
Neural Gaussian Similarity Modeling for Differential Graph Structure Learning
Xiaolong Fan1, Maoguo Gong1, Yue Wu2, Zedong Tang3, and Jieyi Liu1,

1 School of Electronic Engineering, Key Laboratory of Collaborative Intelligence Systems of Ministry of Education,
Xidian University, Xi’an, China

2 School of Computer Science and Technology, Key Laboratory of Collaborative Intelligence Systems of Ministry of
Education, Xidian University, Xi’an, China

3 Academy of Advanced Interdisciplinary Research, Key Laboratory of Collaborative Intelligence Systems of Ministry of
Education, Xidian University, Xi’an, China

xiaolongfan@outlook.com, gong@ieee.org, {ywu, zdtang, jieyiliu}@xidian.edu.cn

Abstract

Graph Structure Learning (GSL) has demonstrated con-
siderable potential in the analysis of graph-unknown non-
Euclidean data across a wide range of domains. However,
constructing an end-to-end graph structure learning model
poses a challenge due to the impediment of gradient flow
caused by the nearest neighbor sampling strategy. In this pa-
per, we construct a differential graph structure learning model
by replacing the non-differentiable nearest neighbor sampling
with a differentiable sampling using the reparameterization
trick. Under this framework, we argue that the act of sam-
pling nearest neighbors may not invariably be essential, par-
ticularly in instances where node features exhibit a significant
degree of similarity. To alleviate this issue, the bell-shaped
Gaussian Similarity (GauSim) modeling is proposed to sam-
ple non-nearest neighbors. To adaptively model the similar-
ity, we further propose Neural Gaussian Similarity (Neural-
GauSim) with learnable parameters featuring flexible sam-
pling behaviors. In addition, we develop a scalable method
by transferring the large-scale graph to the transition graph
to significantly reduce the complexity. Experimental results
demonstrate the effectiveness of the proposed methods.

Introduction
In recent years, there has been a notable surge in aca-
demic attention towards Graph Neural Networks (GNNs)
(Kipf and Welling 2017; Zeng et al. 2020; Lim et al.
2021; Fan et al. 2023a). A plethora of graph neural net-
work models have been introduced, showcasing notewor-
thy advancements across diverse domains such as social net-
work analysis (Gao et al. 2023), natural language processing
(Meng et al. 2022), computer vision (Han et al. 2022), and
various other fields. The efficacy of graph neural network
can be attributed to their inherent capability of effectively
leveraging the abundant information present within both the
structure of graph topology and the input node attributes in
a concurrent manner. However, the graph structure is not in-
variably ascertainable. For instance, within a social network,
the interconnections among users encompass sensitive pri-
vacy aspects, impeding direct access to such information.

To alleviate this issue, Graph Structure Learning (GSL)
(Chen, Wu, and Zaki 2020; Fatemi, El Asri, and Kazemi

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2021; Wu et al. 2022) is proposed to jointly learn the la-
tent graph structure and corresponding graph embeddings
using structure learner and graph neural network encoder
where the parameters are optimized together by the down-
stream task. Specifically, the structure learner first computes
the similarity between node feature pairs as the edge weights
by using similarity kernel function, such as inner-product
kernel (Yu et al. 2021; Zhao et al. 2021), cosine similarity
kernel (Wang et al. 2020; Chen, Wu, and Zaki 2020), and
diffusion kernel (Gasteiger, Weißenberger, and Günnemann
2019). Then the graph structure is generated via a structure
sampling process from edge weight distribution. After pro-
ducing the graph structure, graph neural network encoder
takes the node features and the generated graph structure as
input to produce the final node embeddings for downstream
tasks. However, two fundamental weaknesses of this frame-
work may limit the performance and scalability of graph
structure learning method. First, the generated graph struc-
ture is not differentiable with respect to the edge weight dis-
tribution due to discrete sampling blocking gradient flow.
Second, computing the edge similarity for all pairs of graph
nodes requires huge complexity for both computational time
and memory consumption, rendering significant scalability
issue for large graphs.

To solve the problem of non-differentiable sampling, we
utilize the concrete relaxation of the Categorical distribution
by replacing the non-differentiable sampling with a differen-
tiable sampling mechanism using the Gumbel-Softmax dis-
tribution. The Gumbel-Softmax distribution (Jang, Gu, and
Poole 2017; Zheng et al. 2020; Sun et al. 2022) is a repa-
rameterization trick that allows for the generation of discrete
samples while maintaining differentiability. Note that the
sampling probability is positively correlated with edge sim-
ilarity, whereby greater similarity values entail higher prob-
abilities of sampling the edges. We term this sampling ap-
proach as the linear sampling strategy. Our analysis reveals
that this linear sampling method is not universally indispens-
able, particularly in situations where node features demon-
strate a substantial level of similarity. To alleviate this is-
sue, we propose a bell-shaped Gaussian Similarity (GauSim)
modeling strategy, enabling the edge sampling probability
entails an initial increase followed by a decrease as the sim-
ilarity between node pairs diminishes. Note that different
Gaussian function parameters need to be set for different

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11919



node pairs, we further propose a Neural Gaussian Similarity
(NeuralGauSim) modeling strategy to adaptively learn the
bell-shaped Gaussian function parameters.

To address the scalability issue, we develop a transition
graph structure learning method by involving the transfor-
mation of the initial node set into the more streamlined tran-
sition node set. Specifically, we first project the initial fea-
ture matrix into the transition feature matrix. Then for every
node in the original graph, we calculate a similarity score
between the corresponding node in the original graph and
its counterpart in the transferred graph. By leveraging this
similarity score, we differentiably sample the edges to gen-
erate the desired graph structure. Finally, the node embed-
dings can be generated by using the graph neural network
encoder which takes the generated graph structure and the
node features of the transition graph as input. Different from
the previous anchor-based graph structure leaning method
(Chen, Wu, and Zaki 2020), which randomly samples a set
of anchors from the initial graph, the developed transition
graph method adopts projection matrices to learn to gener-
ate the transition graph, thus mitigating the information loss
that typically arises from random sampling.

Extensive experiments on graph and graph-enhanced ap-
plication datasets demonstrate the superior effectiveness of
the proposed method. To summarize, we outline the main
contributions in this paper as follows:
1. We propose the neural Gaussian similarity modeling for

differential graph structure learning to alleviate the issue
of structure sampling.

2. We develop the transition graph structure learning by
transferring the initial graph to the transition graph to re-
duce the complexity.

3. Extensive experiments on graph and graph-enhanced ap-
plication datasets demonstrate the superior effectiveness
of the proposed method.

Related Work
Graph Neural Network
Graph Neural Networks (GNNs) aim to model the non-
Euclidean data structure and have been demonstrated to
achieve state-of-the-art performance on graph analysis tasks.
As a unified framework for graph neural networks, Message
Passing Neural Network (MPNN) (Scarselli et al. 2008; Fan
et al. 2022, 2023b) generalizes the several existing repre-
sentative graph neural networks, such as GCN (Kipf and
Welling 2017), GAT (Veličković et al. 2018), GraphSAINT
(Zeng et al. 2020), AM-GCN(Wang et al. 2020), and LINKX
(Lim et al. 2021), which consists of two functions, i.e., mes-
sage passing function and readout function. Most empirical
studies of graph neural networks directly take the observed
graph as input. However, the graph structure is not invari-
ably ascertainable in practice. In this paper, we focus on the
graph-unknown non-Euclidean data representation learning.

Graph Structure Learning
Graph Structure Learning (GSL) targets at jointly learn-
ing an optimized graph structure and its corresponding rep-
resentations. A typical GSL model involves two trainable

components, i.e., structure learner and graph neural net-
work encoder. The structure learner is an encoding function
that models the optimal graph structure represented in edge
weights. In recent years, several structure learners have been
proposed, such as LDS (Franceschi et al. 2019), Pro-GNN
(Jin et al. 2020), IDGL (Chen, Wu, and Zaki 2020), SLAPS
(Fatemi, El Asri, and Kazemi 2021), and NodeFormer (Wu
et al. 2022), and achieved significant performance improve-
ment. In this paper, we propose the Gaussian similarity mod-
eling strategy and transition graph structure learning method
to alleviate the issues of structure sampling and scalability.

Exploring Graph Structure Learning
Problem Definition
Let G = (V, E) be a graph with V and E denoting the
node set and edge set, respectively. The node feature ma-
trix is denoted by X = {x1, .., xi, ...xn} where xi ∈ Rd

is the attribute of node vi. The graph structure is described
by the adjacency matrix A ∈ {0, 1}n×n for graphs where
Aij = 1 indicates (vi, vj) ∈ E . In general, a GNN en-
coder, parameterized by Θ, receives the graph structure
and node features as input, then produces node embeddings
H ∈ Rn×m for downstream tasks. This paper primarily cen-
ters on the exploration of graph representation learning in
the context of the unknown graph structure. In this setting,
graph structure learning can be formulated as producing the
graph structure A∗ and its corresponding node embeddings
H = GNN(A∗, X) with respect to the downstream tasks.

Differential Graph Structure Learning
Graph structure learning aims to jointly learn the graph
structure and corresponding graph embeddings. Given node
features, graph structure learning first models the similarity
between node feature pairs in form of

zi = MLP(xi) (1)

πi,j =
exp(ziz

⊤
j )∑n

w=1 exp(ziz
⊤
w )

(2)

where MLP(·) denotes a multi-layer perceptron and πi,j de-
notes the edge similarity between node vi and vj . Then the
graph structure A∗ can be generated using a structure sam-
pling strategy that models all potential edges as a collection
of independent Categorical random variables. These vari-
ables are parameterized by the learned similarity π in form
of

A∗ =
⋃

vi,vj∈V
{Ai,j ∼ Cat(πi,j)} (3)

where Ai,j ∼ Cat(πi,j) denotes the edge sampling process
from Categorical distribution. Here, the similarity πi,j de-
scribes the edge sampling probability and smaller πi,j in-
dicates that the edge (vi, vj) tends to be removed. In gen-
eral, we sample K times for each node vi to form neigh-
bors. However, this method poses a challenge that the graph
structure A∗ is not differentiable with respect to π due to
discrete sampling blocking gradient flow. To solve this prob-
lem, we can utilize the concrete relaxation of the Categorical

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11920



Structure Unknown

Transition NodesProjection

MLP Initial Nodes

？
？

？

？
？

…
…

Gaussian Similarity

GNN Encoder

Transition Nodes

Graph Structure

Downstream 
Task

Figure 1: The proposed neural Gaussian similarity modeling and transition graph structure learning strategy.

distribution (Jang, Gu, and Poole 2017; Zheng et al. 2020;
Sun et al. 2022) by replacing the non-differentiable sample
from the Categorical distribution with a differentiable sam-
ple from the Gumbel-Softmax distribution, i.e.,

Cat(πi,j) ≈
exp((log(πi,j) + gi)/τ)∑n

w=1 exp((log(πiw) + gw)/τ)
(4)

where gi = − log(− log(ϵ)) with ϵ randomly drawn from
Uniform(0, 1) and τ ∈ R+ is the temperature which con-
trols the interpolation between the discrete distribution and
continuous categorical densities. After obtaining the graph
structure A∗, we can use a GNN encoder GNN(A∗, X), e.g.,
GCN (Kipf and Welling 2017), to produce the final node em-
beddings for downstream tasks.

Analysis of Structure Sampling
Note that the sampling probability and similarity of the edge
(vi, vj) exhibit a linear relationship, wherein the greater the
similarity value, the higher the probability of sampling that
edge. In this paper, we aim to provide a better understanding
of this sampling strategy by asking the following question:
is this linear sampling strategy always necessary? To an-
swer this question, without loss of generality, we use GCN
as GNN encoder and conduct the following theorem.
Theorem 1. Suppose the number of structure sampling be K
for each node, hi be the feature embedding of node vi, hj be
the sampled neighbors of node vi where j ∈ [1, . . . ,K], and
node features are normalized using 2-norm normalization.
If ∥hi − hj∥2 ≤ ε for ∀j ∈ [1, . . . ,K] where ε is a non-
negative constant, then

∥ĥi − hi∥2 ≤ ε (5)

where ĥi =
∑K

j=1
1√
didj

hj is the predict probability distri-

bution after graph convolutional operator.

Proof. Given ∥hi − hj∥2 ≤ ε for ∀j ∈ [1, . . . ,K] where ε
is a non-negative constant, then we have

∥hi − hj∥22 ≤ ε2

∥hi∥22 + ∥hj∥22 − 2 · ⟨hi, hj⟩ ≤ ε2 (6)

⟨hi, hj⟩ ≥
∥hi∥22 + ∥hj∥22 − ε2

2
.

After graph convolutional operator, we can denote the 2-
norm difference as

∥ĥi − hi∥2 =

√
∥ĥi∥22 + ∥hi∥22 − 2 · ⟨hi, ĥi⟩. (7)

For ⟨ĥi, hi⟩, we can get

⟨hi, ĥi⟩ = ⟨hi,

K∑
j=1

1√
didj

hj⟩

=
1

K

K∑
j=1

⟨hi, hj⟩ ≥
1

K

K∑
j=1

2− ε2

2
.

(8)

Therefore, the 2-norm difference can be represented as

∥ĥi − hi∥2 =

√
∥ĥi∥22 + ∥hi∥22 − 2 · ⟨hi, ĥi⟩

≤

√√√√∥ĥi∥22 + ∥hi∥22 −
2

K

K∑
j=1

2− ε2

2

≤
√
2− (2− ε2) = ε.

(9)

Theorem 1 tells us that the act of linear sampling may
not invariably be essential, particularly in instances where
node features exhibit a significant degree of similarity. In
this case, the integration of the learned graph structure does
not yield notable increase in informational gain.

Proposed Method
In this section, we present the proposed Neural Gaussian
Similarity Modeling to alleviate the issue of structure sam-
pling and the Transition Graph Structure Learning to reduce
the complexity of computing edge similarity. The overall
framework is shown in Figure 1.

Neural Gaussian Similarity Modeling
From the analysis of structure sampling, we find that it is
not invariably essential to exclusively sample the edges ex-
hibiting the highest probability distribution, i.e., the nodes

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11921



0 1
0

1
Sa

m
pl

in
g 

Pr
ob

.

Similirity Score
(a) LinSim

0 1
0

1

Sa
m

pl
in

g 
Pr

ob
.

Similirity Score
(b) DiffSim

0 1
0

1

Similirity Score

 b = 0.5, c = 0.02e
 b = 1.0, c = 0.07e
 b = 0.2, c = 0.05eSa

m
pl

in
g 

Pr
ob

.

(c) GauSim

Figure 2: Relationship between sampling probability and
similarity score. Subfigure (a) denotes the Linear Sampling
(LinSim) strategy, subfigure (b) denotes the Difference Sim-
ilarity (DiffSim), and subfigure (c) denotes the Gaussian
Similarity (GauSim) with different parameters.

displaying the utmost similarity. To alleviate the issue, a na-
ture idea is obtaining the Difference Similarity (DiffSim) be-
tween pair of nodes in form of

πi,j =
exp(zi(zi − zj)

⊤)∑n
w=1 exp(zi(zi − zw)⊤)

(10)

where zi(zi − zj)
⊤ = 1− ziz

⊤
j when zi, zj are normalized

using 2-norm normalization. As shown in Figure 2, we can
observe that the sampling probability of edges increases as
the similarity decreases, resulting in highly dissimilar node
pairs being sampled as neighbors. This difference similarity
modeling does not satisfy the assumption of the homophily
effect in networks (Xie et al. 2020; Ma et al. 2022) and may
harm the performance of GNN model.

To fulfill the requirement of the edge sampling probabil-
ity, which entails an initial increase followed by a decrease
as the similarity between node pairs diminishes, we propose
a novel Gaussian Similarity (GauSim) modeling strategy in
form of

ϕ(zi, zj) = exp

(
−
(ziz

⊤
j − b)2

c

)
(11)

πi,j =
exp(ϕ(zi, zj))∑n

w=1 exp(ϕ(zi, zw))
(12)

where b, c are the parameters of Gaussian function. By
choosing appropriate b and c, Gaussian similarity can be
used as edge sampling probability to meet the nonlinear
sampling requirement. Here, we set b = 0.5 and c = 0.02e,
and the relationship between sampling probability and simi-
larity is shown in the Figure 2.

Note that different node pairs may need to set different
Gaussian function parameters, we further propose a Neu-
ral Gaussian Similarity (NeuralGauSim) modeling to adap-
tively learn the Gaussian function parameters. Specifically,
we define a parameter learning network in form of

bi = σ(ziw
⊤
b ), ci = σ(ziw

⊤
c ) (13)

ϕ(zi, zj) = exp

(
−
(ziz

⊤
j − bi)

2

ci

)
(14)

πi,j =
exp(ϕ(zi, zj))∑n

w=1 exp(ϕ(zi, zw))
(15)

where wb, wc ∈ Rm are the learnable parameters and σ is
Sigmoid activation function. The relationship between sam-
pling probability and similarity with different parameters b
and c is shown in the Figure 2. From this figure, we can ob-
serve that the neural Gaussian similarity modeling can gen-
eralize the sampling strategy based on the previous linear
and difference similarity by setting appropriate parameters.

Transition Graph Structure Learning
The edge similarity computes similarity scores for all pairs
of graph nodes, which requires O(n2) complexity for both
computational time and memory consumption, rendering
significant scalability issue for large graphs. To address the
scalability issue, we develop a transition graph similarity
modeling method by transferring the initial graph compris-
ing n nodes to the more streamlined transition graph con-
taining s nodes. Specifically, we first project the initial nodes
X ∈ Rn×d into the transition nodes in form of

R = WtX ∈ Rs×d (16)

where Wt ∈ Rs×n is the projection matrix and R =
{r1, ..., rs} is transition node features. Then for each nodes
of the initial graph, the similarity scores are calculated by

zi = MLP(xi) (17)

πi,j =
exp(ϕ(zi, rj))∑s

w=1 exp(ϕ(zi, rw))
(18)

where ϕ(zi, ri) can use the Eqn. (11) and Eqn. (14) as the
similarity measurement. Note that for node vi, the calcula-
tion range of edge similarity score is the transition graph
with s nodes instead of the original graph with n nodes,
which requires O(ns) complexity for both computational
time and memory consumption. The parameter s is often set
as s ≪ n in practice, hence the complexity of computing
similarity scores requires O(n) for both computational time
and memory consumption. After obtaining the edge similar-
ity scores, we can utilize the concrete relaxation of Categor-
ical distribution to differentiably sample the edges by

A∗
t =

⋃
vi∈V,vj∈Vt

{Ai,j ∼ Cat(πi,j)} ∈ Rn×s (19)

where Vt denotes the node set of the transition graph. Fi-
nally, we can utilize the GCN encoder GNN(·) to produce
the node embeddings in form of

Xt = WeX ∈ Rs×d (20)

H = GNN(A∗
t , Xt) ∈ Rn×m (21)

where We ∈ Rs×n is the learnable projection matrix and H
is the final node embedding matrix. Different from the pre-
vious anchor-based graph structure leaning method (Chen,
Wu, and Zaki 2020), which randomly samples a set of an-
chors from the initial graph, the developed transition graph
method uses projection matrices to learn the node transition
strategy, thus mitigating the information loss resulting from
random sampling.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11922



METHOD CiteSeer PubMed Chameleon Squirrel CS Physics 20News Mini

GCNknn 66.67±1.33 78.84±0.35 41.91±1.13 26.80±0.82 87.57±0.11 91.84±0.21 61.36±0.13 80.69±0.48
HeatGCNknn 65.07±0.52 75.20±0.28 43.23±0.20 27.21±0.55 88.21±0.13 91.96±0.13 50.17±0.61 78.14±0.17
LINKXknn 57.80±1.70 75.72±1.13 36.32±2.47 24.70±2.42 80.38±2.62 81.28±2.24 52.24±3.14 71.19±2.50

SLAPS 68.23±0.22 79.55±0.23 43.44±0.36 27.28±0.96 85.74±2.12 92.14±2.13 60.97±0.20 80.23±1.14
IDGL-Full 68.67±0.32 OOM 45.47±0.76 28.23±0.19 OOM OOM 62.53±0.24 OOM

IDGL-Anchor 67.31±0.07 79.69±0.43 45.35±1.23 28.08±1.17 89.15±0.81 OOM 61.91±0.26 80.51±0.61
NodeFormer 67.19±0.28 82.57±0.45 47.02±0.61 27.80±0.75 91.77±0.10 94.81±0.11 62.70±0.84 83.10±0.49

LinSim 67.23±0.23 OOM 44.91±1.10 27.26±0.95 OOM OOM 54.40±1.07 OOM
LinSim-T 69.51±0.60 81.41±1.31 43.63±1.38 27.75±0.54 87.67±1.55 93.88±0.19 60.84±0.26 81.94±0.14

GauSim 69.19±0.14 OOM 47.84±0.54 28.13±0.87 OOM OOM 62.49±0.20 OOM
GauSim-T 70.19±0.84 82.62±0.51 47.19±1.16 27.80±0.67 88.94±0.47 94.13±0.32 61.35±0.56 83.33±0.88

NeuralGauSim 69.31±0.35 OOM 48.02±0.20 28.88±1.08 OOM OOM 62.85±0.17 OOM
NeuralGauSim-T 70.15±0.37 82.65±0.74 48.25±0.63 28.57±0.36 89.22±1.55 94.64±0.10 62.89±1.10 84.89±0.37

Table 1: Experimental results comparison with baselines. Here, OOM denotes Out-of-Memory.

METHOD CiteSeer Chameleon Squirrel 20News

K=5
LinSim 67.23±0.23 44.91±1.10 27.26±0.95 54.40±1.07
GauSim 69.19±0.14 47.84±0.54 28.13±0.87 62.49±0.20

NeuralGauSim 69.31±0.35 48.02±0.20 28.88±1.08 62.85±0.17

K=10
LinSim 66.10±0.82 43.63±0.82 26.59±0.87

OOMGauSim 68.31±0.52 46.73±0.54 27.29±0.67
NeuralGauSim 68.35±0.98 46.84±0.46 27.47±0.62

K=15
LinSim 65.55±0.82 42.79±1.95 25.34±1.14

OOMGauSim 69.03±0.21 47.54±0.70 28.03±1.05
NeuralGauSim 69.55±0.96 47.49±1.67 28.49±0.35

K=20
LinSim 64.39±0.76 41.73±1.09 25.13±1.14

OOMGauSim 68.47±0.97 47.66±0.44 26.77±1.19
NeuralGauSim 68.69±0.52 48.84±0.98 27.95±0.77

Table 2: Experimental results comparison with different samples K for full-graph models. Here, OOM denotes Out-of-Memory.

Experiment

Datasets

To evaluate the developed methods, we use eight com-
monly used graph datasets, including two citation network
datasets, i.e., CiteSeer and PubMed (Yang, Cohen, and
Salakhudinov 2016), two Wikipedia network datasets, i.e.,
Chameleon and squirrel (Pei et al. 2020), two coauthor net-
work datasets, i.e., CS and Physics (Shchur et al. 2018), and
two graph-enhanced application datasets, i.e., 20News and
Mini-ImageNet (Mini) (Wu et al. 2022).

Baselines

We compare the proposed method with prominent exist-
ing graph structure learning baselines, including GCNknn

(Kipf and Welling 2017), HeatGCNknn where the heat
kernel (Wang et al. 2020) serves as similarity measurement,
LINKXknn (Lim et al. 2021), SLAPS (Fatemi, El Asri, and
Kazemi 2021), IDGL-Full, IDGL-Anchor (Chen, Wu, and
Zaki 2020), and NodeFormer (Wu et al. 2022). For kNN
based methods, we create a kNN graph based on the node
feature similarities and feed this graph to the GNN model.

Configurations
The experiments are repeated five times for all algorithms
to finally report the average accuracy and the correspond-
ing standard deviation. For all datasets, we randomly sam-
pled 50% of nodes for training set, 25% for validation set,
and 25% for test set. The Adam optimizer are used with the
learning rate 0.01 for CiteSeer dataset and 0.001 for other
datasets. We set the hidden dimension to be 256 for Mini-
ImageNet dataset, 32 for other datasets, and the number of
transition-graph nodes to 500. The weight parameters are
initialized using Glorot initialization and the bias parameters
using zero initialization. For parameters c of NeuralGauSim,
we multiply c by a scale factor of 0.1. We add dropout lay-
ers with probabilities of 0.5 after the first layer of the GNNs,
and train two-layer GNNs.

Results Comparison with Baselines
To verify the performance of the developed models in
comparison to baselines, we conduct comparative exper-
iments and report results in Table 1. In this experiment,
we set the parameter K to be 5 for kNN based base-
lines, and the neighbor mask parameter to be 0 for IDGL.
From this table, we have the following observations. First,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11923



METHOD CiteSeer PubMed Chameleon Squirrel CS Physics 20News Mini
K

=5
LinSim-T 69.51±0.60 81.41±1.31 43.63±1.38 27.75±0.54 87.67±1.55 93.88±0.19 60.84±0.26 81.94±0.14
GauSim-T 70.19±0.84 82.62±0.51 47.19±1.16 27.80±0.67 88.94±0.47 94.14±0.32 61.35±0.56 83.33±0.88

NeuralGauSim-T 70.15±0.37 82.65±0.74 48.25±0.63 28.57±0.36 89.22±1.55 94.64±0.10 62.89±1.10 84.89±0.37

K
=1

0 LinSim-T 64.23±0.70 79.64±1.76 42.40±1.06 25.18±1.50 83.49±1.18 92.30±1.36 59.60±0.77 80.65±0.98
GauSim-T 69.03±0.68 80.42±1.19 47.49±1.07 27.08±1.12 88.63±0.69 94.12±0.76 60.36±0.12 82.17±1.24

NeuralGauSim-T 69.19±0.76 80.69±1.62 47.66±0.20 27.57±0.35 89.79±1.17 94.06±0.60 60.06±0.57 83.53±0.53

K
=1

5 LinSim-T 64.75±0.92 76.46±1.12 40.94±1.16 24.42±1.98 79.48±1.54 88.02±1.86 58.87±0.61 80.55±0.74
GauSim-T 70.03±0.57 81.61±0.43 47.60±0.44 28.16±0.38 89.51±0.34 92.17±1.87 60.19±1.07 82.64±0.71

NeuralGauSim-T 70.39±0.80 81.70±0.55 47.31±0.51 28.49±0.42 90.49±0.49 92.89±1.67 60.36±0.97 82.87±0.97

K
=2

0 LinSim-T 64.31±0.53 75.03±1.57 41.35±1.62 24.62±1.13 71.68±2.92 87.91±1.39 57.54±1.11 79.70±1.14
GauSim-T 68.99±0.92 80.73±1.35 47.99±0.88 28.29±0.35 87.87±1.17 92.30±0.76 59.04±0.44 80.24±0.70

NeuralGauSim-T 68.59±0.98 81.50±0.87 48.04±0.46 28.54±0.38 88.54±1.12 93.14±0.59 59.59±0.76 81.64±0.97

Table 3: Experimental results comparison with different samples K for transition-graph models.

b1 b2 c1 c2
0.2
0.4
0.6
0.8

Parameters

V
al

ue
s

(a) CiteSeer

b1 b2 c1 c2
0.2
0.4
0.6
0.8

Parameters

V
al

ue
s

(b) PubMed

b1 b2 c1 c2
0.4
0.5
0.6

Parameters

V
al

ue
s

(c) Chameleon

b1 b2 c1 c2
0.4
0.5
0.6

Parameters

V
al

ue
s

(d) Squirrel

b1 b2 c1 c2
0.3
0.4
0.5
0.6
0.7

Parameters

V
al

ue
s

(e) CS

b1 b2 c1 c2
0.3
0.4
0.5
0.6
0.7

Parameters

V
al

ue
s

(f) Physics

b1 b2 c1 c2
0.2
0.4
0.6
0.8

Parameters

V
al

ue
s

(g) 20News

b1 b2 c1 c20.0
0.2
0.4
0.6
0.8
1.0

Parameters

V
al

ue
s

(h) Mini

Figure 3: Analysis of Gaussian parameter distributions of
Neural Gaussian Similarity modeling for all datasets.

compared with the previous graph structure learning base-
lines, the proposed Gaussian similarity modeling methods
achieve better performance on six datasets out of eight, in-
dicating the effectiveness of the differential graph struc-
ture learning. Second, compared with the linear similarity,
the proposed Gaussian similarity modeling methods consis-
tently achieve better performance, demonstrating the effec-
tiveness of the proposed methods. Third, comparing with
transition-graph based models, i.e., LinSim-T, GauSim-T,
and NeuralGauSim-T, and full-graph models, i.e. LinSim,
GauSim, and NeuralGauSim, we can observe that transition-
graph based models achieves performance improvements
while reducing complexity. This implies the effectiveness of
introducing the learnable transition-graph strategy.

Results Comparison of Different Edge Samples
To evaluate the performance of different number of sampling
edges K, we perform comparative experiments by setting
K ∈ {5, 10, 15, 20} for full-graph and transition-graph set-
tings. Experimental results are reported in Table 2 and Table
3, respectively. From these two tables, we have the follow-
ing observations. First, compared with the Linear Similarity
(LinSim), the proposed GauSim and NeuralGauSim meth-

0 1 2 3 4
64
66
68
70
72

A
cc

Nodes

(a) CiteSeer

0 1 2 3 4
65
70
75
80
85

A
cc

Nodes

(b) PubMed

0 1 2 3 4
39
42
45
48

A
cc

Nodes

(c) Chameleon

0 1 2 3 4
24
25
26
27
28
29

A
cc

Nodes

(d) Squirrel

0 1 2 3 4
86
88
90
92
94

A
cc

Nodes

(e) CS

0 1 2 3 4
92
93
94
95
96

A
cc

Nodes

(f) Physics

0 1 2 3 4
51
54
57
60
63

A
cc

Nodes

(g) 20News

0 1 2 3 4
68
72
76
80
84

A
cc

Nodes

(h) Mini

Figure 4: Analysis of removing transition-graph and anchor-
graph nodes (×102) for NeuralGauSim-T (red line) and
IDGL-Anchor (blue line), respectively.

ods consistently achieve better performance under different
number of edge samples, indicating the effectiveness of the
proposed Gaussian similarity modeling. Second, by compar-
ing GauSim/GauSim-T and NeuralGauSim/NeuralGauSim-
T, we can find that the NeuralGauSim method exhibits supe-
rior performance except when K = 10 on 20News dataset,
demonstrating the effectiveness of the learnable parameters
of the Gaussian similarity. Third, by comparing performance
of different number of edge samples, we can observe that
as the parameter K increases, the performance of LinSim
deteriorates. In contrast, the proposed GauSim and Neu-
ralGauSim methods consistently maintain its performance
level, further substantiating the effectiveness of the proposed
methods.

Analysis of Gaussian Parameter Distributions
To investigate whether the parameter values of Gaussian
similarity learned by the proposed similarity modeling
method are meaningful, we conduct the Gaussian parame-
ter distribution analysis experiments on all datasets. Exper-
imental results are shown in Figure 3. Specifically, we use
the boxplot to count the distribution of parameters b and c of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11924



0.25 0.5 0.75 1
66
68
70

A
cc

Temperature

(a) CiteSeer

0.25 0.5 0.75 1
78
80
82

A
cc

Temperature

(b) PubMed

0.25 0.5 0.75 1
42
44
46
48

A
cc

Temperature

(c) Chameleon

0.25 0.5 0.75 1
26
27
28
29

A
cc

Temperature

(d) Squirrel

0.25 0.5 0.75 1
84
87
90

A
cc

Temperature

(e) CS

0.25 0.5 0.75 1
87
90
93
96

A
cc

Temperature

(f) Physics

0.25 0.5 0.75 1
59
60
61
62
63

A
cc

Temperature

(g) 20News

0.25 0.5 0.75 1
78
80
82
84
86

A
cc

Temperature

(h) Mini

Figure 5: Impact of Temperature Parameter τ . The red line
denotes LinSim, the green line denotes GauSim, and the blue
line denotes Gausim-T.

Training Time (s) GPU Memory (MB)

IDGL 0.7967 4,358
IDGL-Anchor 0.1249 2,986
NodeFormer 0.0463 1,248

LinSim 0.1145 4,486
LinSim-T 0.0367 1,796
GauSim 0.1193 4,618

GauSim-T 0.0382 1,816
NeuralGauSim 0.1238 4,664

NeuralGauSim-T 0.0393 1,821

Table 4: Comparison of training time (s) and GPU memory
(MB) cost on CiteSeer dataset per epoch.

the two-layer model, where the parameters of the first layer
are denoted as b1, c1, and the second layer are denoted as
b2, c2. For clarity, we multiply all parameters c by a scale
factor of 10. From these figures, we have the following ob-
servations. First, the adjustment range of the parameters of
the second layer is larger than that of the first layer. Second,
for all datasets, the parameter b2 exhibits a wider distribution
compared to other parameters.

Sensitivity of Transition Graph Nodes
To study the effect of different number of transition-graph
nodes, we conduct a comparative experiment to observe the
change of model performance by removing the number of
transition-graph nodes for the proposed NeuralGauSim-T.
Here, for the initial transition graph with 500 nodes, we
remove {0, 100, 200, 300, 400} nodes respectively. Experi-
mental results are shown in Figure 4. Note that for Physics
dataset, we only report the results of NeuralGauSim-T since
the previous IDGL-Anchor method exceeds the memory
limit due to the initial fully kNN graph requires O(n2) mem-
ory consumption. From these figures, we can observe that
for NeuralGauSim-T, removing nodes does not bring about
a significant decrease in model performance, and even an
improvement in performance. Conversely, for the IDGL-
Anchor method, removing nodes brings significant perfor-
mance degradation, especially when the number of removed

(a) Layer 1 (b) Layer 2

Figure 6: Visualization of Latent Graph Structure (given by
two layers of NeuralGauSim) on CiteSeer dataset.

nodes tends to be large. The primary justification lies in the
fact that the anchor graph is generated through random sam-
pling from the original graph, whereas the construction of
the transition-graph relies on model learning.

Impact of Temperature Parameter
To evaluate the impact of different temperature parameter
τ of Gumbel-Softmax distribution, we conduct a compara-
tive experiment by setting different temperature parameter
τ ∈ {0.25, 0.5, 0.75, 1} on all datasets. Experimental re-
sults are shown in Figure 5. This figure illustrates the di-
rect impact of modifying the temperature parameter on the
performance of the proposed model. Different datasets may
require different temperature parameter setting strategies. In
this paper, following NodeFormer (Wu et al. 2022), we set
the same temperature parameters τ = 0.25 for all datasets
for comparison.

Comparison of Complexity and Visualization
of Learned Graph Structure

To compare the training time and GPU memory consump-
tion, we statistic the training time (s) and GPU memory us-
age (MB) of the proposed method and previous methods,
including IDGL, IDGL-Anchor, and NodeFormer, on Cite-
Seer dataset. Here, the number of transition nodes is set to be
500. The experimental results are shown in Table 4. we can
observe that the proposed transition graph structure learn-
ing method significantly reduces the complexity of both time
and memory consumption. To investigate the learned graph
structure of the proposed method, we visualize the graph
structures learned by NeuralGauSim (given by two layers)
on CiteSeer dataset, shown in Figure 6.

Conclusion
In this paper, we focus on the differential graph structure
learning framework and analyze the issue of structure sam-
pling strategy. To fulfill the requirement of the edge sam-
pling, we propose the Gaussian similarity modeling method
and neural Gaussian similarity modeling method. To re-
duce the complexity, we develop a transition graph structure
learning by transferring the initial nodes to transition nodes.
Extensive experiments on graph and graph-enhanced appli-
cation datasets demonstrate the effectiveness of the proposed
methods. In future work, we aim to delve into effectiveness
methods to tackle increasingly demanding scenarios, includ-
ing heterogeneous graphs and multiplex graphs.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11925



Acknowledgments
This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62206208, 62106185
and in part by the Fundamental Research Funds for the Cen-
tral Universities under Grant XJSJ23021.

References
Chen, Y.; Wu, L.; and Zaki, M. 2020. Iterative Deep Graph
Learning for Graph Neural Networks: Better and Robust Node
Embeddings. Proceedings of the Advances in Neural Informa-
tion Processing Systems, 33: 19314–19326.
Fan, X.; Gong, M.; Tang, Z.; and Wu, Y. 2022. Deep Neu-
ral Message Passing With Hierarchical Layer Aggregation and
Neighbor Normalization. IEEE Transactions on Neural Net-
works and Learning Systems, 33(12): 7172–7184.
Fan, X.; Gong, M.; Wu, Y.; and Li, H. 2023a. Maximizing Mu-
tual Information Across Feature and Topology Views for Rep-
resenting Graphs. IEEE Transactions on Knowledge and Data
Engineering, 1–14.
Fan, X.; Gong, M.; Wu, Y.; Qin, A. K.; and Xie, Y. 2023b.
Propagation Enhanced Neural Message Passing for Graph Rep-
resentation Learning. IEEE Transactions on Knowledge and
Data Engineering, 35(2): 1952–1964.
Fatemi, B.; El Asri, L.; and Kazemi, S. M. 2021. SLAPS:
Self-Supervision Improves Structure Learning for Graph Neu-
ral Networks. Proceedings of the Advances in Neural Informa-
tion Processing Systems, 34: 22667–22681.
Franceschi, L.; Niepert, M.; Pontil, M.; and He, X. 2019. Learn-
ing Discrete Structures for Graph Neural Networks. In Pro-
ceedings of the International Conference on Machine Learning,
1972–1982.
Gao, C.; Zheng, Y.; Li, N.; Li, Y.; Qin, Y.; Piao, J.; Quan, Y.;
Chang, J.; Jin, D.; He, X.; et al. 2023. A Survey of Graph Neu-
ral Networks for Recommender Systems: Challenges, Methods,
and Directions. ACM Transactions on Recommender Systems,
1(1): 1–51.
Gasteiger, J.; Weißenberger, S.; and Günnemann, S. 2019. Dif-
fusion Improves Graph Learning. Proceedings of the Advances
in Neural Information Processing Systems, 32.
Han, K.; Wang, Y.; Guo, J.; Tang, Y.; and Wu, E. 2022. Vision
GNN: An Image is Worth Graph of Nodes. Proceedings of the
Advances in Neural Information Processing Systems, 35: 8291–
8303.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical Reparameter-
ization with Gumbel-Softmax. In Proceedings of the Interna-
tional Conference on Learning Representations.
Jin, W.; Ma, Y.; Liu, X.; Tang, X.; Wang, S.; and Tang, J. 2020.
Graph Structure Learning for Robust Graph Neural Networks.
In Proceedings of the ACM SIGKDD international conference
on knowledge discovery and data mining, 66–74.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In Proceedings of
the International Conference on Learning Representations.
Lim, D.; Hohne, F.; Li, X.; Huang, S. L.; Gupta, V.; Bhalerao,
O.; and Lim, S. N. 2021. Large Scale Learning on Non-
Homophilous Graphs: New Benchmarks and Strong Simple
Methods. Proceedings of the Advances in Neural Information
Processing Systems, 34: 20887–20902.

Ma, Y.; Liu, X.; Shah, N.; and Tang, J. 2022. Is Homophily a
Necessity for Graph Neural Networks? In Proceedings of the
International Conference on Learning Representations.
Meng, Y.; Zong, S.; Li, X.; Sun, X.; Zhang, T.; Wu, F.; and Li,
J. 2022. GNN-LM: Language Modeling based on Global Con-
texts via GNN. In Proceedings of the International Conference
on Learning Representations.
Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B. 2020.
Geom-GCN: Geometric Graph Convolutional Networks. In
Proceedings of the International Conference on Learning Rep-
resentations.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The Graph Neural Network Model. IEEE
Transactions on Neural Networks, 20(1): 61–80.
Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann, S.
2018. Pitfalls of Graph Neural Network Evaluation. arXiv
preprint arXiv:1811.05868.
Sun, Q.; Li, J.; Peng, H.; Wu, J.; Fu, X.; Ji, C.; and Philip, S. Y.
2022. Graph Structure Learning with Variational Information
Bottleneck. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 36, 4165–4174.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.;
and Bengio, Y. 2018. Graph Attention Networks. In Proceed-
ings of the International Conference on Learning Representa-
tions.
Wang, X.; Zhu, M.; Bo, D.; Cui, P.; Shi, C.; and Pei, J. 2020.
AM-GCN: Adaptive Multi-channel Graph Convolutional Net-
works. In Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 1243–1253.
Wu, Q.; Zhao, W.; Li, Z.; Wipf, D. P.; and Yan, J. 2022. Node-
former: A Scalable Graph Structure Learning Transformer for
Node Classification. Proceedings of the Advances in Neural
Information Processing Systems, 35: 27387–27401.
Xie, Y.; Li, S.; Yang, C.; Wong, R. C.-W.; and Han, J. 2020.
When Do GNNs Work: Understanding and Improving Neigh-
borhood Aggregation. In Proceedings of the International Joint
Conference on Artificial Intelligence.
Yang, Z.; Cohen, W.; and Salakhudinov, R. 2016. Revisiting
Semi-supervised Learning with Graph Embeddings. In Pro-
ceedings of the International Conference on Machine Learning,
40–48.
Yu, D.; Zhang, R.; Jiang, Z.; Wu, Y.; and Yang, Y. 2021. Graph-
Revised Convolutional Network. In Proceedings of the Ma-
chine Learning and Knowledge Discovery in Databases: Euro-
pean Conference, 378–393.
Zeng, H.; Zhou, H.; Srivastava, A.; Kannan, R.; and Prasanna,
V. 2020. GraphSAINT: Graph Sampling Based Inductive
Learning Method. In Proceedings of the International Con-
ference on Learning Representations.
Zhao, T.; Liu, Y.; Neves, L.; Woodford, O.; Jiang, M.; and Shah,
N. 2021. Data Augmentation for Graph Neural Networks. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 11015–11023.
Zheng, C.; Zong, B.; Cheng, W.; Song, D.; Ni, J.; Yu, W.; Chen,
H.; and Wang, W. 2020. Robust Graph Representation Learning
via Neural Sparsification. In Proceedings of the International
Conference on Machine Learning, 11458–11468.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11926


