (Islam et al. 2021) to more serious domains like
credit scoring (Nedlund 2019), and criminal recidivism pre-
diction (Angwin et al. 2016). Consequently, significant re-
search has been directed towards developing and enforcing
various mathematical constructs of bias and fairness in algo-
rithms (Dwork et al. 2012; Zemel et al. 2013; Hardt, Price,
and Srebro 2016; Kusner et al. 2017; Kearns et al. 2018;
Foulds et al. 2020b). However, a common constraint in these
works is their dependence on the model’s access to protected
attributes such as race and gender, during their training.

In practical contexts, factors such as privacy concerns, le-
gal constraints, and regulatory measures often limit the ac-
quisition or use of protected attributes. For instance, Title
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VII of the 1964 Civil Rights Act prevents employers from
inquiring about an applicant’s gender and race (Blanken-
ship 1993). Similarly, the EU GDPR imposes constraints
on collecting such data (Voigt and Von dem Bussche 2017).
Yet, the imperative to achieve fairness is undiminished, es-
pecially to counteract harmful biases against specific pro-
tected groups. For example, the CFPB mandates creditors to
implement fair lending practices but concurrently restricts
them from collecting demographic details from applicants.1
This paradox is well-acknowledged within the AI commu-
nity, spanning both the public sector (Veale and Binns 2017)
and industry (Holstein et al. 2019), and highlights the urgent
need of ensuring fairness without demographics.

Present state-of-the-art solutions to this conundrum
(Hashimoto et al. 2018; Lahoti et al. 2020; Chai and Wang
2022) mainly adopt the idea of Rawlsian max-min fairness
(Rawls 2001) that maximizes the utility such as accuracy
for the most disadvantaged group without demographic in-
formation. These methods effectively tackle representation
bias adhering to the infra-marginality principle, which posits
that a system is biased if and only if its behavior exhibits
disparities greater than those in society or the underlying
data (Simoiu, Corbett-Davies, and Goel 2017). However,
our experiments reveal that they frequently fail to satisfy
established parity-based group fairness standards, like de-
mographic parity (Dwork et al. 2012; Zemel et al. 2013;
Creager et al. 2019) or the legally recognized 80%-Rule,
as specified in the Code of Federal Regulations (Equal Em-
ployment Opportunity Commission 1978). Besides address-
ing representation bias, parity-based fairness notions also
capture other critical biases such as societal and intentional
prejudices, and societal disadvantages, all of which can of-
ten skew the behavior of ML systems (Barocas and Selbst
2016). Furthermore, groups or regions found by these exist-
ing fair algorithms without demographics may not necessar-
ily align with the intended protected attributes. For instance,
a model may be optimized to maximize utility in terms of
race when the desired protected attribute is gender.

Our Contributions. In this paper, we introduce a novel
method that leverages a shared latent space to approximate
the inherent protected groups for fair learning. Despite the

1CFBP Law and Regulations, 12 CFR § 1002.5 Rules concern-
ing requests for information: https://tinyurl.com/mr2hw8km.
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system does not directly access these protected groups, the
unobserved groups are correlated with observed features x
(e.g., zip codes often correlate with race (Hunt 2005)) and
outcomes y (e.g. disparities in outcomes often align with
specific groups (Lahoti, Gummadi, and Weikum 2019)).
While correlates of protected groups often trigger concerns
in fairness literature, we demonstrate how they can be ben-
eficial for enhancing fairness metrics. Inspired by domain
adaptation (Ben-David et al. 2006; Ganin and Lempitsky
2015), we hypothesize that correlation of protected groups
learned in a “source domain with demographics” (e.g., pub-
licly available HMDA loan approval data includes demo-
graphics2) can be effectively transferred to a “target do-
main without demographics” (e.g., a bank’s internal data for
credit card fraud detection where demographics have been
excluded to preserve privacy). We further hypothesize that
while both domains should have loose connection (i.e., both
are financial domains in the running example), they might
contain different individuals with varying observed features
x and outcomes y (i.e., loan decisions in the source versus
fraud detection in the target). Our aim, based on these hy-
potheses, is to develop fair learning algorithm for the target
domain (i.e., a fair fraud detection system) via group esti-
mates learned and adapted from the source domain.

Our method, named Shared Latent Space-based Debias-
ing (SLSD), transforms data from both source and target
domains into correlated latent representations to facilitate
the training of a “cross-domain” protected group estimator
using just the observed groups in the source data. An ad-
versarial debiasing technique then improves fairness in the
downstream task on the target data using the group esti-
mator. However, due to significant domain shifts and out-
of-distribution examples, the group estimator’s performance
might degrade considerably on the target data. We address
this by adopting a consistency training approach that refines
group estimates on the target data by regularizing the esti-
mator to be invariant to small noise injected to input exam-
ples. Specifically, we use “source data with demographics”
to ensure fairness in “target data without demographics” by
first pre-training for estimating groups on shared represen-
tations between them, then fine-tuning for improving group
estimates on target data, and finally debiasing the down-
stream model for target data with these estimates. While the
SLSD model operates without accessing protected attributes
in the target data, we also present a relaxed variant, R-SLSD,
which considers a very small subset (e.g., 1% of the training
set) of the target data that provides protected attributes. Our
extensive experiments validate SLSD’s and R-SLSD’s effi-
cacy, demonstrating their fairness improvements over exist-
ing models across multiple fairness benchmark datasets.

Background and Related Work
Fairness in ML: A number of studies have subsequently
demonstrated the harmful and pervasive nature of societal
biases in ML (Angwin et al. 2016; Bolukbasi et al. 2016;
Buolamwini and Gebru 2018). Addressing these concerns,
there’s been a surge in research to define fairness, typically

2https://www.consumerfinance.gov/data-research/hmda/

divided into three categories: 1) individual fairness (Dwork
et al. 2012; Kusner et al. 2017) which aims to ensure similar
outcomes for similar individuals, 2) group fairness (Zemel
et al. 2013; Hardt, Price, and Srebro 2016; Zafar et al. 2017;
Islam et al. 2023) which advocates outcome parity across
protected groups, and 3) max-min fairness (Hashimoto
et al. 2018; Lahoti et al. 2020) which attempts to improve
minimum utility across groups. We primarily focus on
group fairness due to practical challenges in individual
similarity determination (Dwork et al. 2012) and max-min
notion’s gaps in addressing societal stereotypes (Zhao et al.
2022; Grari, Lamprier, and Detyniecki 2022). There are
various techniques to improve fairness, from penalizing
violations (Hardt, Price, and Srebro 2016; Islam et al.
2023) and imposing fairness constraints (Zafar et al. 2017;
Agarwal et al. 2018) to fair data transformations (Zemel
et al. 2013; Louizos et al. 2016) and adversarial debiasing
(Zhang, Lemoine, and Mitchell 2018). However, these
approaches require the availability of protected attributes,
which are often missing in practical applications.

Fairness without demographics: Achieving fairness in the
absence of demographic data is an emerging and com-
plex challenge. A common strategy is to use proxy fea-
tures (Gupta et al. 2018; Zhao et al. 2022; Grari, Lamprier,
and Detyniecki 2022) or to operate under the assumption of
slightly perturbed (Awasthi, Kleindessner, and Morgenstern
2020; Wang et al. 2020) protected features. However, such
proxies, vulnerable to estimation bias (Chen et al. 2019), are
not consistently found in data and can be difficult to identify
without domain expertise (Grari, Lamprier, and Detyniecki
2022). In fact, Kallus, Mao, and Zhou 2022 demonstrated
that it’s generally impossible to spot disparities when rely-
ing solely on proxies. Alternative approaches utilize pseudo-
group formations through clustering (Yan, Kao, and Ferrara
2020; Dai and Wang 2021), but the alignment of these artifi-
cially constructed groups with real protected groups highly
varies with data distributions (Zhao et al. 2022).

As mentioned earlier, the works closest to ours are DRO
(Hashimoto et al. 2018) and ARL (Lahoti, Gummadi, and
Weikum 2019), which aim to achieve fair models without
demographics and without proxy-based assumptions. DRO
uses distributionally robust optimization to tackle worst-
case groups, while ARL concentrates on identifiable train-
ing errors through adversarially re-weighted learning strat-
egy. Similar re-weighting strategies are seen in fair learning
for supervised (Nam et al. 2020; Liu et al. 2021) and self-
supervised (Chai and Wang 2022) contexts. Although these
max-min fairness-driven approaches have enhanced the un-
derrepresented group’s accuracy, they often fail in address-
ing societal biases from conventional group fairness per-
spectives (Zhao et al. 2022) and inadvertently amplify inher-
ent biases, a phenomenon we observed in our experiments.

Notably, Coston et al. 2019 explored fairness in domain
adaptation in contexts where demographic information was
present only in either the source or target domain. How-
ever, unlike our approach, their method mandates identical
downstream tasks and a consistent feature set across both
domains, severely limiting its broader applicability.
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Modeling Inspirations: Our proposed approach draws in-
spiration from a wide range of prior techniques. Canonical
Correlation Analysis (CCA) is a classical multivariate analy-
sis method that finds maximally correlated linear projections
of two random variables (Hotelling 1936). Later works have
enhanced CCA for multi-view learning using deep models
(Andrew et al. 2013; Zhang et al. 2021). Consistency train-
ing methods significantly improve semi-supervised learn-
ing by utilizing large unlabeled data to ensure the model’s
stability against input noise (Tarvainen and Valpola 2017).
Later Xie et al. 2020 have demonstrated how to effectively
produce noise for consistency training by data augmenta-
tion technique to nearly match the performance of the fully
supervised models with semi-supervised learning. Domain
adaptation work requires a model to be robust and generaliz-
able across different domains (Ganin and Lempitsky 2015).

The Proposed SLSD
In this section, we first formalize the problem. We then
present our SLSD approach, structured into three integral
stages: 1) the pre-training phase, focusing on group estima-
tions in the shared latent space, 2) the fine-tuning phase,
which refines these estimations using consistency training,
and 3) the debiasing phase, where we rectify biases in a
downstream model with the refined group estimates.

Problem Formulation
In this paper, we consider a binary classification framework
with tabular data, although our method can be generalized
to other settings. Suppose, we are given a target dataset
T = {(x(i)

T , y
(i)
T )}nT

i=1 consisting of nT individuals, where
x
(i)
T is an vT dimensional input vector of non-protected fea-

tures, and y
(i)
T represents its binary class label. We assume

that each individual in T belongs to an unobserved protected
group a

(i)
T , e.g., men or women. To be more precise, aT re-

main inaccessible both during training and inference.
We also consider a source dataset consisting of nS indi-

viduals S = {(x(i)
S , y

(i)
S , a

(i)
S )}nS

i=1 where again x
(i)
S is an

vS dimensional vector of non-protected features and y
(i)
S

represents its binary class label. In contrast to the target
dataset, the source dataset explicitly provides the protected
groups a

(i)
S . It is crucial to note that the source and target

datasets might differ significantly in terms of individuals and
types of features, with potential disparities in sample sizes
(nS ̸= nT ), and feature dimensions (vS ̸= vT ).

Given this setup, our goal is to leverage explicit groups
aS in S to estimate group memberships â(i)T for T . This in-
ference serves as a foundation for developing a fair model
MΘ(xT ), parameterized by Θ, for downstream tasks (e.g.,
fair lending decisions). Despite the absence of explicit aT ,
we seek to lead MΘ(xT ) to be fair for a particular group,
like gender, by selecting that group from aS .

The Pre-training Phase for SLSD
The purpose of the pre-training stage is to learn complex
nonlinear transformations between xS and xT such that the

resulting representations zS and zT , respectively, are highly
linearly correlated. Following Deep CCA (Andrew et al.
2013), we can model both transformations with a source
encoder Eϑ as zS = Eϑ(xS) and a target encoder Eφ as
zT = Eφ(xT ), where the corresponding parameters ϑ and
φ are jointly learned to maximize the total correlation be-
tween zS and zT . However, Deep CCA was originally de-
signed to find linear relationships between two views of the
same dataset, e.g., correlating images with their textual de-
scriptions. Applying this approach directly to our distinct
datasets xS and xT , each with its own unique individuals
and features might not be meaningful due to the lack of in-
herent linkage between them.

To address this, we present a straightforward data sam-
pling technique that establishes an indirect relationship be-
tween xS and xT . Typically, outcomes vary from favorable
or positive outcomes, such as loan approvals, to unfavorable
or negative outcomes, like loan rejections. Let’s denote pos-
itive subsets x+

S ⊂ xS and x+
T ⊂ xT of n+

S and n+
T in-

dividuals, respectively, when yS = yT = 1. The negative
counterparts x−

S and x−
T consist of the remaining n−

S and
n−
T individuals. Our sampling ensures that positive instances

from both datasets are concurrently transformed by their re-
spective encoders as z+S = Eϑ(x

+
S ) and z+T = Eφ(x

+
T ), and

similarly for the negative instances. Furthermore, we adjust
the sampling rate for x+

T and x−
T , by either oversampling or

downsampling, to ensure n+
S = n+

T and n−
S = n−

T . This bal-
ancing act enables effective optimization of the CCA loss in
terms of the covariance and variance as:

LCCA(zS , zT ) =−
n+
S∑

i=1

cov(z+S
(i)
, z+T

(i)
)/

√
var(z+S

(i)
)var(z+T

(i)
)

−
n−
S∑

i=1

cov(z−S
(i)
, z−T

(i)
)/

√
var(z−S

(i)
)var(z−T

(i)
)

.

(1)
Minimizing the LCCA(zS , zT ) is equivalent to maximizing

max
ϑ,φ

Tr(z⊺S , zT ) s.t. z⊺SzS = z⊺T zT = I , (2)

where zS = [z+S , z
−
S ] and zT = [z+T , z

−
T ] are the cor-

responding concatenations. The representations zS and zT
need to serve a dual purpose: they should be discriminative
enough for group estimations, and simultaneously, invariant
to discrepancies between source and target domains. To ful-
fill this, a “cross-domain” Protected Group Estimator (PGE)
model GΨ is designed that takes encoded representations as
input to estimate group memberships. Both Eφ and GΨ are
shared across all three training phases but are not used
during the inference of downstream fair model.

In the pre-training phase, GΨ aims to minimize a cross-
entropy (CE) loss, using only the observed aS as:

LCE(âS , aS) = −
nS∑
i=1

K∑
k=1

a
(i)
S,k log(â

(i)
S,k) , (3)

where K is the number of groups in the source domain and
âS = σ(GΨ(zS)) is the Softmax output of GΨ, with zS as
its input. Therefore, the final pre-training objective becomes:

min
ϑ,φ,Ψ

LCCA(zS , zT ) + LCE(âS , aS) . (4)
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Figure 1: Computational graph for SLSD. Target encoder (blue) and group estimator (green) are shared across all phases.

The Fine-tuning Phase for SLSD
The fine-tuning is focused on enhancing both the target en-
coder Eφ and PGE GΨ for the target data, given the restric-
tions of unobserved aT . Our approach is inspired by the
semi-supervised learning method (Xie et al. 2020), which
uses data augmentation for consistency training. However,
their method relies on a small set of labeled data to opti-
mize the supervised CE loss, while concurrently optimizing
the unsupervised consistency loss for the larger unlabeled
set. Additionally, their noising operations for data augmen-
tation, specifically designed for image and text data, are not
suitable for our tabular data context. To tackle these chal-
lenges, we extend their method for our needs by optimizing
supervised CE loss with entirely unsupervised data and in-
corporating an effective noise injection mechanism on Eφ’s
encoded representations for consistency training.

As GΨ is pre-trained solely on zS , we start by masking
out those samples in the target data for which GΨ displays
low confidence regarding the estimated group probabilities
âT = σ(GΨ(zT )), where zT = Eφ(xT ). To be specific, we
define a masking index m. For the top half, nT /2, of indi-
viduals with the highest probabilities across estimated group
categories, we set m = 1 and extract the corresponding sam-
ples as xT 1 = xT [m = 1]. For the remaining samples,
we set m = 0 and designate them as xT 0 = xT [m = 0].
For the supervised portion of training, group probabilities
are then estimated as âT 1 = σ(GΨ(Eφ(xT 1))). Using these
high-confidence samples, we generate pseudo-group labels
as a∗T 1 = arg max âT 1 and plug them in Equation 3.

In the unsupervised consistency training, we explored var-
ious noise injections into zT 0 = Eφ(xT 0), ranging from
Gaussian to drop-out and Laplace noises. Based on our ob-
servations, small random perturbations, particularly jitter-
ing drawn from a Cauchy distribution with heavier tails,
proved to be the most effective noise mechanism. Our nois-
ing operation can be formulated as z̃T 0 = zT 0 + ϵ, where

ϵ ∼ Cauchy(µ, γ). We set µ = 0 and γ = 200 for all our
experiments. The consistency loss is then computed as KL
divergence between the estimated group probabilities as:

LKLD(ˆ̃aT 0, âT 0) = âT 0 · (log âT 0 − log ˆ̃aT 0) , (5)

where, âT 0 = σ(GΨ(zT 0)) and ˆ̃aT 0 = σ(GΨ(z̃T 0/t)), us-
ing a reduced Softmax temperature t. Given that prior stud-
ies emphasize the advantages of reducing prediction entropy
in noisy scenarios (Grandvalet and Bengio 2004; Xie et al.
2020), we sharpen group predictions on augmented repre-
sentations by setting t to 0.4. The final fine-tuning objective:

min
φ,Ψ

LCE(âT 1, a
∗
T 1) + LKLD(ˆ̃aT 0, âT 0) . (6)

This fine-tuning procedure by minimizing both CE loss with
pseudo group assignments and divergence with noise injec-
tion gradually propagates the high confident group assign-
ments from xT 1 to low confident xT 0.

Relaxed Modeling Variant (R-SLSD)
Our relaxed modeling variant, R-SLSD, assumes that only a
small fraction of the target data provides access to protected
attributes. For simplicity, let’s use our previous notation:
xT 1 ⊂ xT now represnts a small subset with observed aT 1,
while xT 0 ⊂ xT represents the larger subset where aT 0 re-
mains unobserved. To utilize the aT 1 while pre-training en-
coders and PGE models in R-SLSD, the Equation 4 can be
extended by incorporating âT 1 = σ(GΨ(Eφ(xT 1))) as:

min
ϑ,φ,Ψ

LCCA(zS , zT ) + LCE(âS , aS) + LCE(âT 1, aT 1) . (7)

Under the R-SLSD framework, generating pseudo-group la-
bels via confidence-based masking during the fine-tuning
phase is no longer necessary. Therefore, the pseudo-groups
a∗T 1 in Equation 6 can be replaced with observed aT 1 as:

min
φ,Ψ

LCE(âT 1, aT 1) + LKLD(ˆ̃aT 0, âT 0) , (8)

where, the consistency training for xT 0 with unobserved
aT 0 proceeds in the same manner as the SLSD approach.
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The Debiasing Phase for SLSD and R-SLSD
Our debiasing approach for both SLSD and R-SLSD fol-
lows the same procedures. In an ideal scenario where our
protected group estimations are perfect, e.g., if GΨ esti-
mates the groups with absolute accuracy, we could readily
apply any existing fairness algorithm to debias the down-
stream ML model, simply by replacing the true protected
groups with our estimates. While achieving a perfect GΨ

is infeasible, we observe that fair learning methods, which
rely on explicit measurements of fairness metric to compute
constraints (Agarwal et al. 2018) or penalties (Islam et al.
2023), struggle to effectively debias the downstream model
when paired with our approach. This is presumably due to
the high sensitivity of the fairness metric to the noisy group
estimates, leading the model to converge in a bad solution.

To tackle this issue, we extend the adversarial debias-
ing method (Louppe, Kagan, and Cranmer 2017; Zhang,
Lemoine, and Mitchell 2018) to make the downstream
model’s predictions independent of our GΨ’s estimations,
eliminating the need for explicit fairness metric measure-
ment during training. Suppose MΘ is the downstream clas-
sifier model which takes xT as input and predicts the out-
come ŷT for each individual, who belongs to the unknown
protected group aT . Given our fine-tuned encoder Eφ and
PGE GΨ, the group assignments can be estimated as:

a∗
T = arg max GΨ(Eφ(xT )) . (9)

An adversarial network DΦ is then designed that gets classi-
fier’s predictions ŷT = σ(MΘ(xT )) as input and attempts to
predict groups as âT = σ(DΦ(ŷT )). The learning objective
to debias MΘ becomes a min-max problem:

min
Θ

max
Φ

LCE(ŷT , yT )− λLCE(âT , a∗
T ) , (10)

where λ > 0 is a hyper-parameter that trades between clas-
sifier MΘ’s utility and fairness. Larger λ allows to achieve
more fairness, but with greater loss in predictive perfor-
mance, while smaller λ has the opposite impact. In this de-
biasing procedure, the adversary DΦ penalizes the classifier
MΘ if the PGE GΨ’s output is predictable from the MΘ’s
output. Specifically, DΦ aims to assure that predictions from
MΘ are independent of the estimated group assignments a∗T .

Practical Considerations
Figure 1 summarizes the computational graph of our pro-
posed SLSD approach. In the experiments, we use stan-
dard feed-forward networks to implement both SLSD and
R-SLSD. The architecture for the source encoder Eϑ, target
encoder Eφ, classifier MΘ and adversary DΦ are fully con-
nected three layer feed-forward networks 256 − 128 − 64,
with ReLU activations. Although the PGE GΨ can be a deep
network, a linear structure without hidden layers proved to
be optimal. This is particularly true for the small academic
benchmark datasets we experimented with, where the nec-
essary features for group estimations were already extracted
by the encoders. Notably, for adversarial debiasing, we ob-
serve that a warm start initialization procedure is required
before optimizing the min-max problem in Equation 10. The
training for the debiasing can be summarized in three steps:

(a) Adult Dataset

(b) Default Dataset

Figure 2: Fairness metrics across 10 runs. Lower is better for
parity difference; higher for parity ratio.

1) pre-training MΘ for the entire data, 2) pre-training DΦ

on the MΘ’s predictions, and 3) finally, alternately train MΘ

and DΦ for each mini-batch by first training DΦ while keep-
ing MΘ fixed and then training MΘ while keeping DΦ fixed.

Experimental Results
We conduct a comprehensive evaluation of our SLSD and
R-SLSD on three benchmark datasets3: 1) Adult (Becker
and Kohavi 1996): income prediction, 2) ACSIncome (Ding
et al. 2021): another variant of income prediction and 3)
Default (Yeh 2016): credit card default prediction 4. For all
datasets, we selected gender (men and women) as the pro-
tected attribute. Additionally, we conducted a case study on
the COMPAS dataset, which has faced criticism for racial
bias in criminal recidivism predictions (Angwin et al. 2016),
focusing on the protected attribute race (white and black).

Evaluation Metrics
To assess predictive accuracy, we measure the area under
the ROC curve (AUC) and balanced accuracy (Bal. Acc.),
averaged over all (overall) instances, given their robust-
ness against class imbalance. For fairness evaluation, we use
well-recognized group fairness metrics: demographic parity
difference (DPD) (Zemel et al. 2013) and demographic par-
ity ratio (DPR) (Zafar et al. 2017) that quantify disparities in
favorable outcomes between privileged (e.g. men) and un-
privileged (e.g., women) groups. In line with DRO and ARL
paper, we also report AUC (min) and Bal. Acc. (min) met-
rics, which denote the minimum AUC and Bal. Acc. values
across all protected groups. These metrics serve as represen-
tations of Rawlsian max-min fairness. A lower DPD is de-

3Detailed dataset’s descriptions are in the Supplementary.
4To replicate Ernst and Young’s study (Dudı́k et al. 2020) on

unfairness in credit models, following Microsoft Fairlearn toolkit
(https://tinyurl.com/mv3d4npj), we introduced a synthetic feature,
which is highly correlated with both gender and the outcome.
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Dataset Method Bal. Acc. ↑
overall

Bal. Acc. ↑
min

AUC ↑
overall

AUC ↑
min DPR ↑ DPD ↓

Adult

Baseline 0.773±0.009 0.764±0.007 0.910±0.001 0.888±0.009 0.349±0.016 0.164±0.012
DRO 0.735±0.022 0.716±0.020 0.903±0.002 0.879±0.002 0.310±0.044 0.146±0.027
ARL 0.778±0.004 0.769±0.003 0.912±0.000 0.890±0.000 0.340±0.007 0.170±0.004
SLSD 0.700±0.028 0.695±0.023 0.828±0.035 0.822±0.028 0.575±0.158 0.078±0.033
R-SLSD 0.763±0.012 0.750±0.012 0.900±0.003 0.885±0.001 0.559±0.047 0.103±0.019

Default

Baseline 0.781±0.007 0.737±0.005 0.885±0.001 0.841±0.001 0.628±0.001 0.114±0.004
DRO 0.753±0.017 0.726±0.013 0.874±0.002 0.830±0.002 0.588±0.021 0.114±0.007
ARL 0.778±0.005 0.744±0.003 0.880±0.001 0.839±0.002 0.492±0.011 0.175±0.006
SLSD 0.752±0.092 0.714±0.079 0.835±0.157 0.789±0.146 0.714±0.094 0.084±0.029
R-SLSD 0.775±0.010 0.737±0.006 0.882±0.003 0.841±0.002 0.721±0.028 0.080±0.013

ACSIncome

Baseline 0.798±0.003 0.794±0.003 0.894±0.000 0.888±0.000 0.698±0.007 0.123±0.004
DRO 0.771±0.018 0.766±0.020 0.875±0.002 0.870±0.002 0.724±0.032 0.106±0.009
ARL 0.801±0.003 0.797±0.003 0.896±0.000 0.890±0.000 0.700±0.007 0.124±0.003
SLSD 0.723±0.048 0.715±0.051 0.817±0.056 0.804±0.061 0.727±0.036 0.096±0.020
R-SLSD 0.797±0.003 0.792±0.003 0.892±0.001 0.889±0.000 0.786±0.013 0.083±0.006

Table 1: Performance for our SLSD and R-SLSD on the target datasets, compared with standard Baseline, DRO, and ARL.

sirable, while for other metrics, higher values are prefer-
able. The protected features are used for fairness evaluation
on the test subset of the target dataset.

Experimental Settings
Our methodology is designed for a transfer learning be-
tween source and target datasets. Specifically, ACSIncome
serves as the source when Adult is the target, and con-
versely, Adult becomes the default source for other target
datasets. While SLSD operates fully unsupervised in terms
of protected features in the target, the R-SLSD randomly in-
corporates these features for 1% of training examples.

We use the same experimental setup, architecture, and
hyper-parameter tuning for all the approaches reported in
the experimental section. Each dataset is randomly split
into 70% training and 30% test sets. Hyper-parameter tun-
ing, including learning rate, mini-batch size, and the fair-
ness tuning parameter λ (from Equation 10), is conducted
on the training set. Best hyper-parameter values for all ap-
proaches are chosen via grid-search by performing 5-fold
cross-validation optimizing for the best overall balanced ac-
curacy. Note that we do not use protected features for tun-
ing. Once the hyper-parameters are tuned, we use the inde-
pendent test set for unbiased performance assessment. Re-
fer to supplementary for further details. All experimental re-
sults are averaged across 10 independent runs, with different
model parameter initialization.

Main Results - Fairness without Demographics
Our main comparisons are with DRO (Hashimoto et al.
2018), a group-agnostic distributionally robust optimization,
and ARL (Lahoti et al. 2020), a group-agnostic adversari-
ally reweighted learning technique. We also report results
for the standard group-agnostic Baseline classifier, which
emphasizes solely accurate predictions, without any fairness
considerations. Table 1 reports average performance metrics
with standard deviations across runs, with best results high-
lighted in bold. We make the following key observations:

• Both SLSD and R-SLSD improve group fairness: Our
proposed models outperform other models in group fair-
ness metrics across all datasets. Specifically, SLSD is the
fairest model for the Adult in terms of both DPR and
DPD, while R-SLSD leads in fairness improvement for
the Default and ACSIncome datasets. When compared to
the Baseline model on these datasets, SLSD notably im-
proves DPR by 64.8%, 13.7%, and 4.2% and DPD by
52.4%, 26.3%, and 22.0%, while R-SLSD improves DPR
by 60.2%, 14.8%, and 12.6% and DPD by 37.2%, 29.8%,
and 32.5%, respectively.

• DRO and ARL often amplify existing biases: While the
intent of any fair learning algorithm is to address biases
present in the standard Baseline model, both DRO and
ARL often underperform or can even intensify these bi-
ases. Figure 2 further shows DPD and DPR for all meth-
ods over 10 runs with varied model initializations. For
both Adult and Default datasets, DRO and ARL amplify
the Baseline model’s biases. In contrast, our SLSD and
R-SLSD models consistently mitigate these biases.

• Cost of utility in SLSD: Pursuing improved group fair-
ness often results in a compromise on predictive accu-
racy, a well-established trade-off (Agarwal et al. 2018;
Menon and Williamson 2018; Zhao and Gordon 2022).
Given SLSD’s dual challenges of improving fairness and
bridging domain shifts between source and target, it un-
surprisingly sacrifices both AUC and balanced accuracy.
As DRO and ARL primarily aim to enhance utility met-
rics for under-performing groups, easily outperform SLSD
in these measures. However, our R-SLSD model offers a
promising balance, even overtaking DRO in utility.

Comparison with Fully Supervised Fair Model
To highlight our models’ merits, we compare them with
the original adversarial debiasing model (ADM) (Zhang,
Lemoine, and Mitchell 2018), which demands access to pro-
tected features for all training instances. Figure 3 shows the
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(a) Adult Dataset

(b) Default Dataset

Figure 3: Comparison of SLSD and R-SLSD with ADM,
which utilizes protected features for all training instances.

(a) Adult Dataset (b) ACSIncome Dataset

Figure 4: Protected group estimation comparing our SLSD
and R-SLSD with a fully supervised model.

cross-validation grid search analysis for SLSD, R-SLSD,
and ADM on Adult and Default datasets. SLSD outperforms
in both DPD and DPR metrics without any protected tar-
get data, at the expense of AUC. Using just 1% of protected
data, R-SLSD closely mirrors ADM’s performance, which
utilizes 100% of protected data, in both utility and fairness.

Performance for Protected Group Estimations
As our debiasing method depends on the group estimations,
we further probe into the efficacy of these estimations in
Figure 4. We train a fully supervised classifier to predict
groups, establishing it as our benchmark. This Supervised
Baseline consistently outperforms SLSD in balanced accu-
racy for group estimations. As expected, when the data frac-
tion of group labels available to R-SLSD increases, its per-
formance approximates the Supervised Baseline.

Case Study of An Extreme Scenario
We analyze an extreme scenario where the COMPAS crim-
inal recidivism is the target dataset for all models, while
SLSD and R-SLSD use the Adult income prediction as the
source dataset. Given completely distinct domains (financial
vs criminal justice), the fairness improvement of our models

Method Bal. Acc. ↑
overall

AUC ↑
overall DPR ↑ DPD ↓

Baseline 0.684 0.745 0.642 0.235
DRO 0.665 0.740 0.671 0.236
ARL 0.685 0.745 0.642 0.234
SLSD 0.676 0.736 0.660 0.221
R-SLSD 0.653 0.739 0.718 0.224

Table 2: Extreme scenario for SLSD and R-SLSD.

sharply decreases, compared to earlier experiments. This an-
ticipated decline is presumably due to the significant domain
shift, complicating the alignment between the source and
target domains. However, SLSD and R-SLSD still surpass
DRO and ARL in DPD. Regarding DPR, R-SLSD outper-
forms both DRO and ARL, though DRO edges out SLSD.

Discussion and Future Work
In future work, we plan to address potential privacy con-
cerns related to our group estimates by adopting federated
learning. This involves training the debiasing network on
encrypted group estimates from SLSD in a secure environ-
ment. Once the downstream model is adjusted for fairness,
the redundant debiasing components can be discarded dur-
ing inference, eliminating residual privacy risks. We also
aim to expand our methodology to a multi-dimensional pro-
tected groups setting, which will require more than a one-vs-
all approach due to potential computational inefficiency and
loss from data-sparsity issue of intersecting groups (Foulds
et al. 2020a). To tackle this, we suggest learning multi-
dimensional representations where each dimension corre-
sponds to a protected group. Furthermore, SLSD can be ex-
tended to multi-class classification and regression tasks by
directly utilizing our debiasing approach, where the adver-
sary takes classifier’s predicted probabilities or the regres-
sion model’s continuous outcome. This, however, introduces
complexity for data sampling in the pre-training phase, as
information on individuals with both favourable and un-
favourable outcomes is needed to map the disadvantaged
groups in the latent space. We suggest binarizing the out-
put space for these tasks. Our method also offers flexibility
in replacing the debiasing phase with other techniques, such
as fair representation learning (Louizos et al. 2016) , by pro-
viding group estimates instead of the true protected groups.

The journey towards algorithmic fairness is deeply em-
bedded within broader social and historical discourses on
equity and justice (Noble 2018; Keyes, Hutson, and Durbin
2019). Existing solutions for fairness without demographics
mainly focus on addressing representation bias. However,
fairness is not just a technical problem, it also encompasses
societal, philosophical, and legal dimensions (Campolo et al.
2017). Our work introduces a promising direction of do-
main adaptation while acknowledging the complexities of
demographic-agnostic fairness. SLSD, with its wide appli-
cability in fairness-aware applications, especially in indus-
tries where demographic data collection is legally restricted,
mitigates current privacy concerns in the ML fairness.
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