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Abstract

Regarded as a template-matching task for a long time, visual
object tracking has witnessed significant progress in space-
wise exploration. However, since tracking is performed on
videos with substantial time-wise information, it is impor-
tant to simultaneously mine the temporal contexts which have
not yet been deeply explored. Previous supervised works
mostly consider template reform as the breakthrough point,
but they are often limited by additional computational bur-
dens or the quality of chosen templates. To address this issue,
we propose a Space-Time Consistent Transformer Tracker
(STCFormer), which uses a sequential fusion framework with
multi-granularity consistency constraints to learn spatiotem-
poral context information. We design a sequential fusion
framework that recombines template and search images based
on tracking results from chronological frames, fusing updated
tracking states in training. To further overcome the over-
reliance on the fixed template without increasing computa-
tional complexity, we design three space-time consistent con-
straints: Label Consistency Loss (LCL) for label-level con-
sistency, Attention Consistency Loss (ACL) for patch-level
ROI consistency, and Semantic Consistency Loss (SCL) for
feature-level semantic consistency. Specifically, in ACL and
SCL, the label information is used to constrain the atten-
tion and feature consistency of the target and the background,
respectively, to avoid mutual interference. Extensive experi-
ments have shown that our STCFormer outperforms many of
the best-performing trackers on several popular benchmarks.

Introduction

Visual Object Tracking (VOT) has attracted increasing in-
terest due to its broad applications in various fields, such as
medical science (Bouget et al. 2017), unmanned aerial vehi-
cle (Hao et al. 2018), and self-driving cars (Gao et al. 2020)
which is a hot topic nowadays. One popular category of VOT
is Single Object Tracking (SOT) and its goal can be de-
scribed as follows: Given a target specified in the first frame,
we need to estimate the states (including the location and the
scale) of this target in subsequent frames (Soleimanitaleb
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and Keyvanrad 2022). Notwithstanding the booming of di-
verse tracking algorithms (Danelljan et al. 2018; Voigtlaen-
der et al. 2019; Yan et al. 2021) in recent years, many chal-
lenges like appearance variation and occlusion still hinder us
from accurate real-time tracking in complex real-world sce-
narios. Recapping current prevailing trackers, most of them
cast this task as template-matching frame by frame. Specifi-
cally, it takes a target image as a template, and then compares
it with other frames to find the location and the size of the
target. The popular Siamese family (Bertinetto et al. 2016;
Chen et al. 2020) is a typical representative of them. And
the recently emerging Transformer-based trackers (Lin et al.
2022; Cui et al. 2022) realize template matching through full
interaction between templates and search features.

Under the influence of this paradigm, a significant ad-
vancement in learning spatial representations has been
made. But few have considered temporal information. Some
handle this problem by adding an online updating mecha-
nism into the inference stage (Zhang and Peng 2020; Yan
et al. 2021), but this is trapped by template selection and
update settings. Those who add complicated updating net-
work (Bhat et al. 2019; Zhang et al. 2019) or memory net-
work (Fu et al. 2021; Yang and Chan 2018) are plagued by
massive computational complexity and bring in extra hyper-
parameters to tune. Besides, the common template fusion
or similar operations also ignore the order of frames, which
carries rich temporal contexts.

To alleviate these problems, we propose a Space-Time
Consistent Transformer Tracker (STCFormer) to glean
temporal information which is commonly overlooked by ex-
isting works. Specifically, we model the space-time rela-
tionship with multi-granularity cycle consistency constraints
embedded in a sequential fusion framework, i.e. Label Con-
sistency Loss (LCL), Attention Consistency Loss (ACL),
and Semantic Consistency Loss (SCL). During training, we
use a sequential fusion framework to construct a cycle that
includes a template image and several chronological search
images. We continuously update the template image based
on previous prediction results during chronological frame
tracking and use the final template for backward tracking
with the first search frame again, forming a closed loop. To
increase the robustness of our framework, we incorporate
three consistency constraints to avoid over-dependence on
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fixed templates. Intuitively, We expect the tracking results
obtained from the same search image to be consistent, even
if the template changes. For the first search image, we ap-
ply consistency constraints to its three levels of representa-
tion: label level with LCL to maximize the overlap of the
two tracking results in the same search frame, patch level
with ACL to ensure consistent attention weights of search
patches based on template matching, and feature level with
SCL to converge the semantics of filtered search features.
Above strategies collaborate with one another to help the
model learn more robust space-time features of the target. In
particular, to strengthen ACL and SCL, we leverage label in-
formation to compute the consistency of patch attention and
search features separating regions within the groundtruth
box and the others, which prevents semantic confusion.
To sum up, our main contributions are:

e In the training process, we build a sequential fusion
framework that forms a cycle by updating the tem-
plate image based on previous prediction results during
chronological frame tracking. With few hyperparame-
ters, our method can be implanted into many existing
Transformer-based trackers.

To further mine the spatiotemporal information, we apply
three consistency constraints of different granularities:
Label Consistency Loss (LCL), Attention Consistency
Loss (ACL), and Semantic Consistency Loss (SCL).

We form a Space-Time Consistent Transformer Tracker
(STCFormer) based on above strategies. Experiments on
several widely-used benchmarks have proven its out-
standing performance and verified the efficiency and ef-
ficacy of LCL, ACL and SCL.

Related Work
Transformer-based Trackers

According to the type of the framework, the SOT al-
gorithms using Transformer can be classified as CNN-
Transformer based trackers and fully-Transformer based
trackers (Thangavel et al. 2023).

CNN-Transformer based trackers use hybrid architec-
ture combining Convolutional Neural Network (CNN) and
Transformer. And they adopt the Siamese-like pipeline as
the majority of CNN-based trackers(Hu et al. 2023; Tan et al.
2021). Usually, the CNN is used for feature extraction and
its outputs are fed into Transformer to catch the similar-
ity between the template and the search region. Wang et al.
(2021a) divides the encoder and decoder of the Transformer
into two branches to build a Siamese-like tracker. Based on
the DETR (Carion et al. 2020), Yan et al. (2021) develops an
end-to-end framework to capture the global feature depen-
dencies of both temporal and spatial information. Consider-
ing the neglect of the informative object-level information
from those relative pixel positions, CSWinTT (Song et al.
2022) proposes multi-scale cyclic shifting window attention
as a solution. Another observation about the correlation of
query and key gives birth to AiATrack (Gao et al. 2022). It
adds an inner attention to the Transformer structure.

Fully-Transformer based trackers is proposed to get rid
of the reliance on CNN and they can catch global feature
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representations. DualTFR (Xie et al. 2021) is the trailblazer
of this category. It wields a set of local attention blocks
and a global attention block to seize both local and long-
range dependencies. SwinTrack (Lin et al. 2022) extracts
features by means of Swin Transformer (Liu et al. 2021) and
reaches state-of-the-art performance at that time. All these
are two-stream two-stage trackers because their backbone
is a pre-trained Transformer while another Transformer is
used for feature fusion and feature enhancement. Another
type of fully-Transformer based tracker is the one-stream
one-stage tracker. They utilize one Transformer to finish fea-
ture extraction and feature fusion, such as MixFormer (Cui
et al. 2022). It comprises a set of Mixed Attention Modules
for feature extraction and target information fusion but runs
very slowly. Then Ye et al. (2022) devise OSTrack with ViT
as the backbone. It comes up with an early candidate elimi-
nation strategy to delete background tokens by degrees. This
benefits the accuracy and the speed at the same time.

Spatiotemporal Information Mining in Tracking

An influx of tracking algorithms has studied the spatial in-
formation over the past years. In a nutshell, they just con-
sider tracking as a simple template-matching task in each
frame. Nonetheless, a critical difference lies between im-
age processing task (Carion et al. 2020) and video-based
tracking (Lan et al. 2018) is the time-wise context. There-
upon some researchers probe into this issue. Methods based
on optical flow (Senst, Eiselein, and Sikora 2012; Liu et al.
2020) achieve tracking an object by extracting the feature
points and estimating their matching points in the next
frame. Gao, Zhang, and Xu (2019) propose a spatiotem-
poral GCN to learn the structured representation of histor-
ical templates. TCTrack (Cao et al. 2022) explores adaptive
temporal information at two levels, i.e., the feature extrac-
tion and the similarity maps refinement. An extra network
to process several search images is also a common strategy.
Zhang et al. (2019) equips SiamFC (Bertinetto et al. 2016)
and DSiamRPN (Zhu et al. 2018) with a UpdateNet to learn
the best template for the next prediction. Based on LSTM
(Hochreiter and Schmidhuber 1997), MemTrack (Yang and
Chan 2018) proposes a dynamic memory network to im-
prove the model’s adaptiveness to the target’s appearance
change. Though these do help in capturing some spatiotem-
poral relations between frames, still they are dependent on
sophisticated structures and this inevitably leads to higher
computational complexity. STARK (Yan et al. 2021) selects
a simple and gradient-free mechanism of concatenating the
initial template with a new one. But it is applied in the test
stage only and it might cost almost double computational re-
sources if applied in training. Those who incrementally up-
date the model (Nam and Han 2015; Danelljan et al. 2016)
are with the same shortage.

Consistency Loss

An interesting strategy of space-time information mining is
cycle consistency loss. CycleGAN (Zhu et al. 2017) pio-
neered the method of cycle consistency to tackle unpaired
image-to-image translation within two domains. Wu, Wang,
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Figure 1: The overall pipeline of STCFormer. We conduct
the customary forward process six times in one coherent for-
ward circuit of STCFormer.

and Shao (2018) work on a similar idea for cross-modal re-
trieval. Wang, Jabri, and Efros (2019) and Wang et al. (2019)
are the first to introduce this concept into object tracking. In
spite of different implementations, both of them use this as
a free supervisory signal to train unsupervised object track-
ers. And they both obtain impressive results. The succes-
sor (Yuan, Wang, and Chen 2020) simply expands the cy-
cle consistency loss proposed by Wang et al. (2019) from
DCFNet (Wang et al. 2017) into the self-supervised Siamese
tracker. Dwibedi et al. (2019) propose a self-supervised
algorithm to learn visual correspondence from unlabeled
video. Analogously, Jabri, Owens, and Efros (2020) lever-
age cycle-consistency to align two similar videos in a self-
supervised way. Ristea et al. (2023) introduce a similar idea
into medical image processing and apply cycle consistency
loss to both feature and computed tomography (CT) images.
CCuantuMM (Bhatia et al. 2023) apply such idea into jointly
matching multiple non-rigidly deformed 3D shapes. Above
successful methods without supervisory signals motivate us
to introduce such a powerful constraint into the supervised
learning method.

Method

In this section, we present our Space-Time Consistent Trans-
former Tracker (STCFormer) in detail. We introduce the
sequential fusion-based framework of STCFormer at first.
Then we present our multi-granularity consistency con-
straints, i.e. Label Consistency Loss (LCL), Attention Con-
sistency Loss (ACL) and Semantic Consistency Loss (SCL).

Framework of STCFormer

As shown in Fig. 1, the pipeline of our STCFormer is a co-
herent circuit rather than a common unidirectional structure.
Define the routine of computing a predicted box with a tem-
plate image and a search image as a forward process and de-
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note it as @y (0 represents the model’s parameters). Then one
forward circuit of STCFormer is comprised of six forward
processes. The input template image of each forward process
(denoted as 11,715, T3) is cropped from the search image of
its last forward process according to the last predicted box,
except for the first forward process which crops a randomly
sampled frame (denoted by Fi,) into Ty as template im-
age. And Ty serves both forward process 5 and forward pro-
cess 6. For the first three forward processes, the search im-
ages Sp, 51, 5o are respectively cropped from three frames
Fy, F1, F> that are sampled in chronological order. And the
fourth forward process shares the same search image Sy with
the first forward process. The fifth forward process and the
sixth forward process take .S; and Ss as input, respectively.
The frames sampling can be described as:

Rem7F07F17F2:S(D7Nt7NS)7 (1)

where S(-) refers to the sampling process; D is the training
datasets; Ny, N represent the number of the template image
and search images, respectively.

Aforementioned data processing procedure (leaving out
data augmentations such as brightness jittering for brevity)
can be written as:

{TO = (CJ (-Ftema Btem7 Klem) 3
[507 517 SQ] = (CJ ([F07 F17 F2]7 [B07 Bl7 B2]7 Ksearch) )
2
where B represents the ground-truth bounding box of the
corresponding frame, which is assigned by its subscript;
[Fo, F1, F] represents the concatenation of three tensors;
Kiem and Kearenh denote the size of the template image and
the size of the search image, respectively. C;(-) is the jitter-
ing crop operation, which is used to avoid learning the bias
that the target is always at the center of the search region.
On the basis of this circular framework, we establish Se-
quential Information Fusion (SIF) on results of the first
three forward processes. Specifically, we impose a super-
vised constraint on predicted results of the first three for-
ward processes and corresponding ground-truth labels. For
each of the distance we utilize /; loss and the generalized
IoU loss (Rezatofighi et al. 2019) for bounding box regres-
sion and the weighted focal loss (Law and Deng 2018) for
classification. Then the SIF is defined as:
1 n
Lsip = E Z ( s T Aiou £10u + )\Ll

i=1

L), 3
where n is the number of the search images and we setn = 3
in our experiments; Aoy, Az, are the regularization terms
and are set to 2, 5, respectively.

Based on this architecture, we design multi-granularity
consistency loss LCL, SCL and ACL to narrow the gap be-
tween the outputs of those coupled forward processes with
same search input but different template input, i.e., forward
process 1 vs forward process 4, forward process 2 vs for-
ward process 5, and forward process 3 vs forward process
6. Details of these space-time constraints will be depicted in
following parts.

The differences between STCFormer and existing models
can be summarized as:
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Figure 2: A defect of LCL.

¢ A classical space-wise tracker usually takes one template
image and one search image as input. After one complete
forward process, it outputs the state of the target in the
search image. Distinct from it, the input of STCFormer
is one template image and a series of search images. One
coherent forward circuit of STCFormer contains six for-
ward processes.

Few space-time trackers have thought over the sequential
information hidden in time flow, yet we construct a co-
herent forward circuit to process three search images in
time order.

Most space-time trackers directly fuse features of several
template images or employing an elaborate network to
create a new template based on them. Unlike these, we
focus on the space-time consistency and design multi-
granularity consistency loss (LCL, SCL and ACL) based
on Sequential Information Fusion (SIF).

Label Consistency Loss (LCL)

The over-dependence of one fixed template prejudices the
model’s adaptiveness to the target’s variation. Whereupon
we update the template image stepwise. However, on ac-
count of most models’ vulnerability to the template, arbitrar-
ily changing the template image may cause opposite effects.
To address this issue, we introduce Label Consistency Loss
(LCL). The basic idea of it is to track forward along the time
direction, followed by a backward tracking to form a closed
loop. Its goal is to minimize the difference between the start
and the end box coordinates. With one input template image
T, and three search images sampled in chronological order
So, 51, 92, this circular process can be formulated as below:

Firstly, we conduct the first forward process on Ty and Sy
and obtain a predicted box by. Then we crop Sy with by as
the label and resize it into a new template 7. Afterward, we
perform the second forward process with S; and 77 as input.
The third forward process is done in the same manner.

{bz = @9 (SlaTt) )
Tiv1 =Cc (S, b, Kiem) ,

where C¢(+) means cropping an image with the given box
region placed in the center of the cropped image.

Finally in the fourth forward process, 715 (obtained by
cropping S2 and resizing) is combined with Sy as the input
and we can acquire a predicted box b3 for Sy in the end:

{ :071727 4

bs = Py (S0, T3) . (5
Then our Label Consistency Loss (LCL) is defined as:
Ecycle (Bo, b3) = Ecls (Bo, b3) + /\inu Eiou (B07 b3) (6)

+Ar, L1, (Bo,bs).
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Since LCL only works on the first label By and the fourth
predicted box bs, a defect of it is that it may predict a precise
box b3 for Sy while the interim box such as b, are not accu-
rate, as Fig. 2 shows. Fortunately, we alleviate this problem
with aforementioned SIF as it set constraints on each pre-
dicted box of the first three forward processes.

Attention Consistency Loss (ACL)

To further improve the robustness of tracking with dynamic
template images, an intuitive idea is to train a model keeping
its attention on where it should focus. In other words, even
with different templates, the attention maps for the same
search image should be consistent. That’s exactly the key
point of our Attention Consistency Loss (ACL). To avoid
increasing the computational burden, we make full use of
the calculation results of multi-head attention. In each en-
coder layer, multi-head attention calculates the correlation
between input tokens. Following Ye et al. (2022), we take
the similarity between the center token of the template im-
age with all search tokens as the attention map. So the gen-
eration of attention map A; for forward progress (i + 1) can
be described as:

A(P(Ti>7p(si)79>v 1=0,1,2,
AP(Ty), P(Si-3),2), i=4,5,

where A(-) is the multi-head attention operation; P(-) rep-
resents the process involving three steps: (1) Split and flat-
ten the image into sequences of patches; (2) Operate linear
projection to transform patches into token embeddings; (3)
Concatenate the template tokens and the search tokens as
one input for cascaded Transformer encoder layers (Doso-
vitskiy et al. 2021). 2 is a generated mask for the template
to retain the tokens of its center part.

To take full advantage of supervised signals that contains
rich information, we divided search tokens into two parts:
those that located within groundtruth box (including those
that cross the boundary line of groundtruth box) are denoted
as positive tokens while others are negative tokens. When
we compute the distance between two attention maps A; and
A; we perform normalization on them separately (denoted
as I'(+)). Consequently, our ACL can be formulated as:

LSO (4 — Asyal)i = 0,1,2,

‘Callention =35
3

®)
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where | - | denotes element-wise absolute operator.

Semantic Consistency Loss (SCL)

Since all the Transformer-based trackers rely on the data
processing of divided input images into patches, we con-
sider to grasp more fine-grained information which might
have been omitted by them. Now with consistent label-wise
information and patch-level attention weights, we expect the
model to catch consistent semantics. More specifically, even
if the template image changes (the target remains the same),
the model is able to learn consistent semantic features for the
same search image. This is reasonable as people are never re-
stricted by one specific template during tracking. Instead, we
capture the semantic information of the target to keep track-
ing regardless of appearance variation. This motivates us to
learn robust semantic features for tracking.Since Ye et al.
(2022) deletes several background tokens of the search im-
age, the output tokens of the backbone are mostly belong to
the target feature. Therefore we group these filtered tokens
as a feature map and enforce the feature maps for the same
search image as closely as possible while they are produced
with different template images. Similar to ACL, we split the
feature tokens into positive tokens and negative tokens and
normalize them separately. In practice, we use MSE loss (de-
note as F(-) ) on those normalized feature pairs:

1

3 > (E(T(M;),T(M;y3))),i =0,1,2, (9)

Esemamic =

In summary, the total loss of STCFormer is:

ETotal = ESIF + >\LCL£cycle + )\ACLEatlention + /\SCLﬁsemamic;

(10)
where the regularization terms A ¢ , AacL and Ascp are set
to 1, 0.005, 0.1, respectively.
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Experiments

This section introduces the implementation details at the be-
ginning. Then we display the results of comparison with pre-
dominant algorithms. In the final part, we perform an abla-
tion study to judge the contribution of each constraint and
analysis our model from different perspectives.

Implementation

We implement STCFormer using Python 3.8 and PyTorch
1.9. It is trained on a server with 8§ NVIDIA A100 GPUs.
The inference speed is tested with only one NVIDIA
RTX2080Ti GPU. Similar to OSTrack (Ye et al. 2022), the
data augmentations such as horizontal flip and grayscale
conversion are used in the training process.

Training. The batch size of each GPU is 28 and we train
the model with AdamW optimizer (Loshchilov and Hutter
2017). The weight decay is 10~*. The initial learning rate is
3 x 1079 for the backbone and 3 x 10~°for other parameters.
We set total training epochs to 300 with 60k image pairs
per epoch and the learning rate decreases by a factor of 10
after 240 epochs. The whole network is initialized with the
training weights of OSTrack-384 (the search image is 384 x
384 pixels and the template image is 192 x 192 pixels) (Ye
et al. 2022) and MAE (He et al. 2021).

Datasets. The model is trained with following datasets:
COCO (Lin et al. 2014), LaSOT (Fan et al. 2018), GOT-10k
(Huang, Zhao, and Huang 2018) and TrackingNet(Miiller
et al. 2018). And the benchmarks we used for test are GOT-
10k (Huang, Zhao, and Huang 2018), LaSOT (Fan et al.
2018), LaSOTex (Fan et al. 2020), TNL2K (Wang et al.
2021b) and UAV123 (Mueller, Smith, and Ghanem 2016).

Comparison with State-of-the-arts

We contrast STCFormer with 23 state-of-the-art ap-
proaches including SiamFC (Bertinetto et al. 2016), MD-
Net (Nam and Han 2015), ECO (Danelljan et al. 2016),
SiamPRN++ (Li et al. 2018), DiMP (Bhat et al. 2019),
ATOM (Danelljan et al. 2018), SiamR-CNN (Voigtlaender
et al. 2019), LTMU (Dai et al. 2020), Ocean (Zhang and
Peng 2020), KYS (Bhat et al. 2020), STMTrack (Fu et al.
2021), TrDiMP (Wang et al. 2021a), TransT (Chen et al.
2021), AutoMatch (Zhang et al. 2021), STARK (Yan et al.
2021), KeepTrack (Mayer et al. 2021), TransInMo (Guo
et al. 2022), MixFormer (Cui et al. 2022), AiATrack (Gao
et al. 2022), CIA (Pi et al. 2022), SwinTrack-B (Lin et al.
2022), GRM (Gao, Zhou, and Zhang 2023), and the baseline
OSTrack-384 (Ye et al. 2022). Results are shown in Tab. 1.
LaSOT. Designed for long-term tracking, LaSOT is one
of the most challenging large-scale benchmarks with 280
densely annotated testing videos. Compared with other pow-
erful trackers, our STCFormer performs 0.4% higher than
our baseline OSTrack-384 in AUC. And our scores in other
two metrics (P ,.-m and P) also exceed other trackers.
LaSOT.,;. As an extended version of LaSOT, LaSOT;
contains 150 additional sequences of 15 object classes. Since
it is released in recent two years, results on it are relatively
fewer but we still set a new state-of-the-art on it with an
AUC of 57.7% outperforming the baseline OSTrack-384 by
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Method Source LaSOT LaSOTex TNL2K GOT-10k UAV123
AUC  Pnorm P AUC  Pnorm P AUC P AO  SRos SRo.7s AUC
SiamFC ECCVWI16 | 33.6 42.0 339 | 23.0 31.1 269 | 29.5 28.6 | 348 353 9.8 46.8
MDNet CVPR16 39.7 46.0 37.3 | 279 349 31.8 | 31.0 322 | 299 30.3 9.9 -
ECO ICCV17 324 33.8 30.1 | 220 252 240 | 326 31.7 | 31.6 30.9 11.1 53.7
SiamPRN++ CVPR19 49.6 56.9 49.1 | 34.0 41.6 39.6 | 413 412 | 517 61.6 325 61.3
DiMP ICCV19 56.9 65.0 56.7 | 39.2 47.6 45.1 | 447 434 | 61.1 71.7 49.2 65.4
ATOM CVPR19 51.5 57.6 - - - - 40.1 392 - - - 65.0
SiamR-CNN CVPR20 64.8 72.2 - - - - - - 64.9 72.8 59.7 64.9
LTMU CVPR20 57.2 - 572 | 414 49.9 47.3 - - - - - -
Ocean ECCV20 56.0 65.1 56.6 - - - 384 377 | 61.1 72.1 473 -
KYS ECCV20 - - - - - - 449 435 | 63.6 75.1 51.5 -
STMTrack CVPR21 60.6 69.3 63.3 - - - - - 64.2 73.7 57.5 64.7
TrDiMP CVPR21 63.9 - 61.4 - - - - - 67.1 71.7 583 67.5
TransT CVPR21 64.9 73.8 69.0 - - - - - 67.1 76.8 60.9 69.1
AutoMatch ICCV21 58.3 - 59.9 - - - 472 435 | 652 76.6 54.3 -
STARK ICCv21 67.1 71.0 - - - - - - 68.8 78.1 64.1 -
KeepTrack ICCV21 67.1 71.2 70.2 | 48.2 - - - - - - - 69.7
TransInMo CVPR22 65.7 76.0 70.7 - - - 52.0 527 - - - 69.0
MixFormer CVPR22 70.1 79.9 76.3 - - - - - 71.2 80.0 67.8 70.4
AiATrack ECCV22 69.0 79.4 73.8 - - - - - 69.6 80.0 63.2 70.6
CIA ECCV22 67.6 - 71.5 - - - 50.9 - 67.9 79.0 60.3 68.9
SwinTrack-B | NeurIPS22 | 71.3 - 76.5 | 49.1 - 55.6 | 559 57.1 | 724 80.5 67.8 -
GRM CVPR23 69.9 79.3 75.8 - - - - - 73.4 82.9 70.4 70.2
OSTrack-384 | ECCV22 71.1 81.1 77.6 | 50.5 61.3 57.6 | 559 - 73.7 83.2 70.8 70.7
STCFormer Ours 71.5 81.5 78.0 | 52.0 63.0 59.6 | 57.7 59.0 | 743" 842" 72.6" 70.8

Table 1: Comparison with state-of-the-arts on five popular benchmarks: LaSOT, LaSOTy, TNL2K, GOT-10k and UAV123.
The best results are shown in bold font. * means the figures are obtained following one-shot protocol.

1.5%. And our precision score and normalized precision
score achieve improvements of 2% and 1.7%, respectively.

TNL2K. TNL2K is a new dataset for natural language
guided tracking. To improve the generality of tracking eval-
uation it introduces several adversarial samples and thermal
images which makes it more challenging. And we boost the
performance in each metric. In AUC we surpass OSTrack-
384 by 1.8% and outperform other powerful counterparts
like SwinTrack-B and CIA by a substantial margin.

GOT-10K. GOT-10K is a widely-used large-scale bench-
mark that covers various common challenges in tracking. Its
test set employs a one-shot tracking rule, which means that
the trackers should only be trained on the GOT-10k training
split, then object classes between train and test splits will not
be overlapped. We follow this protocol and obtain improve-
ments in AO, SRq 5, SR¢.75 of 0.6%, 1.0%, 1.8%, respec-
tively. We also perform favorably against the GRM (Gao,
Zhou, and Zhang 2023), which is proposed in this year.

UAV123. UAV123 contains 123 videos, with an average
of 915 frames per video. All frames of it are collected from
low altitude aerial-views. On UAV 123, we still have signif-
icant advantages over other trackers and show a slight in-
crease of 0.1% in AUC.

Ablation Study and Analysis

Gains of each consistency loss. To judge the exact impact
of LCL, ACL and SCL, we report the AUC scores of the
models equipped with different constraints on three bench-
marks. Results displayed in Tab. 2 prove that each con-
straint has made a contribution to the improvement of perfor-
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mance. More specifically, LCL benefits more on LaSOT and
TNL2K, and ACL does well on LaSOT.y;. We guess there
may be two reasons. (1) LCL sets constraints on both regres-
sion and classification, which deepen the space-time context
learning. (2) feature-wise SCL pays attention to pixel-wise
texture while patch-wise ACL work on higher-level infor-
mation, which reveals global information of target features.

Utilization of supervised labels. In our three consistency
losses, we fully utilize the label information from different
perspectives. Actually, in the initial version, we conduct loss
on the first predicted box by and the backward predicted
box b3 in LCL, but in a bunch of experiments we found it
unstable and the improvement is minimal. Then we turn to
perform loss on the first ground-truth bounding box B, and
the backward predicted box b3, which leads to a noticeable
growth on several benchmarks. Meanwhile, with SIF mak-
ing By and by as close as possible, it is equivalent to clos-
ing the gap between by and bs. Based on SIF, we found the
training process of new LCL becomes much more stable. In-
spired by that, we introduce the label information into ACL
and SCL to perform normalization.

Effect of weights on each loss. We also try different
weights A for each loss we design. The range of testing
weights of each loss is approximately determined by the
scale of their values. According to Tab. 3, LCL is unsus-
ceptible to the hyperparameters (their training processes are
almost the same), while the other two are not. Results show
that 0.1 and 0.005 are best for SCL and ACL, respectively.

Speed and size. As Tab. 4 shows, in contrast to a selection
of recent Transformer-based trackers, STCFormer achieves
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OSTrack-384 LCL ACL SCL LaSOT LaSOT. TNL2K
v 71.1 50.5 55.9
v v 71.4 51.0 57.6
v v 71.2 51.7 57.5
v v 71.3 50.9 57.5
v v v v 71.5 52.0 57.7

Table 2: Quantitative comparison results of our tracker and its variants equipped with different loss functions.

Loss LCL ACL SCL
Weight 1 0.1 0.01 [ 0.00I 0.005 0.01 ] 0.3 0.2 0.1
AUC | 52.0 52.0 52.0 | 512 51.7 51 50.8 50.6 50.9

Table 3: Effect of different weights for LCL, ACL, SCL on LaSOT,y. The best results are shown in bold font.

Tracker \ Speed(fps) MACs(G) Params (M)
TrDiMP 26 - -
TransT 50 - -
STARK-ST101 32 18.5 42
SwinTrack-B-384 45 69.7 91
OSTrack-384 55.2 48.4 92
STCFormer (ours) | 55.5 48.4 92

Table 4: Comparison of our inference speed and parameters
with other representative Transformer-based trackers.

compelling computational and data efficiency. Our space-
time consistency exploration almost cause no extra burden in
model size. After code optimization, STCFormer even runs
faster than the baseline OSTrack-384 in same environment.

Visualization. Fig. 5 exhibits some examples of our real-
time tracking. The picture shows that STCFormer can han-
dle many common challenges of tracking. It performs well
under the circumstances of background clutters (row 1 and
row 4). It can track accurately regardless of partial occlusion
(with small or large occluded area) (row 2, row 7 and row 8).
It is able to deal with deformation of the target (row 3) and
catch small target (row 6). It can also distinguish the target
from objects that look similar like it (row 5).

Conclusion

In this paper, we propose a novel Space-Time Consistent
Transformer Tracker (STCFormer) based on a sequential in-
formation fusion framework. Multi-granularity consistency
constraints i.e. Label Consistency Loss (LCL), Attention
Consistency Loss (ACL) and Semantic Consistency Loss
(SCL) are added to enhance the spatiotemporal consistency
from label-level, patch-level and feature-level, respectively.
Quantitative and qualitative analysis in experiments con-
firms the positive effect of our approach. In fact, our method
is compatible with a wide array of contemporary trackers or
even models for other visual tasks to further promote their
performance by infusing more space-time information.
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Attention Feature
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in Video Frames

r

Template Search
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Figure 5: Visualization of the tracking process. The first col-
umn shows the search images (the big ones) and the tem-
plate images (small ones in the upper left corner). The sec-
ond column presents the search images after the early candi-
date elimination (CE) process of OSTrack. The third col-
umn shows the tracking results on corresponding frames.
The green rectangles are groundtruth boxes and the purple
rectangles are our predicted boxes. The fourth column shows
attention map for corresponding search image and the fifth
column is the filtered features after CE.
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