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Abstract

Machine unlearning, the ability for a machine learning model
to forget, is becoming increasingly important to comply with
data privacy regulations, as well as to remove harmful, ma-
nipulated, or outdated information. The key challenge lies in
forgetting specific information while protecting model per-
formance on the remaining data. While current state-of-the-
art methods perform well, they typically require some level
of retraining over the retained data, in order to protect or
restore model performance. This adds computational over-
head and mandates that the training data remain available
and accessible, which may not be feasible. In contrast, other
methods employ a retrain-free paradigm, however, these ap-
proaches are prohibitively computationally expensive and do
not perform on par with their retrain-based counterparts. We
present Selective Synaptic Dampening (SSD), a novel two-
step, post hoc, retrain-free approach to machine unlearning
which is fast, performant, and does not require long-term stor-
age of the training data. First, SSD uses the Fisher informa-
tion matrix of the training and forgetting data to select pa-
rameters that are disproportionately important to the forget
set. Second, SSD induces forgetting by dampening these pa-
rameters proportional to their relative importance to the for-
get set with respect to the wider training data. We evaluate
our method against several existing unlearning methods in
a range of experiments using ResNet18 and Vision Trans-
former. Results show that the performance of SSD is com-
petitive with retrain-based post hoc methods, demonstrating
the viability of retrain-free post hoc unlearning approaches.

Introduction
Modern machine learning (ML) models are trained on vast
amounts of data, much of which may be sensitive, private,
or copyrighted. To address threats posed by large-scale data
collection, authorities are enacting data privacy regulations
that afford individuals the right to request the deletion of
their data (e.g., GDPR (Voigt and Von dem Bussche 2017)).
Despite the increasing need to facilitate forgetting, there is
much work to be done in designing such algorithms. The
process of forgetting information within an ML model is re-
ferred to as machine unlearning.

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The challenge of machine unlearning can be thought of
as a multi-objective task, conducting forgetting without de-
grading model performance on the remaining data. Nguyen
et al. (2022) refers to this trade-off in terms of design re-
quirements, referring to performance preservation as keep-
ing the model completeness, and unlearning efficiency as
timeliness and light-weightiness. Timeliness is a key con-
straint, as full retraining of a model without the to-be-
forgotten data would yield the desired results but doing so
is time and resource-intensive. Similarly, light-weightiness
refers to what preparation is necessary for the unlearning
process, such as storing a list of samples and parameter up-
dates for every training batch as in Graves, Nagisetty, and
Ganesh (2021). This adds significant overhead and cannot
be performed post-hoc.

Current state-of-the-art approaches rely on various re-
training or fine-tuning steps in order to preserve model per-
formance while unlearning the specified data (Tarun et al.
2023a,b; Chundawat et al. 2023a,b; Graves, Nagisetty, and
Ganesh 2021). This can add overhead and, importantly,
mandates that the training data be stored permanently.

In this paper, we propose Selective Synaptic Dampening
(SSD), a retraining-free, post hoc unlearning approach to
enable lightweight and timely unlearning. We achieve this
by distinguishing between generalized and specialized in-
formation, prioritising the protection of generalized, broadly
useful information while dampening parameters that are spe-
cialized towards to-be-forgotten samples. SSD builds on
the finding that overparameterised ML models are prone to
memorization of training data (Lee, Lee, and Shin 2011;
Feldman 2020; Carlini et al. 2019). Thus, we contend that
targeting this specialized information can induce forgetting
while minimising influence on the generalization capabil-
ity of the model. The remaining information in the model
is generalized and therefore not violating individual privacy
(e.g., the ability to detect the shape of a person versus detect-
ing Jane Smith). We use the diagonal of the Fisher informa-
tion matrix (FIM) to identify these specialized parameters.
Golatkar, Achille, and Soatto (2020a) have also proposed a
retraining-free unlearning approach based on the FIM, but
as shown by Tarun et al. (2023b) and our own benchmarks,
their approach does not meet key design criteria. First, the
computational effort exceeds retraining and takes orders of
magnitude longer than the unlearning method of Tarun et al.
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Figure 1: The Selective Synaptic Dampening process. Importance is calculated using the Fisher information. SSD identifies the
parameters that are specialized towards the forget set, and dampens them proportional to this specialization

(2023b) based on their benchmarks. Second, their bench-
marks also show that the unlearning performance does not
match current state-of-the-art methods. We address both of
these shortcomings via Selective Synaptic Dampening. Fig.
1 provides a diagrammatic overview of the SSD process.

We benchmark SSD against state-of-the-art unlearning
methods (Chundawat et al. 2023a; Graves, Nagisetty, and
Ganesh 2021; Tarun et al. 2023b) with three different un-
learning scenarios: (i) single-class forgetting (Chundawat
et al. 2023b), (ii) sub-class forgetting (Golatkar, Achille, and
Soatto 2020b,c), (iii) random observations forgetting (Go-
latkar et al. 2021). Experimental results show that SSD is
orders of magnitude faster than previous retrain-free meth-
ods (Golatkar, Achille, and Soatto 2020a,c) while perform-
ing comparably to established retrain-based methods both in
terms of speed as well as forgetting performance.

We make the following key contributions:
1. We propose a novel retraining-free selective unlearn-

ing method that is competitive with state-of-the-art
retraining-based methods.

2. We consider unlearning as a selective task in which only
a small number of parameters should be modified to pre-
serve model consistency.

3. SSD only needs access to the training data once to com-
pute the FIM and can discard it afterwards, reducing stor-
age requirements compared to retraining-based methods.

Related Work
Differential privacy. Differential privacy seeks to provide
guarantees that information about individuals in a dataset is
not leaked by the output of some model or function that uses
this data (Dwork, Roth et al. 2014). Machine unlearning is
strongly intertwined with this goal, with Ginart et al. (2019)
introducing a probabilistic definition of unlearning that re-
quires the output distribution of a model that has unlearnt
data to be similar to the output distribution of a model that
was never trained on that data.

Membership inference attacks (MIA). Deep learning
models generally perform better on their training data than

unseen data. Membership attacks exploit this to determine
if a specific set of data was used in the training process by
comparing model output distributions for test and train data
Shokri et al. (2017); Hu et al. (2022). MIA is therefore a key
measure of performance for unlearning methods.

Unlearning in deep networks. Due to the high cost of
training for large models, and the need to be applied to ex-
isting models, we restrict our review to post hoc methods
that do not require additional computations or data storage
during the original training process (e.g., gradient vectors
in Mehta et al. (2022), or a summation layer in (Cao and
Yang 2015)). We categorise post hoc deep neural network
unlearning methods into retraining-based and retraining-free
approaches, based on whether they require any traditional
model training steps in the unlearning procedure.

Retraining-free unlearning methods commonly utilise
the Fisher information matrix. The FIM has long been used
to approximate the sensitivity of a model’s output to pertur-
bations of its parameters from the second derivative of the
loss (i.e. the Hessian), which can be interpreted as the im-
portance of each parameter (as in Kirkpatrick et al. (2017)
where it is used to calculate an L2 regularization term to pre-
vent forgetting of previous tasks). In unlearning, the FIM has
been used in ad hoc (Guo et al. 2019), post hoc (Golatkar,
Achille, and Soatto 2020a), and zero-shot (Sekhari et al.
2021) approaches. Golatkar, Achille, and Soatto (2020a) in-
troduces Fisher Forgetting, a weight scrubbing method that
induces forgetting by injecting noise into the parameters
proportional to their relative importance to the forget set
compared to the retain set. This is computationally very ex-
pensive and updates the whole model which causes signif-
icant degradation to the accuracy on the retain dataset, as
shown in experiments of Tarun et al. (2023b). SSD addresses
these shortcomings, yielding significantly faster execution
time and through a stringent parameter-selection step, retain
set performance is much better protected. Other non-FIM-
based methods include variational forgetting for regression
and Gaussian processes (Nguyen, Low, and Jaillet 2020),
neural tangent kernel forgetting (NTK) (Golatkar, Achille,
and Soatto 2020c), and mixed-linear models (MLM) (Go-
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latkar et al. 2021). NTK and MLM rely on additional models
that add further complexity and overhead. Selective Synap-
tic Dampening does not rely on any additional models.

Retraining-based unlearning methods are the current
state-of-the-art in terms of performance. Chundawat et al.
(2023a) uses a student-teacher framework with a competent
and incompetent teacher model to induce forgetting while
preserving model performance on the retained data. Graves,
Nagisetty, and Ganesh (2021) present two unlearning meth-
ods of which one is post hoc which we will refer to as am-
nesiac in this paper. Amnesiac relabels Df with randomly
selected incorrect labels and then retrains the network for a
set number of epochs. Tarun et al. (2023b) learns an error-
maximising noise matrix for Df that is then applied to the
weights in the impair step before performing a repair step to
recover model performance on Dr. Chundawat et al. (2023b)
and Tarun et al. (2023a) address the related yet distinct chal-
lenges of zero-shot and deep regression unlearning, respec-
tively. We restrict the scope of this work to the more mature
unlearning area of classification tasks.

Our method contrasts existing works by possessing a
combination of desirable properties: post hoc, fast, retrain-
free, selective in the parameters to be manipulated, and not
reliant on additional models.

Preliminaries
Let D = {xi, yi}Ni=1 be a dataset of training samples xi,
with corresponding class label yi ∈ {1, ...,K}. In an un-
learning scenario, the objective is to forget the subset Df ⊂
D, while preserving model performance on the remaining
data Dr = D \ Df . We shall refer to these subsets as the
forget set and retain set, respectively. Df may comprise any
subset of D, and we show the performance of SSD on full
class forgetting, where the forget set contains all samples
with label k, subclass forgetting, where a subset of samples
with label k are forgotten, and random subset, where each
datapoint is randomly sampled from D, without replace-
ment. Let ϕθ(·) : X → Y , where X ∈ Rn and Y ∈ RK ,
be a function parameterised by θ ∈ Rm and trained on D,
where the k-the component of ϕθ(x) is the probability that
sample x belongs to class k.

Proposed Method
The guiding intuition behind Selective Synaptic Dampening
is that there likely exist parameters that are specifically im-
portant for Df but not for Dr. This intuition is further mo-
tivated by works such as Feldman (2020) and Stephenson
et al. (2021). They show that deep neural networks memo-
rize specific training examples and that parameters in later
layers are highly specialized to specific features. Such pa-
rameters are likely extremely important for a small set of
samples in the training data, but may not be generally im-
portant for the wider training set. Since Dr is typically large
and filled with diverse samples, parameters which are simi-
larly or more important for Dr compared to Df likely corre-
spond to highly generalized features, with little to no threat
to differential privacy or the right to be forgotten. For exam-
ple, recognising that there exists a person in an image is not

necessarily a problem, but identifying who that person is, is
a significant problem.

Hessian and the Fisher information matrix One way to
identify important parameters is to use the FIM, as in Kirk-
patrick et al. (2017); Golatkar, Achille, and Soatto (2020a);
Guo et al. (2019); LeCun, Denker, and Solla (1989); Hassibi,
Stork, and Wolff (1993). Given ϕθ, it can be assumed that the
optimal parameters θ∗ have been learnt, which minimises
the loss over D. The sensitivity of ϕθ with respect to each
parameter θk can be calculated via the second-order deriva-
tive of the loss near the minimum (Maltoni and Lomonaco
2019). This sensitivity can be interpreted as the importance
of each parameter. Calculating the second derivative is ex-
pensive, however, the diagonal of the Fisher information ma-
trix is equivalent to the second derivative of the loss (Paw-
itan 2001), and critically can be computed using first-order
derivatives. The FIM, and its first-order derivative property
(Kay 1993; Aich 2021), is given in Eq. 1.

[]D = E
[
−δ2 ln p(D|θ)

δθ2
|θ∗

D

]
[]D = E

[((
δ ln p(D|θ)

δθ

)(
δ ln p(D|θ)

δθ

)T
)

|θ∗
D

]
(1)

Selective Synaptic Dampening We begin by outlining a
naı̈ve forgetting approach using the FIM in Eq. 2

θi =

{
0, if []Df,i

> 0

θi, if []Df,i
= 0

∀i ∈ [0, |θ|] (2)

where []Df ,i is the i-th element of the diagonal of the
Fisher information matrix, calculated over the forget set Df .
This represents a simple pruning algorithm, which identifies
the location of all parameters that have non-zero importance
values, and sets their value to zero, thereby removing their
contribution to the model output. While this would lead to
forgetting over Df , it would also lead to the catastrophic
degradation of performance on Dr, due to the large over-
lap in important parameters for both sets and the fact it is
highly likely that []Df

is greater than zero for a majority of
parameters. The challenge, then, lies in maintaining the for-
getting abilities of such a pruning algorithm while simulta-
neously protecting parameters important to the retain set. To
achieve this, we introduce two significant amendments to the
pruning algorithm that lead to strong forgetting and retain-
set performance while maintaining fast execution time. First,
a stricter selection criterion is implemented, considering the
parameter importance to the retain set in Eq. 3

θi =

{
0, if []Df,i

> α[]Dr,i

θi, if []Df,i
≤ α[]Dr,i

∀i ∈ [0, |θ|] (3)

where, the hyper-parameter α allows control of how pro-
tective the selection should be. The updated selection crite-
ria now greatly reduces the number of parameters chosen,
only selecting parameters that are more important for Df

than Dr. This step facilitates the identification of parameters
that are highly specialized towards samples in the forget set,
with α dictating how specialized they must be to be pruned.
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While this step is critical, there remains a clear limitation
with this approach, which is the binary nature of the update
rule. A parameter that is slightly over the threshold is treated
the same as a parameter that is vastly more important to
the forget set. This lack of granularity limits the forgetting-
performance trade-off and necessitates a large α to maintain
performance on Dr, however a large α then significantly re-
duces the ability to forget Df due to an unreasonably high
bar for being considered specialized. Therefore, the pruning
step is replaced by a dampening step that applies a penalty
to the magnitude of the parameter proportional to its relative
importance of Df compared to D in Eq. 4

β = min(
λ[]D,i

[]Df,i

, 1)

θi =

{
βθi, if []Df,i

> α[]D,i

θi, if []Df,i
≤ α[]D,i

∀i ∈ [0, |θ|] (4)

where λ is a hyper-parameter to control the level of protec-
tion. This is the final SSD procedure. Intuitively, if λ = 1
then β < 1 for all parameters that are specialized towards
Df . Therefore, β → 0 as a parameter becomes more spe-
cialized for Df . Since λ scales this update, this dampen-
ing factor is given an upper bound of 1 to prevent large
λ values from causing parameters to grow. The dampen-
ing effect, combined with the selection criteria, creates a
granular method to forgetting that will almost completely
remove highly-specialized parameters, protect generalized
parameters, and proportionally dampen the parameters in
between, thereby finding an acceptable compromise to this
multi-objective problem. λ and α offer control over whether
to prioritise forgetting or protecting, as well as performance
adjustments for different models and unlearning tasks. Fi-
nally, we highlight that []Dr

is substituted with []D in the
selection step. This is because []Dr

must be recalculated for
every new forget request. []D can be calculated at any point
after training before unlearning and only needs to be com-
puted once, allowing for the training set to be discarded and
only []D stored. With this substitution, the selection crite-
ria can be thought of as trying to prevent the dampening
from moving the parameter set away from the original, opti-
mal parameters θ∗D. This is a trade-off to optimise for speed
of execution, and the solution remains accurate as typically
|Df | << |D| and therefore the values for []D and []Dr

are
near identical. We hypothesise that this is a valid approach
for repeated forget requests, as only a small fraction of pa-
rameters are updated for each forget request, and therefore
it would take many forget requests for []D and []Dr to di-
verge substantially. In the event of such divergence, the only
consequence would be the false protection of now-purged
parameters, since dampening will only reduce a parameter’s
contribution to model output.

The experimental results are all calculated with D rather
than Dr, and demonstrate the efficacy of this approach.

Experimental Setup
Datasets used. We evaluate our method on image classifica-
tion using CIFAR10, CIFAR20, and CIFAR100 (Krizhevsky

Algorithm 1: Selective Synaptic Dampening
Input: ϕθ, D, Df ; optional to skip 1.: []D
Parameter: α, λ
Output: ϕθ′

1: Calculate and store []D once. Discard D.
2: Calculate []Df

3: for i in range |θ| do
4: if []Df ,i > α[]D,i then
5: θ′i = min(

λ[]D,i

[]Df,i
θi, θi)

6: end if
7: end for
8: return ϕθ′

and Hinton 2010), in line with Golatkar, Achille, and Soatto
(2020a); Chundawat et al. (2023a). We forget the same
classes from these datasets as (Chundawat et al. 2023a).
Golatkar, Achille, and Soatto (2020a) also use the VGG-
Face dataset (Parkhi, Vedaldi, and Zisserman 2015), how-
ever, this is no longer accessible so we substitute it with the
PinsFaceRecognition dataset (Burak 2020), which consists
of 17,534 faces of 105 celebrities collected from Pinterest.

Models used. Following Chundawat et al. (2023a), we
use ResNet18 (He et al. 2016) and Vision Transformer
(Dosovitskiy et al. 2021) for the learning and unlearning
tasks. Experiments were performed on NVIDIA RTX4090
with Intel Xeon processors. Models are trained with early
stopping using a multi-step learning rate scheduler begin-
ning at lr = 0.1 and the Adam optimiser (Kingma and Ba
2014) with Python 3, PyTorch, and Ubuntu 20.04.6 LTS.
Evaluation Measures. Analogous to Chundawat et al.
(2023a), we use the following: 1) Accuracy on the forget
and retain set: To validate forgetting while retaining overall
model performance. Listed as Df and Dr in results tables.
2) Membership inference attack: To investigate if informa-
tion about the forget sample is still present in the model. We
use the logistic regression MIA implementation from Chun-
dawat et al. (2023a). We also consider an additional metric
3) Execution time (seconds): to evaluate the timeliness of
methods (denoted t in results).

Unlearning tasks: We benchmark across three different
unlearning scenarios: (i) Single-class forgetting (Chundawat
et al. 2023b), (ii) sub-class forgetting (Golatkar, Achille,
and Soatto 2020b,c), and (iii) random observations forget-
ting (Golatkar et al. 2021). In (i) we forget a superclass of
CIFAR 20, as well as a class out of CIFAR100 and Pins-
FaceRecognition. In (ii) we forget a CIFAR 20 subclass of
a superclass (e.g., rocket out of vehicles). CIFAR20 super-
classes have CIFAR100 classes as subclasses. In (iii) we for-
get a random subset of 100 samples from CIFAR10.

Baselines used. We compare SSD to the Fisher Forgetting
algorithm (Golatkar, Achille, and Soatto 2020a), however
initial results show that not only does Fisher Forgetting per-
form worse than SSD, it also is exceptionally slow (between
50 − 250 times slower than SSD). Similarly, Nguyen, Low,
and Jaillet (2020); Golatkar, Achille, and Soatto (2020c);
Golatkar et al. (2021) fit additional compute-intensive mod-
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Figure 2: Time per method on (ii) Cifar20 rocket including
model loading and metric calculation (i.e. baseline) to simu-
late a realistic forget process from model loading to verifica-
tion of forgetting. Zoom-in indicates share of compute time
spent on calculating []D compared to the rest of the SSD
method. Precomputing []D can save 84.32%±0.21% of the
pure SSD computing time (excl. baseline time).

els or perform computations exceeding Fisher in computa-
tional time (e.g., NTK ), thus rendering them prohibitively
expensive to run over all experiments. Therefore, we focus
our comparison on state-of-the-art methods, which are in the
retraining-based category. We compare SSD against the fol-
lowing methods: (a) Baseline: The unaltered model trained
on Dr ∪ Df (b) Finetune: Finetuning the baseline model on
Dr for 5 epochs, (c) Retraining: Retraining the model from
scratch on Dr, (d) Bad Teacher (Chundawat et al. 2023a),
(e) Amnesiac (Graves, Nagisetty, and Ganesh 2021), (f) UN-
SIR (Tarun et al. 2023b). (f) is not designed for random ob-
servations forgetting and therefore excluded from this task.

SSD parameters. We found hyper-parameters using 50
runs of the TPE search from Optuna (Akiba et al. 2019), for
values α ∈ [0.1, 100]) and λ ∈ [0.1, 5]. We only conducted
this search for the Rocket and Veh2 classes. We use λ=1
and α=10 for all ResNet18 CIFAR tasks. For PinsFaceRe-
cognition, we use α=50 and λ=0.1 due to the much greater
similarity between classes. ViT also uses λ=1 on all CIFAR
tasks. We change α=10 to α=5 for slightly improved perfor-
mance on class and α=25 on sub-class unlearning.

Results and Discussion
Defining good. Chundawat et al. (2023a) note that theo-
retically perfect accuracy Df = 0 and MIA = 0 is not
necessarily ideal. Ideal is to closely match the performance
of a model retrained from scratch that has never seen Df ,
the gold model. They postulate that deviating from the gold
model performance can lead to the Streisand effect. They
give the example of a model that classifies a Boeing air-
craft as a mushroom. This is maximally wrong but not a
behaviour expected from a model that can classify other air-
craft. The model thus leaks information to an attacker by de-
liberately being wrong. The model has not unlearned, it sim-
ply learned to predict a wrong label for Df . This is congru-

retrain Fisher SSD

Cifar20
Veh2

Dr 82.11±0.19 5.76±1.01 82.97±0.00
Df 0.00±0.00 0.00±0.00 0.00±0.00
MIA 13.54±0.01 47.12±16.39 6.68±0.00
t 441±10 5871±297 122±5

Cifar100
Rocket

Dr 72.83±0.42 1.18±0.06 74.54±0.00
Df 0.00±0.00 0.00±0.00 0.00±0.00
MIA 1.04±0.00 0.00±0.16 2.20±0.00
t 1805±10 28744±1332 120±6

Cifar20
Rocket

Dr 81.54±0.24 5.20±0.54 82.43±0.00
Df 10.74±3.40 0.78±1.35 2.17±0.00
MIA 3.85±0.01 43.40±7.79 10.80±0.00
t 453±6 6154±133 121±6

Cifar10
Random

Dr 91.45±0.11 12.74±2.22 88.68±3.36
Df 94.10±2.00 11.85±4.13 93.61±4.99
MIA 74.22±0.04 46.59±27.46 72.65±0.05
t 308±5 3225±100 121±5

Table 1: Fisher unlearning on (i), (ii), and (iii) tasks with
ResNet18. As reported by Tarun et al. (2023b), we also ob-
serve that Fisher fails to maintain accuracy on the retained
data and is computationally very expensive. SSD is deter-
ministic, thus no ± is reported. Veh2: Vehicle2. Dr and Df

rows report the accuracy on the respective dataset. All val-
ues in percent [%] except t [seconds]. For retrain, Df > 0
due to model generalization (e.g., rocket similar to vehicles)

ent with the probabilistic definition of unlearning from Gi-
nart et al. (2019). This is especially relevant in the (iii) ran-
dom forgetting scenario, where the distributions of Dr and
Df are likely to be very similar, and an unlearned sample
from the rocket class could still be correctly classified based
on the generalized knowledge about rockets in the model
from the Dr rocket samples. Therefore, we define good as
unlearning matching the MIA of the retrained model.

Selectivity. SSD only changes a small amount of param-
eters. When forgetting the rocket class from Cifar100, only
1.7% of parameters are changed.

Comparison to Fisher Forgetting. Table 1 shows a com-
parison of Fisher (Golatkar, Achille, and Soatto 2020a), a
retrained model, and SSD. Experimental results show that
SSD significantly outperforms Fisher in terms of closeness
to the retrained model performance, with Fisher signifi-
cantly dropping Dr performance, and performing consider-
ably worse on the MIA evaluation for the Cifar20 single-
class and Cifar20 sublcass tasks. Furthermore, SSD is orders
of magnitude faster than Fisher, only requiring 0.4 − 3.8
percent of the time that Fisher requires. We also note that
Fisher’s execution time increases significantly with larger
models, whereas SSD is less sensitive to this as shown with
Cifar100 rocket class unlearning times of 120.00±5.49 sec-
onds on ResNet8 (11M parameters) and 655.64±65.36 sec-
onds on ViT (85M parameters).

Compute time comparison. Fig. 2 shows compute times
for the Cifar20 class unlearning task. We experimentally
demonstrate that SSD is comparable to state-of-the-art meth-
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Class metric baseline retrain finetune teacher UNSIR amnesiac SSD

RN

rocket
Dr 76.27±0.00 72.83±0.42 64.05±0.88 74.53±0.26 73.89±0.28 73.34±0.45 74.54±0.00
Df 80.90±0.00 0.00±0.00 0.00±0.00 0.00±0.00 28.66±4.98 0.00±0.00 0.00±0.00
MIA 93.40±0.00 1.04±0.41 13.70±0.04 0.00±0.00 1.94±0.01 29.56±0.02 2.20±0.00

MR
Dr 76.28±0.00 72.90±0.45 63.97±0.67 74.53±0.26 73.81±0.26 73.56±0.48 75.59±0.00
Df 80.12±0.00 0.00±0.00 0.00±0.00 0.00±0.00 27.34±5.08 0.00±0.00 0.00±0.00
MIA 95.20±0.00 0.22±0.01 12.98±0.03 0.00±0.00 1.54±0.01 46.48±0.04 0.20±0.00

ViT

rocket
Dr 88.88±0.00 90.07±0.09 80.82±1.37 87.46±0.53 88.47±0.38 87.92±0.89 88.90±0.00
Df 94.70±0.00 0.00±0.00 0.46±0.72 4.20±5.24 65.32±9.11 0.00±0.00 0.00±0.00
MIA 94.40±0.00 3.23±0.50 19.00±0.09 0.03±0.00 29.13±0.06 1.00±0.01 1.80±0.00

MR
Dr 88.87±0.00 90.02±0.22 81.14±0.79 87.42±0.41 88.44±0.58 88.34±0.72 88.82±0.00
Df 94.88±0.00 0.00±0.00 2.33±2.37 12.82±5.92 83.94±2.87 0.00±0.00 0.00±0.00
MIA 92.80±0.00 0.70±0.41 7.10±0.02 0.03±0.00 21.33±0.03 0.47±0.00 3.80±0.00

Table 2: (i) Class unlearning on CIFAR100 with ResNet18 (RN) and Vision Transformer (ViT). MR: mushroom. Dr and Df

rows report the accuracy on the respective dataset. All values in percent [%].

Class metric baseline retrain finetune teacher UNSIR amnesiac SSD

RN

Veh2
Dr 82.69±0.00 82.11±0.19 73.50±0.86 81.96±0.21 80.81±0.46 81.13±0.3 82.97±0.00
Df 80.41±0.00 0.00±0.00 0.00±0.00 3.62±1.07 46.92±2.27 0.00±0.00 0.00±0.00
MIA 82.56±0.00 13.54±0.01 30.63±0.04 0.00±0.00 35.16±0.03 7.54±0.01 6.68±0.00

veg
Dr 82.31±0.00 81.39±0.21 71.42±1.32 81.46±0.3 80.29±0.26 81.01±0.33 82.38±0.00
Df 86.90±0.00 0.00±0.00 0.00±0.00 2.67±1.35 64.45±1.77 0.00±0.00 0.00±0.00
MIA 89.52±0.00 9.74±0.01 29.39±0.08 0.00±0.00 40.66±0.06 5.00±0.01 16.96±0.00

ViT

Veh2
Dr 95.73±0.00 94.85±0.13 87.75±1.64 93.59±0.3 93.56±0.32 93.88±0.15 93.12±0.00
Df 95.22±0.00 0.00±0.00 0.04±0.12 4.88±4.12 70.31±5.03 0.00±0.00 0.00±0.00
MIA 84.04±0.00 22.96±0.03 38.15±0.08 0.02±0.00 48.98±0.07 1.20±0.00 7.04±0.00

veg
Dr 95.59±0.00 94.54±0.21 87.09±1.24 92.92±0.51 93.25±0.35 93.29±0.41 95.71±0.00
Df 97.57±0.00 0.00±0.00 0.30±0.29 8.28±6.79 89.02±2.41 0.02±0.07 0.00±0.00
MIA 91.32±0.00 4.41±0.01 14.72±0.05 0.02±0.00 58.67±0.04 1.02±0.00 1.88±0.00

Table 3: (i) Class unlearning on CIFAR20 with ResNet18 and Vision Transformer. Veh2: Vehicle2.

metric baseline retrain finetune teacher UNSIR amnesiac SSD

RN
Dr 98.52±0.02 100.00±0.00 99.72±0.45 96.72±0.44 99.89±0.06 99.99±0.02 98.42±0.13
Df 97.84±1.99 0.00±0.00 4.32±4.61 0.13±0.4 90.53±5.68 0.00±0.00 0.00±0.00
MIA 34.38±0.23 0.00±0.00 0.80±0.01 0.02±0.00 8.54±0.11 8.92±0.03 1.11±0.01

Table 4: (i) Face unlearning. One face unlearned per experiment [ID 1,10,20,30,40] and results aggregated for 5 experiments.

ods. For repeated unlearning, as expected in practice, []D can
be computed once and stored, reducing the time far below
the already competitive time, which would make SSD the
fastest method. Including the computation of []D, SSD is the
second fastest method behind Chundawat et al. (2023a).

(i) Class unlearning. SSD is first benchmarked on class
unlearning, as performed in Chundawat et al. (2023a), on
CIFAR100 in Table 2, CIFAR20 in Table 3, and PinsFaceRe-
cognition unlearning in Table 4. SSD is close to the retrained
model in terms of Dr and MIA across the unlearning tasks
and is comparable to retraining-based methods. For exam-
ple, forgetting rocket from Cifar100 has a baseline MIA of
93% for ResNet and 94% for ViT, SSD reduces this to ca.
2% (retrain 1-3%), while Dr performance drops just 2% for
ResNet, and actually improves negligibly for ViT. We high-

light the closest method to retrain bold in the results tables.
(ii) Subclass unlearning. We present subclass unlearn-

ing, as performed in Chundawat et al. (2023a), on CIFAR20
in Table 5. Class sea demonstrates the problem of defining
good, as the retrained model achieves a high non-zero MIA.
Amnesiac and Bad Teacher reduce MIA to near zero, even
though a retrained model does not show the same behaviour.
Graves, Nagisetty, and Ganesh (2021) relabel Df to random
labels and (Chundawat et al. 2023a) uses an incompetent
teacher to update the model. The noise-based approach of
Tarun et al. (2023b) and our SSD on the other hand lead to
higher MIA and Df values that are closer to the retrained
model. Efficacy analysis is therefore hard, as while Amne-
siac and Teacher minimise the MIA and Df accuracy, they
may be falling victim to the Streisand effect.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12048



Class metric baseline retrain finetune teacher UNSIR amnesiac SSD

RN

rocket
Dr 82.54±0.00 81.54±0.24 72.41±0.95 81.48±0.27 81.13±0.31 81.46±0.26 82.43±0.00
Df 79.34±0.00 10.74±3.4 9.75±6.68 6.41±3.57 59.20±4.75 0.76±0.73 2.17±0.00
MIA 89.40±0.00 3.85±0.01 18.67±0.05 0.00±0.00 33.53±0.06 6.60±0.01 10.80±0.00

sea
Dr 82.37±0.00 81.30±0.27 72.50±1.55 81.22±0.24 80.82±0.3 81.05±0.31 81.72±0.00
Df 96.27±0.00 91.47±1.92 82.69±7.17 75.13±4.12 95.49±2.4 46.78±8.55 75.35±0.00
MIA 90.80±0.00 52.09±0.03 62.82±0.11 0.00±0.00 80.44±0.04 4.45±0.01 21.80±0.00

ViT

rocket
Dr 95.73±0.00 94.61±0.13 85.70±3.05 93.60±0.29 93.34±0.45 93.47±0.22 95.13±0.00
Df 94.53±0.00 22.26±8.34 6.25±6.03 3.35±2.89 74.93±10.13 0.85±1.71 5.12±0.00
MIA 80.40±0.00 3.44±0.01 16.04±0.03 0.02±0.00 27.27±0.14 0.78±0.00 5.40±0.00

sea
Dr 95.67±0.00 94.55±0.22 87.65±1.56 93.57±0.26 93.26±0.31 93.26±0.24 95.57±0.00
Df 99.22±0.00 95.12±0.81 89.17±4.17 25.97±14.01 94.25±2.32 21.42±8.5 97.05±0.00
MIA 88.40±0.00 65.96±0.04 65.04±0.13 0.17±0.00 76.96±0.07 0.40±0.00 82.20±0.00

Table 5: (ii) Subclass unlearning on CIFAR20 with ResNet18 and Vision Transformer.

metric baseline retrain finetune teacher amnesiac SSD

RN
Dr 90.71±0.00 91.45±0.11 88.02±0.45 90.21±0.10 90.16±0.23 88.68±3.36
Df 95.30±2.08 94.10±2.00 90.00±3.73 90.00±2.73 59.04±4.79 93.61±4.99
MIA 75.78±0.04 74.22±0.04 74.58±0.05 49.28±0.07 25.18±0.05 72.65±0.05

ViT
Dr 98.88±0.00 98.61±0.08 97.28±0.33 97.58±0.36 97.62±0.35 98.01±1.56
Df 100.00±0.00 98.80±0.76 97.19±0.98 86.75±3.57 73.49±5.11 98.07±2.35
MIA 90.76±0.03 91.77±0.02 86.14±0.02 33.53±0.06 10.44±0.05 85.54±0.11

Table 6: (iii) Random unlearning on CIFAR10 with ResNet18 and Vision Transformer.

(iii) Random sample unlearning. We present random
sample unlearning, as performed in Golatkar, Achille, and
Soatto (2020a), on CIFAR10 in Table 5. We observe simi-
lar performance of SSD and retraining on ResNet and ViT.
Graves, Nagisetty, and Ganesh (2021) and Chundawat et al.
(2023a) again reduce the MIA far below the retrained model
as observed in (ii), which is a risk to privacy (Streisand ef-
fect). An ideal unlearned model mimics a retrained model.

Overall analysis of Selective Synaptic Dampening.
SSD outperformed Fisher Forgetting while being orders of
magnitude faster, highlighting its efficacy. SSD also per-
forms competitively with established state-of-the-art meth-
ods and full model retraining, demonstrating the viability of
retrain-free post-hoc unlearning approaches in a wider con-
text. SSD was, on average, the strongest performing method
when measuring similarity to the fully retrained model.
However, the lack of standardized evaluations in unlearning,
and an as-yet-undecided notion of what is truly a good MIA
score, renders a qualitative assessment of methods challeng-
ing and determining the best algorithm ambiguous.

Limitations. First, SSD is not certified, with no mathe-
matical guarantee of unlearning a given sample. This weak-
ness is shared by all benchmarked methods. Second, if bad
parameter values are chosen (α, λ), such that large changes
are made to the model, then repeat forgetting may lead to
significant model degradation. Finding appropriate values
for α and λ is a practical limitation but as shown experimen-
tally, the parameters are only set within one order of mag-
nitude (α ∈ [5, 50] and λ ∈ [0.1, 1]) across two models of
vastly different parameter counts and architectures. We hy-

pothesise that the ideal parameters could be estimated from
the Df loss distribution to enable automatic parameter se-
lection in future work. Finally, we note that without a repair
step, there is naturally a finite amount of forget requests that
SSD can process before Dr performance begins to degrade.

Conclusion
We present a novel two-step, retraining-free unlearning
method. SSD first selects parameters that are considerably
more important for the forget set than the retain set, before
dampening these parameters proportional to the discrepancy
in their importance to the forget and retain set. The result of
these steps is a fast yet highly effective method for machine
unlearning. We evaluate SSD on a range of tasks, demon-
strating viability in single-class, sub-class and random sam-
ple settings, on multiple datasets and different model archi-
tectures. Results show that SSD is orders of magnitude faster
than the comparable Fisher Forgetting method, outperform-
ing the method considerably; SSD even rivals the speed and
performance of state-of-the-art retrain-based approaches.

Many future directions could be explored, such as evalu-
ating how to improve and measure performance on random
subsets, given the significant overlap in parameter impor-
tance for the forget and test set. Another interesting direc-
tion is how to forget large subsets of information. Typically
experiments evaluate forgetting no more than 5-10% of data;
this may be realistic but evaluating how to increase the upper
bound of forgetting without retraining may offer valuable in-
sight into how to improve existing unlearning methods.
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