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Abstract

Despite the recent successes of vanilla Graph Neural Net-
works (GNNs) on various tasks, their foundation on pair-
wise networks inherently limits their capacity to discern la-
tent higher-order interactions in complex systems. To bridge
this capability gap, we propose a novel approach exploiting
the rich mathematical theory of simplicial complexes (SCs)
- a robust tool for modeling higher-order interactions. Cur-
rent SC-based GNNs are burdened by high complexity and
rigidity, and quantifying higher-order interaction strengths re-
mains challenging. Innovatively, we present a higher-order
Flower-Petals (FP) model, incorporating FP Laplacians into
SCs. Further, we introduce a Higher-order Graph Convolu-
tional Network (HiGCN) grounded in FP Laplacians, capa-
ble of discerning intrinsic features across varying topologi-
cal scales. By employing learnable graph filters, a parame-
ter group within each FP Laplacian domain, we can identify
diverse patterns where the filters’ weights serve as a quan-
tifiable measure of higher-order interaction strengths. The
theoretical underpinnings of HiGCN’s advanced expressive-
ness are rigorously demonstrated. Additionally, our empirical
investigations reveal that the proposed model accomplishes
state-of-the-art performance on a range of graph tasks and
provides a scalable and flexible solution to explore higher-
order interactions in graphs. Codes and datasets are available
at https://github.com/Yiminghh/HiGCN.

1 Introduction
Graphs are ubiquitous in representing irregular relations
in various scenarios. However, they are inherently con-
strained to modeling pairwise interactions exclusively (Bat-
tiston et al. 2020). Many empirical systems display group
interactions, going beyond pairwise connections, such as
social systems (Centola 2010), neuronal networks (Gan-
mor, Segev, and Schneidman 2011), and ecological networks
(Grilli et al. 2017). However, such higher-order interactions
can hardly be modeled or approximated by pairwise graphs.
In addition, it is still elusive how to quantify the higher-order
interaction strength, although many studies have demon-
strated its existence (Battiston et al. 2021).

*These authors contributed equally.
†Corresponding author.
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Graph neural networks (GNNs) can exploit the features
and topology of graphs simultaneously, thereby triggering
a wide-spreading research interest and endeavor in vari-
ous graph learning tasks such as recommender systems and
new drug discovery. In particular, spectral GNNs have been
widely recognized for their rigorous mathematical theory.
Nevertheless, pairwise-graph-based GNNs fail to capture la-
tent higher-order interactions prevalent in empirical systems,
and their expressive power was proved to be upper bounded
by Weisfeiler-Lehman (WL) test (Xu et al. 2019).

Simplicial complexes (SCs) and hypergraphs have
emerged to study higher-order interactions beyond conven-
tional pairwise descriptors (Battiston et al. 2020). While
hypergraph learning has made fruitful progress (Gao et al.
2022), it typically ignores relations within the hyper-
edges, and the construction of hypergraphs is often under-
optimized. The simplicial description is another potent tool
with elegant mathematical theories to draw from, paving a
middle ground between graphs and hypergraphs. It has been
found that SCs play a vital role in social contagion, synchro-
nization, brain network analysis, etc.

Deep learning facilitated simplicial complex theory is a
fresh perspective and a promising research field. Several
simplicial GNNs have been proposed by simply replacing
the graph Laplacian with the Hodge Laplacian (Schaub et al.
2020). A simplicial WL test is proposed along with its neu-
ral version MPSN (Bodnar et al. 2021) based on the adja-
cency relations that Hodge theory defines. MPSN is proved
to be more powerful than vanilla GNNs under ideal condi-
tions, implying the potential of extending graph representa-
tion learning to SCs.

In summary, pairwise GNNs fail to capture latent group
interactions prevalent in complex systems, and the expres-
sive power of such models was proved to be upper bounded
by the WL-test. As an emerging and promising research
field, simplicial GNNs have initially shown their potential
to outperform pairwise GNNs. However, existing models are
limited by their high complexity and low flexibility.

In this paper, we introduce a novel higher-order flower-
petals (FP) representation based on two-step random walk
dynamics (Zeng et al. 2023b) between the flower core and
petals. This representation enables us to incorporate inter-
actions among simplices of various orders into graph learn-
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ing. Higher-order graph convolutional network (HiGCN) is
then proposed by employing learnable and tailored convo-
lution filters (group of parameters) in different FP Lapla-
cian domains. The learnable filters can learn arbitrary shapes
and deal with high and low-frequency parts of the simpli-
cial signals adaptively. Hence, the proposed HiGCN model
can learn the simplex patterns of disparate classes and
higher-order structures simultaneously. Moreover, the fil-
ters’ weights in different orders can quantify the higher-
order interaction strength, contributing to a deeper under-
standing of higher-order mechanisms in complex systems.
We also interpret HiGCN from the message-passing per-
spective and theoretically demonstrate its superior expres-
sive power. Numerical experiments on various graph tasks
further pinpoint that the proposed model has outperformed
state-of-the-art (SOTA) methods.

Main contributions. To summarise, we construct an inno-
vative higher-order flower-petals (FP) model and FP Lapla-
cians from the random walk dynamics to capture interac-
tions among simplices of different orders. We then propose
a higher-order graph convolutional network (HiGCN) based
on our FP Laplacians, which is demonstrated to have su-
perior expressiveness in theory and significant performance
gains in various empirical experiments. Furthermore, a data-
driven strategy is employed to quantify the higher-order in-
teraction strength. In general, our work is an important step
towards advancing higher-order graph learning and under-
standing higher-order mechanisms.

2 Related Work
In this section, we briefly review related works on vanilla
spectral GNNs and higher-order GNNs.

Spectral GNNs. Spectral GNNs are based on the graph
Fourier transform (Shuman et al. 2013), which employs
the graph Laplacian eigenbasis as an analogy of the
Fourier transform. ChebNet (Defferrard, Bresson, and Van-
dergheynst 2016) employs Chebyshev polynomials to re-
place the convolutional core, while GCN (Kipf and Welling
2017) uses a first-order approximation of the convolution
operator. By considering the relationship between GCN and
PageRank, APPNP (Gasteiger, Bojchevski, and Günnemann
2019) is proposed via personalized PageRank. GPRGNN
(Chien et al. 2020) leverages a learnable graph filter, exhibit-
ing superiority in heterogeneous graph learning. The filter
forms of some spectral GNNs are summarized in Table 1.

Higher-order GNNs. The crude simplification of com-
plex interaction into pairwise will inevitably result in infor-
mation loss. Higher-order GNNs, as extensions of vanilla
GNNs, can be classified into different types according to
their application scenarios, and spectral-based simplicial
GNNs are in the limelight of this paper. The Hodge the-
ory (Hatcher 2002) enables us to describe diffusion across
simplices conveniently. Several simplicial GNNs, such as
SNN (Ebli, Defferrard, and Spreemann 2020) and SCoNe
(Roddenberry, Glaze, and Segarra 2021), simply replace
the graph Laplacian with the Hodge p-Laplacian. SCNN

Model Convolution Filter Spectral

GCN (1− λ)K Graph
APPNP

∑K
k=0

γk

1−γ
(1− λ)k Graph

GPRGNN
∑K

k=0 γk(1− λ)k Graph
ChebNet

∑K
k=0 γk cos (k arccos (1− λ)) Graph

SNN λK Hodge
SCoNe λK

down, λ
K
up Hodge

SCNN
∑K1

k=0 γd,kλ
k
down +

∑K2
k=0 γu,kλ

k
up Hodge

BScNets f(λ1, λ2, · · · , λP ; θ)
K Block

Hodge

HiGCN
∑K

k=0 γp,k(1− λp)
k,

p = 1, 2, · · · , P FP

Table 1: The filter forms of spectral GNNs.

(Yang, Isufi, and Leus 2022) employs flexible simplicial fil-
ters to process edge signals from lower and upper simpli-
cial neighbors, respectively. BScNet (Chen, Gel, and Poor
2022) is introduced by replacing the graph Laplacian with
the block Hodge Laplacian. Nevertheless, the Hodge theory
is inherently constrained to modeling interactions between
simplices within one order difference. As for spatial mod-
els, SGAT (Lee, Ji, and Tay 2022) constructs SCs from het-
erogeneous graphs and leverages upper adjacencies to pass
messages between simplices. MPSN (Bodnar et al. 2021) is
designed based on the simplicial WL-test with four types of
adjacency relations. Generally, most simplicial GNNs can
only leverage information from specific simplicial orders,
missing the inherent advantages of SCs. Besides, it is com-
putationally expensive to find all simplices (Bomze et al.
1999) and unnecessary to compute embeddings for redun-
dant simplices in traditional tasks.

3 Preliminaries
The background knowledge required to present this work
better is illustrated in this section. Let G = (V, E) de-
note an undirected pairwise graph with a finite node set
V = {v1, · · · , vn} and an edge set E ⊆ V ×V . Assume that
|V| = n, |E| = n1, and N(v) denotes the set of nodes adja-
cent to node v in G, i.e., N(v) = {u ∈ V|(v, u) ∈ E}. The
nodes are associated with a node feature matrix X ∈ Rn×d,
where d signifies the number of features per node.

Definition 3.1 (Simplicial complexes, SCs). A simplicial
complex K is a finite collection of node subsets closed under
the operation of taking nonempty subsets, and such a node
subset σ ∈ K is called a simplex (as illustrated in Figure 1).

SCs are a potent tool with a rich theoretical foundation
upon algebraic and differential topology and geometry (Bat-
tiston et al. 2020). Instead of predominantly studying pair-
wise interactions, SCs facilitate the modeling of higher-
order interactions and multi-node graph structures.

A node subset σ = [v0, v1, · · · , vp] ∈ K with car-
dinality p + 1 is referred to as a p-dimensional simplex,
termed p-simplex, and we denote the set of all such p-
simplices as Kp with |Kp| = np. One can regard vertices
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Figure 1: a shows several typical simplices and its collection
forms SCs in b. Subfigures c and d visualize the higher-order
incidence matrices Hp for p = 1 and 2, respectively.

as 0-simplices, edges as 1-simplices, “filled” triangles as 2-
simplices, and so forth. A triangle [v1, v2, v3] ∈ K implies
that its nonempty subsets, namely [v1], [v2], [v3], [v1, v2],
[v1, v3], and [v2, v3], are also in K. Pairwise graphs can
be viewed as 1-dimensional SCs, while higher-order SCs
generally carry more structure information over pairwise
graphs, which is critical and should not be omitted.

Clique complex lifting transition, as formally defined
in Appendix B, extracts all cliques as simplices, convert-
ing pairwise graphs to SCs. This transformation enables the
study of pairwise graphs from simplicial perspectives.

The boundary relation describes which simplices lie on
the boundary of other simplices. We say σ is on the boundary
of τ , denoted as σ ≺ τ , iff σ ⊂ τ and dim(σ) = dim(τ)−1.
For example, edges [v1, v2], [v1, v3], and [v2, v3] lie on the
boundary of the 2-simplex [v1, v2, v3].

Hasse diagram is one of the most common representa-
tions of SCs, where each vertex corresponds to a simplex.
The edges in the Hasse diagram are defined by the boundary
relation, and there exists an edge connecting two vertices σ1

and σ2, iff σ1 ≺ σ2. The hasse diagram is highly expres-
sive, and several simplicial GNNs (Bodnar et al. 2021; Hajij
et al. 2022) are built precisely on the boundary relationships
shown in the hasse diagram.

4 Methodology
We first introduce the higher-order flower-petals model for
simplicial complex representation, which will subsequently
be leveraged to construct our HiGCN model.

4.1 Flower-Petals Model
Hasse diagrams are valuable in studying SCs, but they are in-
herently constrained to modeling interactions for directly ad-
jacent simplices and are computationally expensive to con-
struct. Multiple transitions are required for information to
pass between nodes and higher-order structures. Besides,
the number of total simplices grows exponentially with the
number of nodes in dense graphs. Computing embeddings
for all higher-order structures can be costly and unneces-
sary for specific-level tasks. To address these challenges,
we construct a novel higher-order representation, named the
flower-petals (FP) model, and then introduce FP adjacency

and Laplacian matrices based on the higher-order random
walk dynamics between the flower core and petals.

It can be simplified only to consider the interaction be-
tween 0-simplices and higher-order structures when tackling
the most common tasks: node-level tasks. Hence, we con-
struct a flower-petals model by simplifying the intermediate
vertices on the Hasse diagram. Specifically, the flower-petals
model consists of one core and several petals, see Figure
2, with interactions considered only between the core and
petals. 0-simplices are placed in the flower core, and each
flower petal involves simplices of the same order (larger than
zero). The term p-petal is used to represent the petal con-
taining p-simplices. Diverse and complex interactions exist
between p-petal and the core, which can be unwrapped as
a bipartite graph Gp. Mathematically, the bipartite graph Gp

consists of two distinct vertex sets (V,Kp), where V repre-
sents the set of nodes contained in the flower core and Kp

comprised of simplices in the p-petal (p ≥ 1). If simplex
σ(∈ Kp) contains node v(∈ V), then there exists an edge
between their corresponding vertices in Gp. The proposed
flower-petals model prunes the information interaction rules
between petals but is still extremely expressive and useful.

Inspired by incidence matrices in pairwise networks, we
introduce higher-order incidence matrix Hp ∈ R|V|×|Kp| to
describe the association between vertices in the core and p-
simplices in the p-petal, with entry Hp(v, σ) = 1 indicating
the vertex v is contained in the simplex σ(∈ Kp). Visual
representations are provided in Figure 1 c and d for clarity.

4.2 Flower-Petals Algebraic Description
Hodge Laplacian (Schaub et al. 2020; Hatcher 2002) is a
fundamental tool in simplicial complexes. However, it can
only describe interactions between simplices within one-
order differences. To model interactions between different
order simplices more flexibly, we introduce novel matrical
descriptions for simplicial complexes based on the random
walk dynamics between the flower core and petals.

The main idea of random walks is to traverse a graph start-
ing from a single node or a set of nodes and get sequences
of locations (Zeng et al. 2023a). We introduce the traditional
random walk model in Appendix D. Walking on the bipar-
tite graphs Gp consists of two sub-steps: (I) upward walk and
(II) downward walk.

The upward walk refers to the walk from nodes in the
flower core to their corresponding simplices in the p-petal,
while the downward walk proceeds in the opposite direc-
tion. Consider π(t) = (πv1

(t), · · · , πvn
(t))

⊤, whose item
πσ(t) encodes the probability for simplex σ to be occu-
pied by a random walker at step t. In the upward walk pro-
cess, information is transmitted from nodes to simplices and
the probability of moving from vertex u to simplex σ is
equal to Hp(u, σ)/dp(u). The downward walk, i.e., petals-
to-core walk, allows information to be transferred from
simplices back to nodes. These two processes follow that
πσ(t − 1) =

∑
u dp(u)

−1Hp(u, σ)πu(t − 2), and πv(t) =∑
σ δp(σ)

−1Hp(v, σ)πσ(t − 1), for upward and downward
walks, respectively. Here, dp(u) =

∑
σ∈Kp

Hp(u, σ) de-
notes the degree of u on Gp, and δp(σ) =

∑
v∈V Hp(v, σ) =
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Figure 2: Visualization of the flower-petals model. Different HiGCN models employ different numbers of petals, with each
petal containing simplices of identical order. a-d visualizes 1,2,4,3-HiGCN, respectively. The interaction between each petal
and the flower core can be unwrapped as an individual bipartite graph. FP Laplacians are derived based on the random walk
dynamics in the bipartite graphs, followed by various learnable convolution operations gp on each FP Laplacian basis.

p+ 1 represents the degree of p-simplex σ on Gp(p ≥ 1).
The two-step walk (Zeng et al. 2023b) integrates both the

upward and downward walks, allowing the information to
be transmitted from the flower core and back through the
petals. A complete two-step walk process follows that

πv(t) =
∑
σ

Hp(v, σ)

δp(σ)

∑
u

Hp(u, σ)

dp(u)
πu(t− 2). (1)

We can further derive the matrix representation for
the two-step walk as π(t) = HpD

−1
p,hH⊤

p D
−1
p,vπ(t − 2),

where Dp,v = diag (dp(v1), · · · , dp(vn)) and Dp,h =
diag

(
δp(σ1), · · · , δp(σ|K|)

)
= (p + 1)I . By multiplying

D
−1/2
p,v from the left sides of this equation, we can obtain

D−1/2
p,v π(t) =

[
D−1/2

p,v HpD
−1
p,hH

⊤
p D

−1/2
p,v

]
D−1/2

p,v π(t− 2).

(2)
Therefore, based on the two-step walk dynamic between

the flower core and petals, we can define higher-order
flower-petals (FP) adjacency matrices analogously to the re-
duced adjacency matrices (see Appendix D) as

Ãp = D−1/2
p,v HpD

−1
p,hHp

⊤D−1/2
p,v

=
1

p+ 1
D−1/2

p,v HpHp
⊤D−1/2

p,v .
(3)

The Laplacian operator is crucial for the processing of
relational data, and it bears resemblance to the Laplace-
Beltrami operator in differential geometry. On the basis of
the FP adjacency matrices, we can likewise define a series
of higher-order FP Laplacian operators as Lp = I − Ãp.

Theorem 4.1. The flower-petals adjacency matrices Ãp and
flower-petals Laplacian matrices Lp are all symmetric pos-
itive semidefinite.

It follows from Theorem 4.1 that 0 ≤ λ(Ãp), λ (Lp) ≤ 1.
We defer the proof and further theoretical analysis of the
spectral properties to Appendix A. Theorem 4.1 contributes
to alleviate the numerical instability and exploding/vanish-
ing gradients that may arise in the implementation of deep
GNNs based on the FP Laplacians. The diverse FP Lapla-
cian matrices capture the various connectivity relations of
the simplicial complexes, where we can learn a series of di-
verse spectral convolution operators.

4.3 Higher-Order Graph Convolutional Network
The eigen decomposition L = ΦΛΦ⊤ can be applied
to the Laplacian matrix to obtain orthonormal eigenvec-
tors Φ = (ϕ1, ϕ2 · · · , ϕn) and a diagonal matrix Λ =
diag (λ1, λ2, · · · , λn). Then, for a graph signal x, the graph
Fourier transform is defined as Φ⊤x, where the eigenvectors
act as the Fourier bases and the eigenvalues are interpreted
as frequencies. The spectral convolution of signal x and fil-
ter g can then be formulated as

g ⋆ x = Φ
((
Φ⊤g

)
⊙
(
Φ⊤x

))
= Φg(Λ)Φ⊤x. (4)

Here, operator ⊙ presents the Hadamard product, and the fil-
ter g(Λ) applies g element-wisely to the diagonal entries of
Λ, i.e., g(Λ) = diag (g(λ1), · · · , g(λn)). Note that spectral
decomposition for large-scale networks can be computation-
ally expensive. Therefore, one can approximate any graph
filter using a polynomial filter with enough terms (Shuman
et al. 2013). Consequently, the filter g is usually set to be
a truncated polynomial g(λ) =

∑K
k=0 γkλ

k of order K. In
this way, spectral decomposition is avoided.

We derive various FP Laplacian matrices based on the
FP model, each representing different connectivity relations
within SCs. Subsequently, we define different convolution
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operations on each FP Laplacian basis as

g ⋆p x = gp(Lp)x, (5)

where graph filter gp(Lp) =
∑K

k=0 γp,kLk
p is composed of

different learnable polynomial functions in each FP spec-
tral domain. These learnable coefficients γp,k capture the
contributions of different hop neighbors in each order. K
is a hyperparameter denoting the largest hops of the sim-
plices under consideration. We summarize some prevalent
filter forms in Table 1. When processing a simplicial sig-
nal X ∈ Rn×d with d dimensional features, a more general
form of spectral GNNs follows that Y = ρ (g(L)φ(X)).
Here, ρ and φ are permutation-invariant functions.

To encode multi-scale higher-order information, the final
prediction is obtained by concatenating results from differ-
ent convolution operations as

Yp = gp(Lp)φp(X), Y = ρ
(∣∣∣∣P

p=1
Yp

)
. (6)

Here, ∥ concatenates the representation in different spectral
domains. Besides, we simplify ρ and φp to linear functions
as suggested by (Wang and Zhang 2022), resulting in

Y =
P∣∣∣∣

p=1

(
K∑

k=0

γp,kÃk
pXΘp

)
W. (7)

Here, γp,k,Θp, and W are trainable parameters, and P is a
hyperparameter indicating the highest order of the simplices
under consideration. The model under P = ℓ is denoted as
ℓ-HiGCN. Notably, the training process can be accelerated
by precalculating Ãk

p , which can be efficiently calculated be-
tween sparse matrices.

HiGCN facilitates the independent and flexible learning
of filter shapes across disparate FP spectral domains rather
than predetermining filter configurations. Consequently, it is
adept at handling both high/low frequency and high/low or-
der signal components in a versatile manner. Furthermore,
we find that the filters’ weights in different orders quan-
tify the strength of the higher-order interactions, contribut-
ing to the understanding of higher-order mechanisms inher-
ent within complex systems. Now, we proceed to elucidate
the advantages of HiGCN from various perspectives.

Expressive power. We have developed the HiGCN model
from a spectral perspective. The WL test provides a well-
studied framework for unique node labeling, and an intrin-
sic theoretical connection has been uncovered between the
WL test and message-passing-based GNNs (Xu et al. 2019).
We extend this relation and propose a higher-order WL test,
termed HWL, along with its simplified version SHWL. De-
tailed procedures for WL, HWL, and SHWL are elaborated
in Appendix B. Furthermore, we revisit the HiGCN model
from the message-passing perspective in Appendix B, offer-
ing an alternative interpretation that underscores the excep-
tional expressive power of our model.
Theorem 4.2. SHWL with clique complex lifting is strictly
more powerful than Weisfeiler-Lehman (WL) test.

The proposed model can be interpreted as a neural version
of the SHWL test where colors are replaced by continuous

feature vectors. Hence, Theorem 4.2 implies that HiGCN en-
dows with greater expressive power than vanilla GNNs. See
Appendix B for proof and detailed discussion.

Relation to existing models. HiGCN shows superiority
over pairwise graph-based GCNs for exploiting higher-order
information, and it generalizes spectral convolution opera-
tions on pairwise graphs, including GCN (Kipf and Welling
2017) and GPRGNN (Chien et al. 2020). On the other
hand, HiGCN exhibits greater flexibility than certain Hodge
Laplacian-based simplicial GCNs, such as SNN (Ebli, Def-
ferrard, and Spreemann 2020) and SCNN (Yang, Isufi,
and Leus 2022), overcoming the constraints of information
exchange exclusively through boundary operators. Further
derivation and discussion are presented in Appendix C.

Symmetries. It is a fundamental concept for understand-
ing GNNs and their behavior. HiGCN has been demon-
strated to exhibit equivariance with respect to relabeling of
simplices, enabling it to exploit symmetries in SCs. Formal
proofs and detailed discussions are deferred to Appendix E.

Computational complexity. A balance between perfor-
mance and complexity can be achieved by limiting the num-
ber of petals P . We find that a small P is typically ade-
quate, and considering more petals may result in diminish-
ing marginal utility. Generally, the computational complex-
ity of HiGCN is comparable to that of spectral GNNs. We
report the average training time per epoch and average to-
tal running time in Appendix G, demonstrating that HiGCN
achieves competitive performance with a reasonable compu-
tational cost. Additionally, when the targeted graph is not in
the form of SCs, one should also consider the one-time pre-
processing procedure for graph lifting, see Appendix G for
details.

5 Experiments
In this section, we evaluate HiGCN on three tasks: node/
graph classification and simplicial data imputation. Detailed
data introduction and experimental settings are deferred to
Appendices H and I, respectively.

5.1 Node Classification on Empirical Datasets
We perform the node classification task employing five ho-
mogeneous graphs, encompassing three citation graphs -
Cora, CiteSeer, PubMed (Yang, Cohen, and Salakhudinov
2016) - and two Amazon co-purchase graphs, Computers
and Photo (Shchur et al. 2018). Additionally, we include five
heterogeneous graphs, namely Wikipedia graphs Chameleon
and Squirrel (Rozemberczki, Allen, and Sarkar 2021), the
Actor co-occurrence graph, and the webpage graphs Texas
and Wisconsin from WebKB (Pei et al. 2020). Adjacent
nodes in homogeneous graphs tend to share the same la-
bel, while the opposite holds in heterogeneous graphs. The
clique complex lifting transition is carried out on each graph.

We compare HiGCN with various baseline models includ-
ing MLP, pairwise GNNs (GAT (Veličković et al. 2018),
ChebNet (Defferrard, Bresson, and Vandergheynst 2016),
BernNet (He et al. 2021), GGCN (Yan et al. 2021), APPNP
(Gasteiger, Bojchevski, and Günnemann 2019), GPRGNN
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Method Cora Citeseer PubMed Computers Photo Chameleon Actor Squirrel Texas Wisconsin

MLP 76.96 76.58 85.94 82.85 84.72 46.85 40.19 31.03 91.45 93.56
GAT 88.03 80.52 87.04 83.33 90.94 63.90 35.98 42.72 78.87 65.64

ChebNet 86.67 79.11 87.95 87.54 93.77 59.96 38.02 40.67 86.08 90.57
BernNet 88.52 80.09 88.48 87.64 93.63 68.29 41.79 51.35 93.12 91.82
GGCN 87.68 77.08 89.63 N/A 89.92 62.72 38.09 49.86 85.81 87.65
APPNP 88.14 80.47 88.12 85.32 88.51 51.89 39.66 34.71 90.98 64.59

GPRGNN 88.57 80.12 88.46 86.85 93.85 67.28 39.92 50.15 92.95 88.54

k-S2V 68.30 44.22 67.21 84.15 89.08 49.00 N/A 39.15 85.12 87.44
S2V 80.15 78.21 85.48 83.25 84.33 47.14 39.22 40.26 82.12 83.48
SNN 87.13 79.87 86.73 83.33 88.27 60.96 30.59 45.66 75.16 61.93
SGAT 77.49 78.93 88.10 N/A N/A 51.23 36.71 N/A 89.83 81.47

SGATEF 78.12 79.16 88.47 N/A N/A 51.61 37.33 N/A 89.67 81.59
1-HiGCN 88.96 80.96 89.83 90.50 95.22 63.55 41.57 49.13 90.36 94.39
2-HiGCN 89.23 81.12 89.89 90.76 95.33 68.47 41.81 51.86 92.15 94.69
3-HiGCN 89.00 80.90 89.73 90.65 94.40 67.12 41.29 50.92 91.85 94.12
4-HiGCN 88.63 80.47 89.95 90.35 94.10 66.98 41.13 50.45 91.42 94.89

Table 2: Node classification results on empirical benchmark networks.

(Chien et al. 2020)), and higher-order models (S2V (Billings
et al. 2019), k-S2V (Hacker 2020), SNN (Ebli, Defferrard,
and Spreemann 2020), SGAT, SGATEF (Lee, Ji, and Tay
2022)). We randomly partition the node set into train/vali-
dation/test subsets with a ratio of 60%/20%/20%, and repeat
the experiments 100 times. The mean classification accura-
cies on the test nodes are reported in Table 2.

It can be drawn from Table 2 that HiGCN achieves the
best results in 9 out of the 10 graphs. On the remaining
dataset, HiGCN also displays comparable performance to
the SOTA methods. Generally, 2-HiGCN and 3-HiGCN out-
perform 1-HiGCN, suggesting the value of higher-order in-
formation in graph learning. However, it is elusive to find
that performance did not consistently increase with the in-
clusion of more higher-order interactions. One possible ex-
planation is that introducing more higher-order interactions
might make the training process more complex and chal-
lenging. If the model lacks sufficient training data or appro-
priate training strategies, it may struggle to effectively har-
ness these higher-order interactions. Furthermore, HiGCN
shows on average a greater lead on homogeneous graphs,
consistent with the intuition that higher-order effects tend to
manifest on homogeneous graphs (Battiston et al. 2020).

In addition, we scale to three larger datasets: Ogbn-arxiv
and Genius (homogeneous graphs) and Penn94 (heteroge-
neous graph). The results in Appendix G highlight HiGCN’s
superior performance and robust scalability.

Quantifying higher-order strength. The filter weights
γp,k captures the influence of p-simplex on k-hop neighbors;
thus, we quantify the p-order interaction strength in terms of

Sp =
∑

k
|γp,k|. (8)

To gain insight, we visualize Sp with order p = 1, 2, 3, 4 on
both homogeneous (Cora, Photo) and heterogeneous (Actor,
Texas) graphs in Figure 3 a-d. We observe that Sp decreases
gently with the increase of p in homogeneous graphs, while
it decreases rapidly in heterogeneous graphs. This observa-
tion implies that the strength of higher-order effects varies at

e

dcba

Figure 3: a, b, c and d visualize the stack of learned weights
|γp,k| under order p = 1, 2, 3, 4(P = 4). e visualizes the
stack of |γ2,k| for Texas under various relative densities ρ2.

different orders and across different types of graphs.
We observe that graphs with fewer higher-order structures

tend to exhibit a smaller Sp, potentially degrading HiGCN’s
performance. For instance, in Texas, the only dataset where
HiGCN’s performance is not optimal, we note significantly
weaker higher-order interactions compared to lower-order
ones (see Figure 3d), and it has the fewest triangles among
all datasets (see Table 8). To verify this conjecture, we ma-
nipulate the number of higher-order structures by adjusting
the edge connectivity while maintaining the degree distribu-
tion as done in 1k null models (Zeng et al. 2023c), see Ap-
pendix F for details. We define the relative higher-order den-
sity for the modified networks as ρp = n′

p/np−1, where np

and n′
p denote the number of p-simplex in the original and
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Dataset PRO. MUT. PTC IMDB-B IMDB-M

RWK 59.6 79.2 55.9 N/A N/A
GK (k=3) 71.4 81.4 55.7 N/A N/A

PK 73.7 76.0 59.5 N/A N/A
WL kernel 75.0 90.4 59.9 73.8 50.9

DCNN 61.3 N/A N/A 49.1 33.5
DGCNN 75.5 85.8 58.6 70.0 47.8

IGN 76.6 83.9 58.5 72.0 48.7
GIN 76.2 89.4 64.6 75.1 52.3

PPGNs 77.2 90.6 66.2 73.0 50.5
Natural GN 71.7 89.4 66.8 73.5 51.3

MPSN 76.7 89.8 61.8 75.6 52.4
HiGCN 77.0 91.3 66.2 76.2 52.7

Table 3: Graph classification results.

the modified network, respectively. Figure 3e visualizes Sp

under different ρ2 for Texas, showing an upward trend as the
triangle density ρ2 increases. Table 5 also reveals an increas-
ing accuracy rank of HiGCN with the rise of ρ2. Hence, Sp

can serve as a quantification of p-order interaction strength.
More results and discussions are deferred to Appendix F.

5.2 Graph Classification on TUD Benchmarks
To verify the broad applicability of the proposed model,
we also evaluate the graph classification performance
of HiGCN using various datasets from diverse domains,
which are categorized into two main groups: bioinformat-
ics datasets (i.e., PROTEINS (Borgwardt et al. 2005), MU-
TAG (Debnath et al. 1991), PTC (Toivonen et al. 2003)) and
social network datasets (i.e., IMDB-B, IMDB-M (Yanardag
and Vishwanathan 2015)). To obtain a global embedding for
each graph, we apply readout operations by performing av-
eraging or summation. Following the standard pipeline in
(Xu et al. 2019), we conduct a 10-fold cross-validation pro-
cedure and report the maximum average validation accu-
racy across folds. The performance of HiGCN is presented
in Table 3, alongside the results for kernel methods (RWK
(Gärtner, Flach, and Wrobel 2003), GK (Shervashidze et al.
2009), PK (Neumann et al. 2016), WL kernel (Shervashidze
et al. 2011)), pairwise GNNs (DCNN (Atwood and Towsley
2016), DGCNN (Zhang et al. 2018), IGN (Maron et al.
2018), GIN (Xu et al. 2019), PPGNs (Maron et al. 2019),
Natural GN (de Haan, Cohen, and Welling 2020)), and the
higher-order model MPSN (Bodnar et al. 2021).

Our model exhibits superior performance compared
to these baselines, demonstrating strong empirical re-
sults across all benchmark datasets. Additionally, HiGCN
achieves its optimal outcomes on the two social network
datasets, coinciding with the finding that simplices play a
pivotal role in social networks (Battiston et al. 2021).

5.3 Simplicial Data Imputation
In the previous two experiments, we focused on pairwise
graphs with clique complex lifting. Now, we extend our in-
vestigation to impute missing signals in coauthorship com-
plexes, a typical SC, wherein a paper with p + 1 authors
is represented by a p-simplex, and the p-simplicial sig-

SCs Method 10% 30% 50% 70%

H
is

to
ry

SNN 0.201 0.354 0.495 0.661
SGAT 0.180 0.330 0.432 0.602

SGATEF 0.200 0.340 0.454 0.633
HiGCN 0.258 0.438 0.579 0.666

G
eo

lo
gy SNN 0.265 0.417 0.594 0.704

SGAT 0.223 0.345 0.599 0.631
SGATEF 0.230 0.369 0.615 0.682
HiGCN 0.463 0.565 0.644 0.708

D
B

L
P SNN 0.222 0.348 0.496 0.668

SGAT 0.210 0.279 0.487 0.643
SGATEF 0.223 0.311 0.491 0.678
HiGCN 0.385 0.511 0.587 0.685

Table 4: Simplicial data imputation results: mean Kendall
correlation. The best results are in bold.

nal corresponds to the number of collaborative publications
among authors in the p-simplex. We employ three coauthor-
ship complexes, namely DBLP (Benson et al. 2018), His-
tory and Geology (Sinha et al. 2015). The known signals
for 0-simplex are set to range from 10% to 70% (in units
of 20%), and the remainders are regarded as missing sig-
nals, replaced by the median of known signals. We apply
Kendall’s Tau T to measure the correlation between true and
predicted simplicial signal, with T approaching 1 indicating
superior performance (Kendall 1938). The experiment is re-
peated for 10 different random weight initializations, and the
results are compared against higher-order models (namely
SNN, SGAT, and SGATEF).

Table 4 shows that HiGCN outperforms other higher-
order benchmarks. This superiority is mainly due to the in-
herent flexibility of our model in capturing higher-order in-
formation, whereas the benchmarks are restricted to learn-
ing through upper or lower adjacencies. Moreover, HiGCN
achieves more performance gains when less information is
available. This may be attributed to higher-order informa-
tion compensating for missing signals, with potential over-
lap when there is an abundance of known information.

6 Conclusion
This paper introduces a novel higher-order representation,
the flower-petals (FP) model, enabling interactions among
simplices of arbitrary orders. To increase efficiency, we sim-
plify the interaction rules in SCs. It is a valuable and open
question whether other simplifications would be more ef-
fective for specific tasks. FP adjacency and Laplacian ma-
trices are further introduced based on the higher-order ran-
dom walk dynamics on the FP model. As an application of
FP Laplacians in deep learning, a higher-order graph con-
volutional network (HiGCN) is introduced. Our theoretical
analysis highlights HiGCN’s advanced expressiveness, sup-
ported by empirical performance gains across various tasks.
Moreover, we deploy a data-driven strategy to demonstrate
the existence of higher-order interactions and quantify their
strength. This work promises to offer novel insights and
serve as a potent tool in higher-order network analysis.
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