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Abstract

Accurate prediction of coupon usage is crucial for promot-
ing user consumption through targeted coupon recommenda-
tions. However, in real-world coupon recommendations, the
coupon allocation process is not solely determined by the
model trained with the history interaction data but is also in-
terfered with by marketing tactics desired to fulfill specific
commercial goals. This interference creates an imbalance in
the interactions, which causes the data to deviate from the
user’s natural preferences. We refer to this deviation as the
matching bias. Such biased interaction data affects the effi-
cacy of the model, and thus it is necessary to employ debias-
ing techniques to prevent any negative impact. We investigate
the mitigation of matching bias in coupon recommendations
from a causal-effect perspective. By treating the attributes of
users and coupons associated with marketing tactics as con-
founders, we find the confounders open the backdoor path
between user-coupon matching and the conversion, which in-
troduces spurious correlation. To remove the bad effect, we
propose a novel training paradigm named Backdoor Adjust-
ment via Group Adaptation (BAGA) for debiased coupon rec-
ommendations, which performs intervened training and infer-
ence, i.e., separately modeling each user-coupon group pair.
However, modeling all possible group pairs greatly increases
the computational complexity and cost. To address the ef-
ficiency challenge, we further present a simple but effec-
tive dual-tower multi-task framework and leverage the Cus-
tomized Gate Control (CGC) model architecture, which sep-
arately models each user and coupon group with a separate
expert module. We instantiate BAGA on five representative
models: FM, DNN, NCF, MASKNET, and DEEPFM, and con-
duct comprehensive offline and online experiments to demon-
strate the efficacy of our proposed paradigm.

Introduction
With the development of e-commerce and m-payment, rec-
ommendation technology has been increasingly used in on-
line marketing campaigns. For instance, a payment platform
periodically organizes marketing campaigns designed to al-
locate online coupons to incentivize consumption and bol-
ster customer retention (Li et al. 2020; Zhu et al. 2023; Fang
et al. 2023). The key objective of modeling these campaigns
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Figure 1: Empirical evidence of how imbalanced historical
interaction data leads to imprecise estimations.

is to estimate the conversion probability, which refers to
the likelihood of a user using a coupon. As with other rec-
ommendation scenarios, researchers typically employ User-
Item Click-Through-Rate (CTR) models (Sim and Lee 2014;
Mutanen, Nousiainen, and Liang 2010; Huan et al. 2022;
Huangfu et al. 2022) to handle this problem.

To achieve specific commercial objectives, such as max-
imizing daily active users (DAUs) or increasing the expo-
sure of a particular coupon, the organizers may employ spe-
cific tactics to interfere with the coupon allocation process.
These tactics can be manifested as limiting the likelihood
of certain types of users receiving specific coupons or limit-
ing the likelihood of certain types of coupons being exposed
to particular users. By leveraging these tactics, organizers
can effectively drive user behavior and achieve their desired
goals. However, this interference can create an imbalance in
user-coupon interaction data distribution, i.e., result in cer-
tain user-coupon pairs dominating the majority of historical
interaction data, which causes the data to deviate from the
user’s natural preferences. This deviation is referred to as the
matching bias (Fang et al. 2023). Models trained with such
data tend to further exacerbate the imbalance by overem-
phasizing majority user-coupon pairs and distorting the es-
timation of conversion probability. Ultimately, this bias de-
creases the efficiency of the recommendation model.

Fig.1 shows the empirical evidence of the affection of
matching bias in the marketing coupon recommendation
scenario of a payment platform studied in this paper. As-
suming there are two tactics employed 1: public transport

1Here, the tactics work by multiplying the predicted model
scoring of coupons by a specific weighted score, and the resulting
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coupons have a higher likelihood of being exposed to users
without private cars, while take-out coupons have a higher
likelihood of being exposed to younger users. For example,
a middle-aged user who walks to work and occasionally eats
take-out at work may have a greater demand for take-out
coupons than public transport coupons. However, if the pair
of users without private cars and public transport coupons
occupies the majority in the training sample, while the pair
of middle-aged people and take-out coupons are the minor-
ity, the model may learn this association and thus preferen-
tially send public transport coupons to this user.

Matching bias is a prevalent issue in the recommenda-
tion, yet it has received less attention than biases caused
by item popularity or position (Chen et al. 2023; Biega,
Gummadi, and Weikum 2018; Zheng et al. 2021a; Zhang
et al. 2021). To address this, we adopt the causal graph lan-
guage (Pearl 2009) for qualitative analysis (see Fig.2 be-
low). Through causal relationship examination, we observe
that the attributes of users and coupons related to market-
ing tactics can impact both the conversion probability and
user-coupon representations, resulting in a confounding bias
in the causal inference literature (Grimes and Schulz 2002;
VanderWeele, Hernán, and Robins 2008; Tang et al. 2023,
2022). Therefore, we transform the problem of mitigating
matching bias to adjusting for the confounding effect, as de-
scribed formally in Section Methods.

Inspired by (He et al. 2023; Zhang et al. 2023), we
propose a novel de-confounded training paradigm called
Backdoor Adjustment via Group Adaptation (BAGA) to
eliminate the confounding effect caused by the grouping at-
tributes. Specifically, by leveraging the principle of back-
door adjustment (Pearl 2009), BAGA cuts off the back-
door path in the causal graph which removes the match-
ing bias and models the genuine causality relationship be-
tween user-coupon representations and conversion proba-
bilities. Operationally, we segment the training data into
different user and coupon groups based on marketing tac-
tics in an adaptive manner. The underlying embedding is
shared between groups, and for each group, we train a sub-
model to predict intra-group conversion probabilities using a
multi-task hierarchical prediction approach. This allows for
bottom model parameter sharing information across differ-
ent adaptive groups while ensuring the variability of each
group, bringing benefits for better representations and faster
convergence. However, modeling all possible user-coupon
group pairs greatly increases the computational complex-
ity and cost. To address the efficiency challenge, we further
present a simple but effective dual-tower multi-task frame-
work and leverage the Customized Gate Control (CGC)
(Tang et al. 2020) model architecture (cf. Fig.3), which sep-
arately models each user and coupon group with a separate
expert module. With this approach, we retain the expressive
power of the model at little additional cost.

To summarize, the contributions are listed as follows:

• Causal Formulation of Matching Bias in Marketing
Coupon Recommendations. We provide a formal defi-
nition of the concept of matching bias, which is a com-

score is used to make decisions about coupon issuance.

mon issue arising from the adoption of marketing tactics.
• Causal-Effect Perspective Qualitative Analysis. We

investigate the removal of matching bias from a causal
perspective and reveal the confounders that lead to the
bias via the causal-directed acyclic graph framework.

• Novel Training Paradigm. We propose a novel de-
confounded training paradigm BAGA to alleviate the
matching bias by leveraging the backdoor adjustment.

• Extensive Offline and Online Evaluations. We instan-
tiate BAGA on five representative models: FM (Rendle
2010), DNN (Goodfellow, Bengio, and Courville 2016),
NCF (He et al. 2017), MASKNET (Wang, She, and Zhang
2021), and DEEPFM (Guo et al. 2017), and conduct ex-
tensive offline and online experiments to demonstrate the
effectiveness of our proposed paradigm.

Related Work
In this study, we investigate the alleviation of the matching
bias from a causal-effect perspective which pertains to the
areas of bias and debias in recommendations.

Bias is a pervasive issue in recommendations that arises
from various factors, including clickbait (Wang et al. 2021a),
feedback loop (Chaney, Stewart, and Engelhardt 2018), user
choice (Marlin et al. 2007a), and uneven exposure (Liu et al.
2020), etc. (Chen et al. 2023) provides a comprehensive sur-
vey of different types of biases in recommender systems,
among which we highlight the following three: Selection
bias arises when users have unrestricted freedom to interact
with items, leading to non-representative observed interac-
tion data (Marlin et al. 2007b; Sun et al. 2023). Popularity
bias occurs when popular items are recommended more fre-
quently than their popularity would warrant (Abdollahpouri
and Mansoury 2020). Exposure bias arises when users are
only exposed to a subset of relevant items, leading to skewed
observed interactions (Liu et al. 2020).

We briefly describe four representative types of debias-
ing methods commonly employed, including: The inverse
probability weighting (IPW) or the inverse propensity scores
(IPS) are leveraged to mitigate bias by shifting the distribu-
tion of exposure to a more uniform state (Seaman and White
2013; Schnabel et al. 2016; Mansournia and Altman 2016;
Saito et al. 2020). Disentangling of embedding entails sep-
arating the interest representation from the bias representa-
tion to model a more robust causal relationship for debias-
ing (Wang et al. 2020; Zheng et al. 2021a,b). Double robust
methods integrate imputed errors and propensities in a dou-
bly robust manner to obtain unbiased estimation (Wang et al.
2019; Li, Zheng, and Wu 2022). Unbiased data can be added
to train a new task with a small amount of unbiased data to
obtain unbiased representations. Subsequently, the original
representation distribution is constrained to unbiased repre-
sentations, making the model more robust (Zhao et al. 2023;
Wang et al. 2021b), etc.

Methods
In this section, we first trace the origin of the matching bias
by means of the causal graph, followed by the detail of the
proposed debiased approach BAGA.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11945



I U

MT Y

(a) Confounding effect of
matching bias

I U

MT Y

(b) Backdoor adjustment for
matching bias

Figure 2: Causal graphs for marketing coupon recommen-
dations, where T - confounder, U - user, I - coupon, M -
matching result, and Y - conversion probability.

Causal View of Matching Bias

Causal graphs. In this study, we leverage causal directed
acyclic graphs (DAG) (Pearl 2009) — comprising nodes and
edges, with acyclic graphs and arrows indicating causal rela-
tions — to explicitly analyze the causal relationships. Ran-
dom variables, particular values, and sample spaces are rep-
resented by capital letters (e.g., U ), lowercase letters (e.g.,
u), and calligraphic font (e.g., U ), respectively. Fig.2 illus-
trates the causal relations behind the marketing coupon rec-
ommendations studied in this paper, which consist of five
random variables (U, I,M, T, Y ). Specifically:

• Node U and I denote the user and coupon variable, in-
cluding age, gender, coupon id, discount, etc.

• Node M denotes the real affinity score (degree of match)
between a user U and a coupon I , reflecting what extent
the coupon matches the preference of the user.

• Node T denotes the hierarchical attributes of users and
coupons that are associated with the marketing tactics.

• Node Y denotes the conversion probability, or prediction
score, i.e., whether the user used the coupon or not.

• Edges (U, I) → M capture the causal effect of the de-
gree of match between users and coupons.

• Edges T → (U, I) indicate that the hierarchical attributes
of users and coupons that are associated with the tactics
will affect the recommendations. Due to the unbalanced
distribution, recommender systems tend to favor the ma-
jority user-coupon pairs as shown in Fig.1.

• Edges (T,M) → Y indicate that the conversion prob-
ability is determined by the combination of the model
scoring as well as the marketing tactics, implying that
when two coupons equally match user interest, the
coupon of the majority pair may be prioritized due to the
biased distribution caused by the marketing tactic.

Matching bias. According to Fig.2(a), there exist back-
door paths (U, I) ← T → Y , which cause spurious corre-
lations between (U, I) and Y . However, the non-debiasing
methods ignore the confounding effect caused by T and di-
rectly estimate the conditional probability P (Y |U, I), which
leads to imprecise estimations. Formally, the conditional
probability P (Y |U = u, I = i) are derived (See Appendix

for detailed derivations) as:

P (Y |U = u, I = i) (1)
(1a)
=

∑
t

∑
m

P (Y, t,m,u, i)/
∑

t

∑
m

P (t,m,u, i)

(1b)
= P (Y |tui,M(u, i)) ∗ P (tui|u, i).

From Eq.(1b), it is worth noting that t affect not only
(u, i), but also Y , causing a spurious correlation between
them, i.e., P (tui|u, i) force u and i to favor the ma-
jority user-coupon pairs, leading to overestimate Y via
P (Y |tui,mui). The preceding analysis suggests that to
precisely estimate conversion probability, we have to block
the confounding effect and focus on the causal relationships
between these variables so that spurious correlations can
be avoided. Therefore, we adopt do-operator do(·) (Pearl
2009) to model the causal effect of (U, I) on Y , denoted
by P

(
Y |do(U = u), do(I = i)

)
.

De-Matching Bias in BAGA

In this section, we leverage backdoor adjustment (Pearl
2009) to de-confound matching bias. The key of BAGA lies
in deriving and computing the causal effect, and we provide
the theoretical proof and architectures form later.

Backdoor adjustment. We can remove the effect of spu-
rious association by cutting off the backdoor paths in the
causal DAG as illustrated in Fig.2(b). Formally, the expres-
sion of P

(
Y |do(U = u), do(I = i)

)
are derived as follow:

P
(
Y |do(U = u), do(I = i)

)
(2)

(2a)
=

∑
t
P
(
Y |t,M

(
do(u), do(i)

))
∗ P

(
t|do(u), do(i)

)
(2b)
=

∑
t
P
(
Y |t,M(u, i)

)
∗ P (t),

where the derivation of Eq.(2a) is similar to that of Eq.(1b),
which follows the law of total probability and Bayes rule
with do-calculus. Eq.(2b) utilizes insertion/deletion of ac-
tions and action/observation exchange in Theorem 3.4.1 of
(Pearl 2009) to simplify the formula.

Eq.(2) sheds light on the design to de-confound the effect
of confounder (hierarchical attributes): one can separately
estimate P

(
Y |t,M(u, i)

)
for the case of P (t) = 1 and then

output the results corresponding to the case of P (t) = 1 at
the inference stage. In this paper, we propose to discretize
the hierarchical attribute distribution into adaptive disjoint
groups and fit a group-wise coupon usage prediction model
to complete the estimation.

Approximation. We now present a simple but effective
dual-tower multi-task framework that leverages the Cus-
tomized Gate Control (CGC) model architecture, as illus-
trated in Fig.3.

The high-level idea is to segment users and coupons based
on the hierarchical attributes utilized in marketing tactics.
Then constructs group-wise estimation to de-confounded
coupon usage. Operationally, to cut off edges T → (U, I),
we adaptively segment training samples into J user groups
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Figure 3: Illustration of the dual-tower multi-task learning framework that leverages the CGC model architecture, where
{g(u1), ..., g(uJ)} and {g(c1), ..., g(cK)} denotes different user and coupon groups, respectively. The left and right parts of the
network represent the user and coupon towers, respectively. Each task is trained with only the corresponding group of samples,
and then the outputs of the corresponding samples are reassembled into the original batch to perform the inner product.

and K coupon groups based on hierarchical attributes re-
spectively, which discretizes the distribution P (t) into dis-
joint components. Let {Um}Jm=1 be the user groups and
{In}Kn=1 be the coupon groups, conceptually, the sam-
ple space of t is J ∗ K. Continuing the derivation in
Eq.(2), we estimate the conversion probability P

(
Y |do(U =

u), do(I = i)
)

via the following approximation:

P
(
Y |do(U = u), do(I = i)

)
(3)

=
∑

t
P
(
Y |t,M(u, i)

)
∗ P (t)

≈
∑J

m=1

∑K

n=1
P
(
Y |t,M(u ∈ Um, i ∈ In) ∗ P (tmn)

∆
=

∑J

m=1

∑K

n=1
1{u ∈ Um ∧ i ∈ In}fmn

(
u, i

)
,

where for each group {Um} and {In}, fmn

(
u, i

)
is the sub-

model fitted on samples {(u, i, Y )|where u ∈ Um , i ∈
In}, and 1(·) is the indicator function.

We hereby provide an intuitive explanation of why such
an adaptively data segmentation procedure can mitigate the
matching bias as illustrated in Fig.2(b). In prediction models
such as DNN (Goodfellow, Bengio, and Courville 2016) or
FM (Rendle 2010), majority group samples weight more in
the gradient updating, leading to poor performance on mi-
nority group samples. By segmenting data and group-wisely
fitting the model, we alleviate the interference from major-
ity group samples on minority group samples during model
training. However, this data segmentation training approach
raises computational complexity concerns when fitting an

individual sub-model fmn for each user-coupon group pair.
The model size will grow unacceptably large, with a com-
plexity of O(J ∗K), which is not practical for real produc-
tion systems. To address this concern, we propose a strat-
egy that separately segments users and coupons into differ-
ent groups and adopts a dual-tower multi-task framework as
illustrated in Fig.2(b). This approach allows us to alleviate
matching bias and maintain an acceptable model complex-
ity (e.g., O(J +K)) for scalability.

Segmentation and Overall BAGA Training
Segmentation Methodology. As illustrated in Fig.1, sup-
posing a marketing scenario has only two specific tactics,
i.e., for users, the segmentation is only related to whether
they own a private car and the age group they are in. Then
users can be segmented into 2 ∗ 3 = 6 2 strata. The coupon
segmentation procedure is the same as described above.

Overall Training. Moving on, we describe how we adapt
a dual-tower multi-task framework that leverages the CGC
architecture to train the prediction model. Concretely, the
BAGA framework (cf. Fig.3) includes:

• Backbone Model, which aims to learn a representation
for user u and coupon i, respectively.

• CGC Model, which contains task-specific experts, shared
experts, gate and task layers. Here, each sub-task-specific
network models a group of samples individually, while

2With or without a private car; low, middle, and high age group.
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Data #Users #Items #UGs #IGs #Samples

Ds A 156,401 41,002 8 20 1,094,807
Ds B 565,495 2,002 15 9 1,809,584
Ds C 90,039 12,303 8 8 6,302,730
Ds D 1,141,980 1,342 12 16 10,277,820
Ds E 8,591,785 326 8 21 60,611,596

Table 1: Characteristics of the experimental datasets.

the shared expert network takes full advantage of the
global data optimization by aggregating the group sam-
ples modeled by each sub-task to ensure performance.

• Inner Product, which reassembles the task-related group
samples’ output of the CGC Model as the original batch
3 and performs inner product to map the output to the
conversion probability.

Accordingly, fmn(u, i) can be deduced by:

fmn(u, i) =
(
f(u) · f(i)

)
, (4)

where f(·) is a recombination of the output of each task.
Then the parameters Θ of BAGA are optimized by:

Θ=argmin
Θ

J∑
m=1

K∑
n=1

1{u∈Um∧i∈In}l
(
fmn(u, i), Y

)
,

(5)

where Y ∈ {0, 1} indicates whether u has interacted with
i (i.e., yui = 1) or not (i.e., yui = 0) and l(·) is the loss
function, e.g., cross-entropy loss (Shore and Johnson 1981)
or focal loss (Lin et al. 2017).

Experiments
We constructed our model with TensorFlow (Abadi et al.
2015) and assessed its performance through rigorous offline
experiments. Additionally, we conducted online A/B tests in
a real-world marketing coupon recommendation scenario to
answer the following key questions.

• Q1: How does BAGA compare to the original (bias)
model in terms of performance? (see A1)

• Q2: How does BAGA compare to other SOTA debiasing
methods in terms of debiasing ability? (see A2)

• Q3: How does the CGC model architecture contribute to
our proposed methods? (see A3)

• Q4: How does BAGA compare to other SOTA debiasing
methods in terms of complexity? (see A4)

• Q5: How does BAGA perform in real-world marketing
coupon recommendation applications? (see A5)

3Here the reassemble is in the form of corresponding positional
splicing, i.e., the group samples corresponding to each sub-task are
reorganized into the form of input batch according to the indexes.

Experimental Setup
Datasets Although our approach is conceived based on
marketing coupon recommendations, it is essentially a click-
through rate (CTR) model. Consequently, commonly avail-
able click-through rate datasets can also be utilized for ex-
perimental analysis as long as items are treated as coupons
and the samples are filtered to simulate marketing tactics.
We collected five experimental datasets as follows:

• Ds A Amazon Dataset (Bengio, Ducharme, and Vincent
2000) contains transaction information from Amazon.

• Ds B Ele.me Data (Tianchi 2022) is a set of
recommendation-related data provided by Ele.me 4.

• Ds C. MovieLens data (Harper and Konstan 2015) is a
rating (a continuous value ranging from 0 to 5) data set
collected from MovieLens website. To make it suitable
for the CTR prediction task, we transform it into binary
classification data by labeling the samples with ratings of
4 and 5 as positive and the rest as negative.

• Ds D. Alibaba Ads Click Dataset (Tianchi 2018) is col-
lected from the online advertising system in Alibaba.

• Ds E. This dataset is non-open source data from a real-
world marketing coupon recommendation scenario 5.

For the first four datasets, we filtered the samples to simulate
marketing tactics. For the non-open-source dataset Ds E, we
directly conduct experiments on it because its scenario itself
has already applied marketing tactics. Detailed characteris-
tics are summarized in Table 1, where #UG and #IG indicate
the number of user groups and coupon groups, respectively.

Benchmark Methods As the backbone model of BAGA is
model-agnostic, we compare our method with five state-of-
the-art model-agnostic debiasing methods. In particular, for
IPW (Saito et al. 2020), we use the reciprocal of the group
sample share as the propensity score; for FAIRCO (Morik
et al. 2020), we calculate the error term based on the score
list sorted by relevance; for PDA (Zhang et al. 2021), the
hyper-parameter γ is set to 0.1 by gird search; for DICE
(Zheng et al. 2021a), the hyper-parameters α and β are set to
0.1 and 0.01 as recommended, respectively; and for DMBR
(Fang et al. 2023) the confounding effect of the imbalanced
distribution of users/items over each other is eliminated. In
addition, we use FM (Rendle 2010), DNN (Goodfellow, Ben-
gio, and Courville 2016), NCF (He et al. 2017), MASKNET
(Wang, She, and Zhang 2021), and DEEPFM (Guo et al.
2017) as vanilla models, respectively.

Evaluation Metrics
To evaluate the debiasing capabilities of the comparative
method, we conducted experiments on unbiased testing data
with reference to existing studies (Wei et al. 2021; Bonner
and Vasile 2018; Zheng et al. 2021a). To accomplish this,
we sample instances from a uniform distribution to simulate

4Ele.me is the top take-out platform in China.
5This dataset is desensitized and encrypted and thus does not

contain any Personal Identifiable Information (PII). In addition,
this dataset is only used for academic research, it does not represent
any real business situation.
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Methods Ds A Ds B Ds C Ds D Ds E
Vanilla 0.697±0.002 0.726±0.004 0.653±0.003 0.839±0.003 0.919±0.002
IPW 0.699±0.002 0.725±0.003 0.653±0.004 0.837±0.003 0.920±0.004
FAIRCO 0.701±0.003 0.731±0.005 0.675±0.005 0.841±0.004 0.927±0.006
PDA 0.708±0.001 0.733±0.003 0.668±0.004 0.844±0.004 0.929±0.006
DICE 0.700±0.001 0.728±0.005 0.658±0.005 0.856±0.003 0.920±0.005
DMBR 0.707±0.001 0.735±0.003 0.672±0.003 0.843±0.002 0.930±0.004
BAGA 0.710±0.002 0.749±0.004 0.681±0.002 0.869±0.004 0.933±0.003
BAGA-mlp 0.697±0.001 0.724±0.002 0.663±0.005 0.836±0.004 0.921±0.002

Table 2: Offline results of each comparing method in terms of AUC (the larger the better), where the best performance on each
data set is shown in boldface (pairwise t-test at 0.05 significance level).

1234567

VANILLA
IPW

DICE
FAIRCO

PDA
DMBR
BAGA

Figure 4: Comparison of BAGA (control method) against
other methods with Bonferroni-Dunn test in terms of AUC.

an unbiased scenario. In the marketing coupon recommen-
dation scenarios, only one coupon is offered to the user at
a time, resulting in a binary classification problem that pre-
dicts the likelihood of a user using a coupon. Ranking per-
formance metrics commonly used in other recommendation
scenarios would be inappropriate for this problem, alterna-
tive evaluation metrics were utilized. In this paper, we use
Area Under Curve (AUC) to measure the efficiency of al-
leviating matching bias in a simulated uniform distribution.
Conceptually, a higher AUC score means that the debiasing
method is more effective.

Debiasing Performance Comparison (A1 & A2)
Table 2 demonstrates the AUC performance of each com-
pared approach in the simulated uniform (unbiased) distri-
bution, where the vanilla model is DEEPFM. Five-fold cross-
validation is conducted, and the mean metric values and
standard deviations for each approach are recorded. A pair-
wise t-test at 0.05 significance level is also performed for the
five-fold cross-validation to show whether the performance
of BAGA is significantly different from the compared ap-
proach. The conclusions of the experiments on other vanilla
molds are generally consistent with DEEPFM.

In addition, the widely-used Friedman test (Demšar 2006)
is utilized to statistically compare multiple methods on mul-
tiple datasets 6. The Friedman statistic critical value τF is
2.1620 according to (Demšar 2006). Table 3 reports the
Friedman statistics τF of evaluation metrics at a 0.05 signifi-
cance level. The τF value exceeds the critical value, indicat-
ing that the null hypothesis of “equal” performance among
comparing methods should be clearly rejected. Therefore,
Bonferroni-Dunn test (Demšar 2006) is employed as the
post-hoc statistical test to analyze the relative performance

6We tested five vanilla models on five datasets, so the number
of statistics datasets here is equivalent to 25.

Evaluation metric τF critical value

AUC 50.9999 2.1620

Table 3: Friedman statistics τF in terms of AUC as well as
the critical value at 0.05 significance level ((# comparing
methods k = 7; # data sets N = 25).

improvement. Here, the difference between the average
ranks of the control method (i.e. BAGA) and one comparing
method is calibrated with the critical difference (CD), and
the performance difference is considered significant if their
average ranks differ by at least one CD, here CD = 1.6118.

Fig.4 illustrates the CD diagram on the AUC metric, with
BAGA serving as the control method. The average rank of
each method is marked on the axis, with lower ranks being
to the right. Comparing methods whose average ranks are
within one CD of BAGA are interconnected with thick lines.
Otherwise, it is considered to have a significantly different
performance against BAGA.

Based on the reported experimental results, the following
observations can be made:

• IPW achieves comparable performance over the vanilla
models on all datasets. It can be deduced that simply
re-weighting cannot precisely estimate the effect of the
matching bias in marketing coupon recommendations.

• FAIRCO, DICE, DMBR, and PDA achieve marginal
improvements over the vanilla models on almost all
datasets. In particular, for Ds C, FAIRCO and BAGA
achieve the best performance, for Ds A and Ds D,
DMBR, PDA, and BAGA achieve the best performance.

• BAGA effectively improves the performance over the
vanilla models. Although BAGA does not significantly
outperform some of the comparing methods in a pairwise
t-test at the 0.05 significance level, it still outperformed
all of the comparing methods in terms of relative perfor-
mance improvement.

• As shown in Fig.4, BAGA has the lowest average rank on
the AUC evaluation metric. That is the performance of
BAGA is statistically globally optimal.

In summary, the above results validate the effectiveness
of BAGA for debiased marketing coupon recommendations.
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Methods Training Testing
DEEPFM O

(
FD(m, d)

)
O
(
F ′

D(d)
)

IPW O
(
FD(m, d)

)
O
(
F ′

D(d)
)

FAIRCO O
(
FD(m, d)

)
O
(
F ′

D(d)
)

PDA O
(
FD(m, d)

)
O
(
F ′

D(d)
)

DICE O
(
2 ∗ FD(m, d)

)
O
(
F ′

D(d)
)

DMBR O
(
FD(m, d+ t) + FF (m, d, 2t)

)
O
(
F ′

D(d+ t) + F ′
F (d, 2t)

)
BAGA O

(
FD(m, d) + 2n ∗ FM (m

n
, d)

)
O
(
F ′

D(d) + 2 ∗ FM (d)
)

Table 4: Summary of the algorithmic complexity of comparing methods with vanilla model DEEPFM.
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Figure 5: Mean of five repeated running times (training/test-
ing) for each method on Ds C under the same environmental
settings. The height of the bar graph indicates running times,
and the y-axis represents running time in seconds.

Futher Analysis (A3 & A4)
Ablation study In this section, we dissect BAGA to an-
swer the question of how the CGC model architecture con-
tributes to it. Therefore, we study the effect of replacing
components to provide additional insights. Specifically, we
replace the CGC model with multi-task MLP layers denoted
as BAGA-mlp and conduct experiments on it to demonstrate
the effect of the CGC model architecture. The experiment
results are shown in Table 2. We can observe that BAGA
significantly outperforms BAGA-mlp in all datasets. In the
BAGA-mlp approach, the network for sub-tasks with smaller
sample sizes will be poorly optimized. Whereas in the CGC
model, with the help of the gating network and shared expert
network, the network of sub-tasks with smaller samples can
enjoy the gain from global optimization and thus get better
optimization.

Complexity and Time Analysis Table 4 summarizes the
algorithmic complexity of comparing methods with vanilla
model DEEPFM, w.r.t. several common factors, i.e., m (#
training examples), d (# features), and t (# additional fea-
tures). Furthermore, to account for specific algorithmic com-
ponents employed by each method, the following terms are
introduced in complexity characterization: FD(m, d) and
F ′

D(d) represent the training and testing complexity for
vanilla model DEEPFM; FM (m, d) and F ′

M (d) represent
the training and testing complexity for the expert, gate,
task layer combination; FF (m, d) and F ′

F (d) represent the
training and testing complexity for a FM layer.

Furthermore, Fig.5 illustrates the training and testing time
of each method on Ds C. Generally, the neurons of each
layer in the vanilla model DEEPFM and the CGC model are
128*32*1 and 64, respectively. We implement it with Ten-

Methods Send-Number Use-Number Use-Rate

Baseline 14,600,310 69,556 4.76%
BAGA 14,609,694 70,673† 4.83%†

%improv. +1.60% +1.54%

Table 5: Online results between BAGA and the baseline,
where † means better performance.

sorflow (Abadi et al. 2015) and use Adam (Kingma and Ba
2014) optimizer with the default setting to train the model on
a PC with Intel i7 six cores 2.6GHz CPU and 16GB memory,
and the operating environment is Python 3.7.12. As shown
in Fig.5, the empirical training and testing time of BAGA is
longer compared to other methods, but within an acceptable
range. The gap will be further narrowed when performing
large-scale distributed training in a real-world environment.

Online Results (A5)
To assess the effectiveness of our proposed debiasing
method (BAGA based on DEEPFM) in real-world scenarios,
we conducted an online A/B test in a marketing coupon rec-
ommendation campaign, which two metrics are measured:
the number of coupons used and the use rate. Due to bud-
get constraints, we only compared BAGA with the base-
line DEEPFM in the online coupon recommendation sys-
tem, which randomly and evenly divided all candidates into
two buckets. The experimental results are summarized in Ta-
ble 5, that revealed our proposed approach BAGA achieved a
1.54% increase in use rate and a 1.60% increase in the num-
ber of coupons used, demonstrating a significant improve-
ment in the real-world marketing coupon recommendation
campaign. These results further validate the effectiveness of
our proposed debiasing method BAGA.

Conclusion
In this paper, we explore how to alleviate the matching
bias in marketing coupon recommendations and present a
new de-confounded training paradigm BAGA. To be spe-
cific, BAGA segments the training data into different user
and coupon groups based on marketing tactics in an adap-
tive manner, and separately models each sub-task to capture
the genuine causality relationship between user-coupon rep-
resentations. The results of both offline experiments and on-
line A/B testing demonstrate the effectiveness of BAGA in
alleviating matching bias and improving accuracy.
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