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Abstract

Decision Transformer (DT), which employs expressive se-
quence modeling techniques to perform action generation,
has emerged as a promising approach to offline policy op-
timization. However, DT generates actions conditioned on a
desired future return, which is known to bear some weak-
nesses such as the susceptibility to environmental stochastic-
ity. To overcome DT’s weaknesses, we propose to empower
DT with dynamic programming. Our method comprises three
steps. First, we employ in-sample value iteration to obtain
approximated value functions, which involves dynamic pro-
gramming over the MDP structure. Second, we evaluate ac-
tion quality in context with estimated advantages. We intro-
duce two types of advantage estimators, IAE and GAE, which
are suitable for different tasks. Third, we train an Advantage-
Conditioned Transformer (ACT) to generate actions condi-
tioned on the estimated advantages. Finally, during testing,
ACT generates actions conditioned on a desired advantage.
Our evaluation results validate that, by leveraging the power
of dynamic programming, ACT demonstrates effective tra-
jectory stitching and robust action generation in spite of the
environmental stochasticity, outperforming baseline methods
across various benchmarks. Additionally, we conduct an in-
depth analysis of ACT’s various design choices through ab-
lation studies. Our code is available at https://github.com/
LAMDA-RL/ACT.

1 Introduction
Reinforcement Learning (RL) optimizes policies by in-
teracting with the environment often for millions of
steps (Haarnoja et al. 2018; Liu et al. 2018). Such enor-
mous sample complexity prohibits RL from real-world ap-
plications (Wu and Zhang 2023) such as robotics and health-
care. As an alternative, offline RL optimizes policies with
a pre-collected dataset (Levine et al. 2020) and has gained
increasing attention in recent years for its potential in real-
life scenarios (Kumar et al. 2021b; Shiranthika et al. 2022;
Zhou, Zhang, and Yu 2023; Zhou et al. 2024).

Building upon online RL, a lot of algorithms address of-
fline policy optimization following the spirit of dynamic pro-
gramming (Levine et al. 2020), i.e. leveraging the structure
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of Markov Decision Process (MDP) and employing Bellman
update to derive value estimates for subsequent policy op-
timization (Fujimoto, Meger, and Precup 2019; Kostrikov,
Nair, and Levine 2022; Brandfonbrener et al. 2021).

In the meantime, the past few years have witnessed huge
success in applying sequence modeling to natural language
processing (Vaswani et al. 2017; Brown et al. 2020). In light
of the similarity between language sequences and RL tra-
jectories, a lot of works have explored the idea of modeling
RL trajectories using sequence modeling approaches (Wen
et al. 2023). For example, Decision Transformer (DT) (Chen
et al. 2021) models offline trajectories extended with the
sum of the future rewards along the trajectory, namely the
return-to-go (RTG). RTG characterizes the quality of the
subsequent trajectory, and DT learns to predict future ac-
tions given RTG. During testing, we deliberately provide DT
with a high RTG to generate an above-average action. This
approach, known as conditional sequence generation, has
achieved remarkable success in offline policy optimization.

However, we note that RTG-conditioned generation is de-
fective. Firstly, RTG is a hindsight indicator of a complete
trajectory. It cannot be computed if we only have incom-
plete trajectory segments. Besides, we cannot ascertain the
most suitable target RTG during testing, which poses a risk
of choosing an inappropriate one and degenerating the per-
formance. Secondly, conditioning on RTG fails to leverage
the inherent structure of MDPs and cannot stitch trajectory
as classical offline RL methods do. Therefore, DT cannot
achieve much better performance than RL methods. Lastly,
when the environment is stochastic, DT tends to exploit
the occasional high return in the offline dataset mistakenly,
which negatively impacts its performance.

In this paper, we present Advantage-Conditioned Trans-
former (ACT), a method that empowers the traditional DT
with dynamic programming to effectively address the above-
mentioned challenges. To tackle the limitations of condi-
tioning on RTG, we introduce advantages as replacements.
To obtain the advantage, we first approximate value func-
tions with separate neural networks. Afterward, we intro-
duce two types of advantage estimations, namely IAE and
GAE, which exhibit different characteristics and are proven
suited for different types of tasks empirically. We evaluate
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ACT in various benchmarks including those with stochastic
dynamics and delayed rewards. The results show that, with
suitable advantage estimation, ACT significantly outper-
forms existing sequence modeling techniques and achieves
performance on par with state-of-the-art offline RL methods.
We also carried out extensive ablation studies to highlight
the effectiveness of the design choices of ACT. Overall, our
empirical results affirm the efficacy of the proposed method
in addressing the limitations of DT and showcase its poten-
tial in applications.

2 Preliminaries
2.1 Offline Reinforcement Learning
A Markov Decision Process (MDP) can be denoted by a six-
tuple ⟨S,A, T,R, ρ0, γ⟩, where S stands for the state space,
A is the action space, T is the transition function, R is the
reward function, ρ0 is the initial distribution of states, and
γ ∈ [0, 1) denotes the discount factor of future rewards. For
states s, s′ ∈ S and a ∈ A, T (s′|s, a) specifies the transi-
tion probability of arriving at state s′ after taking action a
at state s, and R(s, a) gives the immediate reward of taking
action a at state s. A policy π is a function mapping states to
action distributions, and π(a|s) is the probability of taking
action a at state s. The policy’s quality is measured by the
expected discounted return J(π) = Eπ [

∑∞
t=0 γ

trt], where
rt = R(st, at) is the reward obtained at time t, st, at are the
state and action at time t, respectively, and the expectation
is taken w.r.t. the stochastic interaction of the policy π and
the MDP environment. In offline RL, an agent is expected
to learn a policy maximizing the expected discounted return
with a static dataset D. Typically, D = {τk}Kk=1 is composed
of K trajectories τk collected by a behavior policy β, where
τk = {skt , akt , rkt }

Nk−1
t=0 , skt , akt , and rkt denote state, action,

and reward at timestep t of the k-th trajectory, respectively,
and Nk is the trajectory length of the k-th trajectory.

2.2 Dynamic Programming in RL
A commonly used categorization of deep RL algorithms is
by their optimization paradigm, either policy gradient or ap-
proximate dynamic programming (Levine et al. 2020). The
former derives the gradient of RL objectives w.r.t. the pol-
icy via the policy gradient theorem (Sutton et al. 1999) and
improves the policy via gradient ascent. The latter derives
the optimal policy exploiting the value function. The value
functions of a policy π are defined recursively:

V π(s) = Ea∼π(·|s) [Qπ(s, a)] ,
Qπ(s, a) = R(s, a) + γEs′∼T (·|s,a) [V

π(s′)] .

Solving the value function with dynamic programming, we
can derive an improved policy by increasing the probability
of selecting actions with positive advantages, where the ad-
vantage of an action a at state s is Aπ(s, a) = Qπ(s, a) −
V π(s). We can get the optimal policy by repeating this pro-
cess, which is called policy iteration. Alternatively, we can
use the value iteration and directly solve the optimal value
functions V ∗ and Q∗ with dynamic programming, where

V ∗(s) = maxaQ
∗(s, a),

Q∗(s, a) = R(s, a) + γEs′∼T (·|s,a) [V
∗(s′)] .

The optimal policy π∗ is then obtained by greedily selecting
the action a with the optimal value Q∗(s, a) at all s ∈ S .

Compared with policy gradient methods, dynamic program-
ming leverages the structure of MDP, gaining advantages in
efficiency and performance empirically.

2.3 Decision Transformer
One of the pioneering works of solving control tasks with
high-capacity sequence modeling networks is the Decision
Transformer (DT) (Chen et al. 2021). For each trajectory τ ∈
D, DT first computes the RTG R̂t for each timestep t by
summing up the rewards along the future trajectory, R̂t =∑N−1
t′=t rt′ , where N is the trajectory length. Later, DT fits a

GPT-2 model (Radford et al. 2019) on the offline trajectories
augmented with RTGs, τRTG = {R̂t, st, at}N−1

t=0 .

During testing, DT first specifies the desired target return as
R̂0, and executes the predicted action â0 given the history
(R̂0, s0). After observing the new state s1 and reward r0,
DT sets R̂1 = R̂0 − r0 and continues to predict the next ac-
tion given the updated history (R̂0, s0, R̂1, s1). This process
continues until the end of the episode.

3 Defects with RTG Conditioning
Existing DT algorithms are commonly implemented by RTG
conditioning. Although RTG conditioning is relatively sim-
ple to implement, this naive choice has several defects.

Dependency on future trajectory. The calculation of RTG
involves summing up the rewards in the future trajectory.
However, in real-world scenarios, the sampling process is
often susceptible to unexpected events, making it challeng-
ing to gather complete and continuous trajectories. Under
such circumstances, the collected offline dataset may con-
sist of broken snippets of trajectories or even independent
transition tuples (s, a, r, s′), making it difficult to calculate
RTG since the future is missing. As illustrated in Figure 1,
if we divide the trajectories into chunks, DT’s performance
will degenerate severely.

full chunk_size=50 chunk_size=15

Figure 1: The performance of DT when the trajectory is di-
vided into chunks. Chunk size denotes the granularity of di-
vision, and full means the complete trajectory is preserved.

Inability to perform stitching. A well-established consen-
sus on why offline RL methods outperform imitation learn-
ing is that they can perform trajectory stitching (Kumar et al.
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2021a), i.e. concatenating multiple snippets of trajectories
together to give better performance. However, as pointed out
in recent works (Yamagata, Khalil, and Santos-Rodriguez
2023; Wu, Wang, and Hamaya 2023), DT lacks stitching
ability, because the RTG is only associated with the current
trajectory. Although conditioning on high RTGs might skew
the generated action towards better ones, the performance of
DT still falls behind traditional offline RL methods.

Failure in stochastic environments. The last failure mode
of DT relates to its propensity to make optimistic decisions
in stochastic settings, which arises from the intrinsic feature
of RTG conditioning to imitate previous achievements indis-
criminately while disregarding the randomness.

This phenomenon is also perceived as the conflation of the
effects of the policy and the world model (Yang et al. 2023),
meaning that RTG fails to distinguish the controllable parts
(the policy) from the uncontrollable parts (the dynamics)
and, as a result, biases the action generation with blind opti-
mism about the dynamics.

4 Advantage-Conditioned Transformer
The previous discussion motivates us to devise a better al-
ternative in place of RTG. Observing that dynamic program-
ming handles these challenges effectively, we decide to ex-
ploit it for conditional generation.

Specifically, we approximate the value function via approx-
imate dynamic programming (Section 4.1) and estimate ad-
vantages with the learned value functions. After labeling the
dataset with advantages (Section 4.2), we fit an encoder-
decoder transformer on the advantage-augmented dataset
via the action reconstruction loss (Section 4.3). We addition-
ally train a predictor cϕ to estimate the maximal advantage
in samples and condition the action generation on the es-
timated maximum advantage during testing. The complete
algorithm is presented in Algorithm 1.

4.1 Value Function Approximation
We use two parameterized functions Qθ and Vψ to approxi-
mate the state-action value function and the state value func-
tion, respectively. With the offline dataset, we iteratively up-
date the parameters via stochastic gradient descent,

θ ← θ − η

M

∑
(s,a,r,s′)∈B

∇θ
(
r + γVψ̄(s

′)−Qθ(s, a)
)2
,

ψ ← ψ − η

M

∑
(s,a,r,s′)∈B

∇ψLσ1
(
r + γVψ̄(s

′)− Vψ(s)
)
,

(1)

where B = {(si, ai, ri, s′i)}Mi=1 denotes a mini-batch of tran-
sition tuples sampled uniformly from the dataset D,M is the
batch size, η is the learning rate, Vψ̄ is the target network, σ1
is a hyper-parameter, and Lσ1

(u) = |σ1 − I(u < 0)|u2 is
the σ1-expectile regression loss.

Equation (1) performs in-sample value iteration as outlined
by Kostrikov, Nair, and Levine (2022) which does not query
out-of-distribution actions as classical value iteration does.

When σ1 equals 0.5, it is conducting on-policy value eval-
uation, producing an approximation of Qβ and V β . With
infinite samples and σ1 → 1, it produces an approximation
of the in-sample optimal value functions:

V ∗
β (s) = maxβ(a|s)>0Q

∗
β(s, a),

Q∗
β(s, a) = R(s, a) + γEs′∼T (·|s,a)

[
V ∗
β (s

′)
]
.

Thus, this learning procedure smoothly interpolates between
approximating on-policy value functions and the in-sample
optimal value functions by varying the value of σ1.

Upon the convergence of the training, we freeze θ and ψ and
do not make further updates to them.

4.2 Advantage Labeling
In the next step, we utilize the pre-trained value function ap-
proximation to tag the offline data with their advantage. The
most straightforward advantage estimator ÂIAE is simply the
difference between Qθ and Vψ:

ÂIAE
t = Qθ(st, at)− Vψ(st).

We term this Immediate Advantage Estimation (IAE). Since
Qθ averages all subsequent random variations, IAE pro-
duces an estimator robust to transitional stochasticity.

However, IAE issues a demand on estimating the state-
action value function, which, compared to the state value
function, has higher dimensional input and is more difficult
to estimate. Besides, solely depending on Temporal Differ-
ence (TD) error to optimize the value functions is known
to fail in sparse-reward or goal-oriented tasks (Yamagata,
Khalil, and Santos-Rodriguez 2023; Hejna, Gao, and Sadigh
2023). Thus, we propose to use the Generalized Advantage
Estimation (GAE) (Schulman et al. 2016) as an alternative:

Â
GAE(λ)
t = (1− λ)

∞∑
l=1

λl−1Â
(l)
t ,

where Â(l)
t = −Vψ(st) +

∑l−1
i=0 γ

irt+i + γlVψ(st+i+1) de-
notes the l-step advantage along the given trajectory. Note
that GAE can be extended to the finite horizon case, though
we present the infinite horizon formulation here for simplic-
ity. The hyper-parameter λ ∈ [0, 1] interpolates between
TD estimation and Monte-Carlo estimation, controlling the
bias-variance trade-off. With λ set to 1, we have ÂGAE(1)

t =∑∞
i=0 γ

irt+i − Vψ(st), which is functionally equivalent to
the discounted RTG, since the constant −Vψ(st) does not
count when comparing actions.

After deciding on the form of advantage estimator, we label
the offline dataset with their advantages, and construct the
advantage-augmented dataset DA = {τAk }Mk=1, where τAk =

{Âkt , skt , akt }
Nk−1
t=0 , and Âkt is the estimated advantage at the

t-th timestep of the k-th trajectory by either IAE or GAE.

4.3 Advantage-Conditioned Sequence Modeling
The original DT straightforwardly applies the GPT-2 archi-
tecture to RL sequence modeling, offering convenience but
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Figure 2: The encoder-decoder architecture of ACT. The encoder encodes the historical state-action sequence into a continuous
representation. The attentive head of the decoder queries historical representation with the advantage and predicts an action.

falling short of optimization for decision-making tasks. In
our experiments, we observed that modeling using GPT-2 ar-
chitecture causes overfitting and unstable generation during
testing, aligning well with recent research findings (Carroll
et al. 2022). In light of this, we propose an encoder-decoder
transformer architecture illustrated in Figure 2.

In our architecture, the encoder only accepts the state-action
sequence as input and applies a causal attention mecha-
nism (Vaswani et al. 2017) to mask out future inputs. It
transforms the input sequence (s<t, a<t, st) to a represen-
tation sequence, where s<t and a<t denote the states and
actions before timestep t, respectively. With cross atten-
tion, the decoder queries historical representation with the
estimated advantage Ât of the current timestep and pre-
dicts an action ât. The complete function is represented as
ât = ACT(s<t, a<t, st, Ât). We found that the separation
of the state-action sequence and the advantage benefits the
overall performance. Moreover, such separation leaves room
for self-supervised pre-training. We may pre-train the en-
coder using a large unlabelled dataset by techniques similar
to Masked Language Modeling (MLM), reinitialize the de-
coder, and fine-tune the transformer to accomplish control
tasks (Sun et al. 2023; Carroll et al. 2022; Wu et al. 2023).

Another change we made is using the sinusoidal positional
encoding in place of learnable positional embedding because
we found the latter one sometimes causes instability, which
echoes the finding by Zheng, Zhang, and Grover (2022).
Other details are deferred to Appendix B.11 due to the limi-
tation of space.

The loss for training ACT is the action reconstruction loss,

LACT = EτA∼DA

[∑
t

(
at − ACT(s<t, a<t, st, Ât)

)2
]
,

(2)
where τA ∼ DA means sampling τA uniformly from DA.

Finally, similar to DT, we need to specify the target advan-

1https://www.lamda.nju.edu.cn/gaocx/AAAI24-supp.pdf

tage for each state during testing. We additionally train a
predictor network cϕ with the expectile regression loss,

Lϕ = E(Ât,st)∼DA

[
Lσ2

(
Ât − cϕ(st)

)]
, (3)

where (Ât, st) ∼ DA denotes that (Ât, st) is sampled uni-
formly from DA. In the limit of σ2 → 1, cϕ learns to predict
the maximal in-sample advantage given state s, which fully
exploits ACT’s potential to generate a good action.

4.4 Why Advantage Conditioning Offers
Benefits?

Recall the Performance Difference Lemma (Kakade and
Langford 2002), the performance difference between two
policies π and π′ can be expressed as the expected advan-
tage w.r.t. π′ on the state-action distribution induced by π,
η(π) − η(π′) = Eτ∼π

[∑∞
t=0 γ

tAπ
′
(st, at)

]
. Assume that

the dataset is labeled using the advantage function of π′ and
our learners are exempt from sampling and approximation
errors, then when conditioned on a desired advantage A,
ACT will generate an action a satisfying Aπ

′
(s, a) = A. By

auto-regressively generating a trajectory and assigning ACT
a positive target advantage at each timestep, ideally, all ac-
tions in the sequence possess positive advantages. Taking the
expectation, we have Eτ∼pπ [

∑
γtAπ

′

t ] > 0 indicating that
the induced ACT policy improves over the behavior policy
π′ by the lemma. As discussed previously, with σ1 = 0.5,
the learned value function approximates the value function
of the behavior policy β, i.e., π′ = β. If σ > 0.5, then the es-
timated advantage corresponds to a policy π′ that is already
improved over β.

Since RTGs are Monte-Carlo value estimates for the value
of the behavior policy β, DT is restricted to improve on top
of β, which limits the potential for improvement compared
with ACT. Moreover, RTGs suffer from high variance, often
assigning high values to actions due to occasional factors,
while advantage offers a more robust action assessment by
taking the expectation of the future.
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Algorithm 1: Advantage-Conditioned Transformer
Input: Initialized value networks Qθ, Vψ , predic-
tor network cϕ, transformer ACT, offline dataset
D

1: // Training Phase
2: for k = 1, 2, . . . ,K do
3: Update Qθ and Vψ by Equation (1) on dataset D
4: end for
5: Label the dataset D with estimated advantages to get the

advantage-augmented dataset DA

6: Learn ACT by minimizing Equation (2) via stochastic
gradient descent on dataset DA

7: Learn cϕ by minimizing Equation (3) via stochastic gra-
dient descent on dataset DA

8:
9: // Test Phase

10: Initialize history h = ∅
11: while episode not ended at timestep t do
12: Let At = cϕ(st)
13: Execute at = ACT(h, st, At)
14: Update h = h ∪ {st, at}
15: end while

5 Related Work
Dealing with stochastic environments for DT. Numer-
ous related works are dedicated to addressing the vulnera-
bility of DT when confronted with stochastic environments.
ESPER (Paster, McIlraith, and Ba 2022) uses adversarial
clustering to learn trajectory representations disentangled
from environmental stochasticity. DoC (Yang et al. 2023) at-
tributes such failure to the fact that generative models make
no distinction between the parts it can control (agent ac-
tions) and those it cannot (environmental transition). Thus,
DoC proposes to extract predictive representations for tra-
jectories, while minimizing the mutual information between
the representation and the environment transition. A simi-
lar idea is also explored in Villaflor et al. (2022), where
the authors explicitly model the policy and the world model
with two separate transformers. Brandfonbrener et al. (2022)
provided a theoretical analysis of the return-conditioning
regime, where they found the near-determinism of the en-
vironment is one of the conditions that return-conditioning
can find the optimal policy.

Combining DP and DT. Most of the offline RL methods
employ dynamic programming to optimize policies, such as
CQL (Kumar et al. 2020), IQL (Kostrikov, Nair, and Levine
2022), and TD3+BC (Fujimoto and Gu 2021). As discussed
in this paper as well as in Brandfonbrener et al. (2022), DP
and DT bear distinct characteristics, for example, DP has
no preference for the determinism of the environment, while
DT may be more applicable in long-horizon tasks. Several
works have tried to combine DP and DT. Among them,
QDT (Yamagata, Khalil, and Santos-Rodriguez 2023) pre-
computes conservative Q-values and V-values using CQL,
and labels the offline data with the maximum of RTG and the
conservative V-value. Our method differs from QDT in that,

we compute the value estimations via an in-sample value
iteration, which prevents instability and inaccuracy caused
by bootstrapping from out-of-dataset actions. Moreover, the
flexible advantage estimation also enables ACT to combine
the best of both worlds. Recently, EDT (Wu, Wang, and
Hamaya 2023) was proposed to vary the context length of
DT during testing. When provided a shorter context, EDT
can recover from bad history and switch to a higher reward-
ing action; provided a long context, EDT can stably recall
the subsequent decisions. In this way, EDT interpolates be-
tween trajectory stitching and behavior cloning from a new
perspective. This work is complementary to ACT, and they
can be seamlessly integrated to achieve better performance.

6 Experimental Evaluations
Our assessments are designed to comprehensively analyze
the efficacy of ACT when presented with diverse bench-
marks and tasks encompassing a spectrum of characteristics
and challenges, including deterministic, stochastic, and de-
layed reward tasks. We also conduct an ablation study on the
use of network cϕ and the choice of transformer architecture.

Deterministic Gym MuJoCo tasks. We investigate the per-
formance of ACT in the most widely studied Gym MuJoCo
tasks. We focus on three domains, namely halfcheetah (hc),
hopper (hp), and walker2d (wk), which are deterministic
both in state transition and reward functions. We leverage
the v2 datasets provided by D4RL (Fu et al. 2020), which in-
cludes three levels of quality: medium (med), medium-replay
(med-rep), and medium-expert (med-exp).

For this benchmark, we choose GAE(0) as the advantage es-
timator across all tasks to maximize the utility of dynamic
programming. For σ1, we sweep its value through [0.5, 0.7].
In order to mitigate the instability of TD learning (Li et al.
2023), we conduct model selection by choosing a value
model that has the lowest training error on the offline dataset.
See Appendix B.2 for details.

We contrast the performance of ACT against two groups of
algorithms. The first group, including CQL (Kumar et al.
2020), IQL (Kostrikov, Nair, and Levine 2022), Onestep-
RL (Brandfonbrener et al. 2021), 10%-BC, and RvS (Em-
mons et al. 2022), optimizes a Markovian policy that de-
pends only on states. The second group, including DT (Chen
et al. 2021), QDT (Yamagata, Khalil, and Santos-Rodriguez
2023), and EDT (Wu, Wang, and Hamaya 2023), models the
RL trajectories with sequence-modeling methods and learns
a non-Markovian policy that depends on history.

The results are listed in Table 1. We find that ACT achieves
the highest score in 8 out of 9 tasks compared to other meth-
ods that learn non-Markovian policies, including QDT and
EDT which share a similar motivation with us, i.e., improv-
ing DT with the ability of trajectory stitching. The improve-
ment over these methods underscores the efficacy of advan-
tage conditioning. If we extend the comparison to all meth-
ods, ACT still manages to outperform in 6 out of 9 tasks.
This demonstrates that ACT not only exploits the power of
DP but also gains benefits from the sequence modeling tech-
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Dataset Markovian Non-Markovian

CQL Onestep RL IQL 10% BC RvS DT QDT EDT ACT

hc
med

44.0 48.4 47.4 42.5 41.6 42.6 42.4± 0.5 42.5± 0.9 49.1± 0.2

hp 58.5 59.6 66.2 56.9 60.2 62.3 60.7± 5.0 63.5± 5.8 67.8± 5.5

wk 72.5 81.8 78.3 75.0 71.7 74.3 63.7± 6.4 72.8± 6.2 80.9± 0.4

hc
med-rep

45.5 38.1 44.2 40.6 38.0 36.9 32.8± 7.3 37.8± 1.5 43.0± 0.4

hp 60.9 97.5 94.7 75.9 73.5 75.8 38.7± 26.7 89.0± 8.3 98.4± 2.4

wk 77.2 49.5 73.8 62.5 60.6 59.4 29.6± 15.5 74.8± 4.9 56.1± 10.9

hc
med-exp

91.6 93.4 86.7 92.9 92.2 86.3 − − 96.1± 1.4

hp 105.4 103.3 91.5 110.9 101.7 104.2 − − 111.5± 1.6

wk 108.8 113.0 109.6 109.0 106.0 107.7 − − 113.3± 0.4

Table 1: Normalized score on deterministic Gym MuJoCo tasks, with datasets from D4RL. The performances of QDT and EDT
are taken from their original papers, and the numbers for other baselines are taken from (Garg et al. 2023). For ACT and DT, we
use our own implementations and report the average performance and the standard deviation of the final checkpoint across 10
evaluation episodes and 5 seeds. We bold the highest score among sequence-modeling methods, and add background shading
to the highest score among all methods.
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Figure 3: Performance on the 2048 game. We report the av-
erage and std of the performance across 5 independent runs
and mark ESPER’s score as the grey dotted line.

nique, thus combining the best of both worlds.

Stochastic benchmarks. Another important property of
ACT is its robustness against the stochasticity of the envi-
ronments. To validate this, we choose to assess ACT, DT,
QDT, ESPER (Paster, McIlraith, and Ba 2022), and 10%-BC
on stochastic benchmarks. Among them, ESPER is an algo-
rithm that enhances DT to cope with environmental stochas-
ticity. In the following evaluations, we select IAE as the ad-
vantage estimator, and σ1 is kept to 0.5 by default.

As a sanity check, we first evaluate the algorithms on the
2048 game. This environment is stochastic in that, after each
action which moves all the tiles along some direction and
merges them if their numbers are equal, a random 2 or 4
will be placed in a random empty grid. The agent is given
a reward of 1 once it manages to produce a tile of 128, and
the episode will be ended. Thus, the maximum return in this
environment is 1. Further introduction about this environ-
ment and the dataset can be found in Appendix B.3. Fig-
ure 3 depicts the performance curve as the training proceeds.
While DT and 10%-BC exploit the occasional success in the
dataset and converge to suboptimal policies, ACT and ES-

PER show robustness to stochasticity. Besides, ACT outper-
forms ESPER and converges to 100% success rate to pro-
duce 128, validating the power of advantage conditioning.

We also created a more sophisticated benchmark, by reusing
the Gym MuJoCo tasks and following Yang et al. (2023) to
add noise to the agent’s action before passing it to the sim-
ulator. More details can be found in Appendix B.4. The re-
sults are illustrated in Figure 4. As expected, we observe that
10%-BC severely overfits the high-return trajectories in the
dataset, albeit with a sharp drop in test scores as the training
proceeds. DT and QDT yield a comparatively robust policy,
while their performances are still inferior to ACT. This fur-
ther justifies the validity of ACT in stochastic control tasks.

Dataset CQL IQL DT ACT

hp-med 46.1±2.9 32.4±7.7 65.7±1.4 49.4±1.5

hp-med-exp 0.8±0.3 97.6±14.8 106.6±3.7 95.4±13.9

wk-med −0.3±0.1 53.2±6.7 72.1±4.3 73.8±1.9

wk-med-exp 7.0±6.4 67.4±22.1 107.4±0.3 108.1±0.2

Average 13.4 62.7 88.0 81.7

Table 2: Normalized score on delayed reward tasks. The av-
erage and std are taken across 4 independent runs.

Delayed reward tasks. As unveiled in previous litera-
ture (Chen et al. 2021; Yamagata, Khalil, and Santos-
Rodriguez 2023), DT has an advantage over conventional
RL methods when the reward is sparse and thus long-term
credit assignment is required. In the following part, we aim
to investigate whether ACT still retains such ability. We once
again revise the D4RL datasets, deferring the rewards for
each trajectory until the final timestep. We exclude the hc
and med-rep datasets as they contain time-out trajectories
which are not applicable for delayed-reward settings. For the
advantage estimator, we choose GAE(1) for its resemblance
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Figure 4: Performance curve on the stochastic Gym MuJoCo tasks as the training proceeds. We report the average and the
standard deviation of the performance across 4 independent runs.
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Figure 5: Ablation study on the effect of σ2, using datasets
from D4RL. The left column depicts the performance of
each variant as the training proceeds, and the right column
depicts the target advantages given by cϕ. The results are
taken from 4 independent runs.

to the RTGs. The results are listed in Table 2. While DP-
based methods like CQL and IQL suffer from degeneration,
DT upholds its performance and is minimally affected by
reward sparsity. Although ACT is not entirely spared from
the influence, it still preserves benefits from the sequence
modeling architecture and outperforms CQL and IQL.

Ablation study. Finally, we investigate the effects of the
design choices of ACT through ablation studies. Our first
ablation focuses on the effect of σ2, which determines the
expectile to approximate by cϕ. In the above experiments,
we set the σ2 to 0.98, and in this ablation study, we addition-
ally test with 0.5, 0.7, and 0.9 to analyze the actual effect of
this parameter. According to the discussions in Section 4.4,
providing ACT with a positive advantage already induces
policy improvement. Therefore we also include a variant of
ACT which uses a constant positive value as the target ad-
vantage for all states. The positive value is set as the av-
erage of the positive advantages in the offline dataset. The
results illustrated in Figure 5 suggest a close relationship
between the value of σ2 and the final performance. When
σ2 is set to higher values, the predictor network cϕ tends
to give higher desired advantages Â during test time, and

ACT would retrieve better actions in response. Giving a pos-
itive constant value also brings about improvement in cer-
tain environments such as hc-med, but in hp-med it performs
substantially worse than using a predictor network. Compar-
isons on more datasets are deferred to Appendix C.2.
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Figure 6: Ablation study on the transformer architecture, us-
ing datasets from D4RL with 4 independent runs.

We also carried out an analysis of the choice of trans-
former architecture. ACT differs from DT in two ways: 1)
ACT employs an encoder-decoder structure while DT is a
decoder-only transformer, and 2) ACT uses sinusoidal en-
coding rather than learnable embedding to prevent overfit-
ting. Thus, we additionally implement two variants of ACT,
one with GPT-2 architecture (ACT-GPT) and another using
learnable positional embedding (ACT-Embed), and keep
other hyper-parameters the same with ACT. In Figure 6, we
select two datasets of the hopper task for comparison and
observe that ACT-GPT has undergone significant oscillation
and degradation in its performance, implying that the direct
application of GPT-2 structure to our algorithm is not effec-
tive. The other variant, ACT-Embed, suffers from instabil-
ities in tasks like hp-med-exp in the late training, although
the overall gap is minor.

7 Conclusion and Future Work
In this paper, we introduce ACT, which enhances popular se-
quence modeling techniques with dynamic programming to
address their limitations in offline policy optimization. We
achieve this by conditioning the transformer architecture on
the estimated advantages. By selectively choosing the type
of advantage estimator, our framework can be applied to a
variety of tasks, demonstrating consistent performance im-
provements and generalizability. Our framework also leaves
room for the incorporation of self-supervised learning tech-
niques and has the potential to be extended to multi-task set-
tings and to a larger training scale. We will continue this line
of research and investigate these topics in the future.
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