
Provably Powerful Graph Neural Networks for Directed Multigraphs

Béni Egressy1, 2 Luc von Niederhäusern1, 2, Jovan Blanuša2, Erik Altman3, Roger Wattenhofer1,
Kubilay Atasu2

1ETH Zurich, Zurich, Switzerland
2IBM Research Europe, Zurich, Switzerland

3IBM Watson Research, Yorktown Heights, NY, USA
begressy@ethz.ch, lucv@ethz.ch, jov@zurich.ibm.com, ealtman@us.ibm.com, wattenhofer@ethz.ch, kat@zurich.ibm.com

Abstract

This paper analyses a set of simple adaptations that transform
standard message-passing Graph Neural Networks (GNN) into
provably powerful directed multigraph neural networks. The
adaptations include multigraph port numbering, ego IDs, and
reverse message passing. We prove that the combination of
these theoretically enables the detection of any directed sub-
graph pattern. To validate the effectiveness of our proposed
adaptations in practice, we conduct experiments on synthetic
subgraph detection tasks, which demonstrate outstanding per-
formance with almost perfect results.
Moreover, we apply our proposed adaptations to two finan-
cial crime analysis tasks. We observe dramatic improvements
in detecting money laundering transactions, improving the
minority-class F1 score of a standard message-passing GNN
by up to 30%, and closely matching or outperforming tree-
based and GNN baselines. Similarly impressive results are
observed on a real-world phishing detection dataset, boosting
three standard GNNs’ F1 scores by around 15% and outper-
forming all baselines. An extended version with appendices
can be found on arXiv: https://arxiv.org/abs/2306.11586.

Introduction
Graph neural networks (GNNs) have become the go-to ma-
chine learning models for learning from relational data.
GNNs are used in various fields, ranging from biology,
physics, and chemistry to social networks, traffic, and weather
forecasting (Bongini, Bianchini, and Scarselli 2021; Zhou
et al. 2020; Derrow-Pinion et al. 2021; Shu, Wang, and
Liu 2019; Wu et al. 2020; Keisler 2022; Zhang et al. 2019;
Battaglia et al. 2016). More recently, there has been growing
interest in using GNNs to identify financial crime (Cardoso,
Saleiro, and Bizarro 2022; Kanezashi et al. 2022; Weber et al.
2019, 2018; Nicholls, Kuppa, and Le-Khac 2021).

Our motivating task is to detect financial crimes mani-
festing as subgraph patterns in transaction networks. For
example, see Fig. 1, which depicts established money laun-
dering patterns. But note that similar patterns are relevant for
graph tasks in many areas, ranging from chemistry to traffic
forecasting. The task seems to lend itself nicely to the use of
GNNs. Unfortunately, current GNNs are ill-equipped to deal
with financial transaction networks effectively.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Firstly, financial transaction networks are, in fact, directed
multigraphs, i.e., edges (or transactions) have a direction, and
there can be multiple edges between two nodes (or accounts).
Secondly, most GNNs cannot detect some subgraph patterns,
such as cycles (Chen et al. 2020, 2019). There have been
many efforts to overcome this limitation (You et al. 2021;
Huang et al. 2022; Papp and Wattenhofer 2022; Zhang and Li
2021; Loukas 2019; Sato, Yamada, and Kashima 2019), all
focusing on simple (undirected) graphs. But even on simple
graphs, the problem is far from solved. Until very recently, for
example, there was no linear-time permutation-equivariant
GNN that could count 6-cycles (Huang et al. 2022).

This paper addresses both of these issues. To our knowl-
edge, this is the first GNN architecture designed specifically
for directed multigraphs. Secondly, we first prove that the
proposed architecture can theoretically detect any subgraph
pattern in directed multigraphs and then empirically confirm
that our proposed architecture can detect the patterns illus-
trated in Fig. 1. Our proposed architecture is based on a set
of simple adaptations that can transform any standard GNN
architecture into a directed multigraph GNN. The adaptations
are reverse message passing (Jaume et al. 2019), port num-
bering (Sato, Yamada, and Kashima 2019), and ego IDs (You
et al. 2021). Although these individual building blocks are
present in existing literature, the theoretical and empirical
power of combining them has not been explored. In this work,
we fill this gap: We combine them, adapt them to directed
multigraphs, and showcase the theoretical and empirical ad-
vantages of using them in unison.

Our contributions. (1) We propose a set of simple and in-
tuitive adaptations that can transform message-passing GNNs
into provably powerful directed multigraph neural networks.
(2) We prove that suitably powerful GNNs equipped with ego
IDs, port numbering, and reverse message passing can iden-
tify any directed subgraph pattern. (3) The theory is tested
on synthetic graphs, confirming that GNNs using these adap-
tations can detect a variety of subgraph patterns, including
directed cycles up to length six, scatter-gather patterns, and
directed bicliques, setting them apart from previous GNN
architectures. (4) The improvements translate to significant
gains on two financial datasets. The adaptations boost GNN
performance dramatically on money laundering and phish-
ing datasets, matching or surpassing state-of-the-art financial
crime detection models on both simulated and real data.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11838

(a) Degree-in = 4 (b) Degree-out = 4 (c) Directed Biclique (d) Scatter-Gather

(e) Fan-in = 3 (f) Fan-out = 2 (g) Directed Cycle (5) (h) Gather-Scatter

Figure 1: Money Laundering Patterns. The gray fill indicates the nodes to be detected by the synthetic pattern detection tasks.
The exact degree/fan pattern sizes here are for illustrative purposes only.

Related Work
Xu et al. (2018) showed that standard MPNNs are at most
as powerful as the Weisfeiler-Lehman (WL) isomorphism
test, and provided a GNN architecture, GIN, that theoreti-
cally matches the power of the WL test. Although the WL
test can asymptotically almost surely differentiate any two
non-isomorphic graphs (Babai, Erdos, and Selkow 1980),
standard MPNNs cannot — in certain graphs — detect sim-
ple substructures like cycles (Chen et al. 2020, 2019). This
motivated researchers to go beyond standard MPNNs.

One direction considers emulating the more powerful k-
WL isomorphism test, by conducting message passing be-
tween k-tuples or using a tensor-based model (Maron et al.
2019; Morris et al. 2019). Unfortunately, these models have
high complexity and are impractical for most applications.
Another line of work uses pre-calculated features to aug-
ment the GNN. These works explore adding subgraph counts
(Bouritsas et al. 2022; Barceló et al. 2021), positional node
embeddings (Egressy and Wattenhofer 2022; Dwivedi et al.
2021), random IDs (Abboud et al. 2020; Sato, Yamada, and
Kashima 2021), and node IDs (Loukas 2019).

A recent class of expressive GNNs called Subgraph GNNs,
model graphs as collections of subgraphs (Frasca et al. 2022;
Zhao et al. 2021). Papp et al. (2021) drop random nodes
from the input and run the GNN multiple times, gathering
more information with each run. Zhang and Li (2021) instead
extract subgraphs around each node and run the GNN on
these. Also falling into this category is ID-GNN, which uses
ego IDs (You et al. 2021), whereby each node is sampled
with its neighborhood and given an identifier to differentiate
it from the neighbors. Although the authors claim that ID-
GNNs can count cycles, the proof turns out to be incorrect.
In fact, Huang et al. (2022) show that the whole family of
Subgraph GNNs cannot count cycles of length greater than 4,
and propose I2-GNNs that can count cycles up to length 6.

There has been much less work on GNNs for directed
graphs. Zhang et al. (2021) propose a spectral network for
directed graphs, but it is difficult to analyze the power of this
network or apply it to larger datasets. Similar approaches can
be found in (Tong et al. 2020) and (Ma et al. 2019). Jaume
et al. (2019) extend message passing to aggregate incoming

and outgoing neighbors separately, rather than naively treat-
ing the graph as undirected. Directed multigraphs have not
specifically been considered.

GNNs have been used for various financial applications
(Li et al. 2021; Feng et al. 2019; Chen, Wei, and Huang
2018; Zhang et al. 2019; Li et al. 2019; Xu et al. 2021; Yang
et al. 2021). Closest to our work, GNNs have been used for
fraud detection. Liang et al. (2019) and Rao et al. (2021)
work on bipartite customer-product graphs to uncover insur-
ance and credit card fraud, respectively. Liu et al. (2018)
use heterogeneous GNNs to detect malicious accounts in the
device-activity bipartite graph of an online payment platform.
Weber et al. (2019) were the first to apply standard GNNs
for anti-money laundering (AML), and more recently Car-
doso, Saleiro, and Bizarro (2022) proposed representing the
transaction network as a bipartite account-transaction graph
and showed promising results in the semi-supervised AML
setting. However, it is not clear how these approaches help
with detecting typical fraud patterns.

Background
Graphs and Financial Transaction Graphs
We consider directed multigraphs, G, where the nodes
v ∈ V (G) represent accounts, and the directed edges
e = (u, v) ∈ E(G) represent transactions from u to v. Each
node u (optionally) has a set of account features h(0)(u);
this could include the account number, bank ID, and account
balance. Each transaction e = (u, v) has a set of associated
transaction features h

(0)
(u,v); this includes the amount, cur-

rency, and timestamp of the transaction. The incoming and
outgoing neighbors of u are denoted by Nin(u) and Nout(u)
respectively. Multiple transactions between the same two
accounts are possible, making G a multigraph. In node (or
edge) prediction tasks, each node (or edge) will have a binary
label indicating whether the account (or transaction) is illicit.
Financial Crime Patterns. Fig. 1 shows a selection of
subgraph patterns indicative of money laundering (Granados
and Vargas 2022; He et al. 2021; Suzumura 2022; Weber et al.
2018; Starnini et al. 2021). Unfortunately, these are rather
generic patterns, which also appear extensively amongst per-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11839

fectly innocent transactions. As a result, detecting financial
crime relies not just on detecting individual patterns, but also
on learning relevant combinations. This makes neural net-
works promising candidates for the task. However, standard
message-passing GNNs typically fail to detect the depicted
patterns, except for degree-in. In the next section, we describe
architectural adaptations, which enable GNNs to detect each
one of these patterns.
Subgraph Detection. Given a subgraph pattern H , we
define subgraph detection for nodes as deciding for each node
in a graph whether it is part of a subgraph that is isomorphic
to H; i.e., given a node v ∈ V (G), deciding whether there
exists a graph G′, with E(G′) ⊆ E(G) and V (G′) ⊆ V (G),
such that v ∈ V (G′) and G′ ∼= H .

Message Passing Neural Networks
Message-passing GNNs, commonly referred to as Message
Passing Neural Networks (MPNNs), form the most promi-
nent family of GNNs. They include GCN (Kipf and Welling
2016), GIN (Xu et al. 2018), GAT (Veličković et al. 2017),
GraphSAGE (Hamilton, Ying, and Leskovec 2017), and many
more architectures. They work in three steps: (1) Each node
sends a message with its current state h(v) to its neighbors,
(2) Each node aggregates all the messages it receives from
its neighbors in the embedding a(v), and (3) Each node up-
dates its state based on h(v) and a(v) to produce a new state.
These 3 steps constitute a layer of the GNN, and they can
be repeated to gather information from further and further
reaches of the graph. More formally:

a(t)(v) = AGGREGATE
(
{h(t−1)(u) | u ∈ N(v)}

)
,

h(t)(v) = UPDATE
(
h(t−1)(v), a(t)(v)

)
,

where {{.}} denotes a multiset, and AGGREGATE
is a permutation-invariant function. We will shorten
AGGREGATE to AGG, and for readability, we will use {.}
rather than {{.}} to indicate multisets.

In the case of directed graphs, we need to distinguish
between the incoming and outgoing neighbors of node u. In a
standard MPNN, the messages are passed along the directed
edges in the direction indicated. As such, the aggregation
step only considers messages from incoming neighbors:

a(t)(v) = AGG
(
{h(t−1)(u) | u ∈ Nin(v)}

)
,

where we aggregate over the incoming neighbors, Nin(v).
The edges of an input graph may also have input features.

We denote the input features of directed edge e = (u, v) by
h(0)((u, v)). When using edge features during the message
passing, the aggregation step becomes:

a(t)(v) = AGG
(
{(h(t−1)(u), h(0)((u, v))) | u ∈ Nin(v)}

)
In the remainder, we omit edge features from formulas when
unnecessary in favor of brevity.

Methods
In this section, we introduce simple adaptations for standard
MPNNs (Message Passing Neural Networks) to enable the

a

b

c

d

Figure 2: Nodes (a and b) with different out-degrees are not
distinguishable by a standard MPNN with directed message
passing. Note that naive bidirectional message passing, on
the other hand, is unable to distinguish nodes a and d.

detection of the fraud patterns in Fig. 1. We consider the
adaptations in increasing order of complexity in terms of the
patterns they help to detect. We provide theory results to mo-
tivate the adaptations and include corresponding experiments
on the synthetic subgraph detection dataset in the Results
section to support the theory empirically.

Reverse Message Passing
When using a standard MPNN with directed edges, a node
does not receive any messages from outgoing neighbors (un-
less they happen to also be incoming neighbors), and so is
unable to count its outgoing edges. For example, a standard
MPNN is unable to distinguish nodes a and b in Fig. 2. Fur-
ther, note that naive bidirectional message passing, where
edges are treated as undirected and messages travel in both
directions, does not solve the problem, because a node then
can not distinguish incoming and outgoing edges. So this
would fail to distinguish nodes a and d in the same figure.

To overcome this issue, we need to indicate the direc-
tion of the edges in some way. We propose using a separate
message-passing layer for the incoming and outgoing edges
respectively, i.e., adding reverse message passing. Note that
this is akin to using a relational GNN with two edge types
(Schlichtkrull et al. 2018). More formally, the aggregation
and update mechanisms become:

a
(t)
in (v) = AGGin

(
{h(t−1)(u) | u ∈ Nin(v)}

)
,

a
(t)
out(v) = AGGout

(
{h(t−1)(u) | u ∈ Nout(v)}

)
,

h(t)(v) = UPDATE
(
h(t−1)(v), a

(t)
in (v), a

(t)
out(v)

)
,

where ain is now an aggregation of incoming neighbors and
aout of outgoing neighbors. We now prove that message-
passing GNNs with reverse MP can solve degree-out.
Proposition 0.1. An MPNN with sum aggregation and re-
verse MP can solve degree-out.

The proof of Proposition 0.1 can be found in the appendix.
We use a synthetic pattern detection task later in the paper to
confirm that the theory translates into practice.

Directed Multigraph Port Numbering
People often make multiple transactions to the same account.
In transaction networks, these are represented as parallel
edges. To detect fan-in (or fan-out) patterns, a model has to
distinguish between edges from the same neighbor and edges

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11840

(2,1)

(2,1)

(1,1) (1,1)
(2,1)

(3,1)

Figure 3: Nodes (in gray) with different fan-ins that are not
distinguishable by a standard MPNN. The edge labels indi-
cate incoming and outgoing port numbers, respectively.

from different neighbors. Using unique account numbers (or
in general node IDs) would naturally allow for this. However,
using account numbers does not generalize well. During
training, a model can memorize fraudulent account numbers
without learning to identify fraudulent patterns, but this will
not generalize to unseen accounts.

Instead, we adapt port numbering (Sato, Yamada, and
Kashima 2019) to directed multigraphs. Port numbering as-
signs local IDs to each neighbor at a node. This allows a
node to identify messages coming from the same neighbor in
consecutive message-passing rounds. To adapt port number-
ing to directed multigraphs, we assign each directed edge an
incoming and an outgoing port number, and edges coming
from (or going to) the same node, receive the same incom-
ing (or outgoing) port number. Unlike Sato, Yamada, and
Kashima (2019), who attach only the local port numbers at
a node to received messages, we attach the port numbers in
both directions, i.e., a node sees both the port number it has
assigned to a neighbor and the port number that the neigh-
bor has assigned to it. This turns out to be crucial for our
expressivity arguments.

Port numbers have been shown to increase the expressivity
of GNNs on simple graphs, but message-passing GNNs with
port numbers alone cannot even detect 3-cycles in some cases
(Garg, Jegelka, and Jaakkola 2020).

In general, the assignment of port numbers around a node
is arbitrary. A node with d incoming neighbors can assign
incoming port numbers in d! ways. To break this symmetry
in our datasets, we use the transaction timestamps to order
the incoming (or outgoing) neighbors. In the case of parallel
edges, we use the earliest timestamp to decide the order of
the neighbors. Since timestamps carry meaning in financial
crime detection, the choice of ordering is motivated; indeed
two identical subgraph patterns with different timestamps
can have different meanings.

Computing the port numbers in this way can be a time-
intensive step, with runtime complexity dominated by sort-
ing all edges by their timestamps: O(m logm), where m =
|E(G)|. However, port numbers can be calculated in advance,
so training and inference times are unaffected. Each edge
receives an incoming and an outgoing port number as addi-
tional edge features. Fig. 3 shows an example of graphs with
port numbers. We now prove that GNNs using port numbers
can correctly identify fan-in and fan-out patterns.

Note that the following proof, and later proofs using port
numbers, do not rely on the timestamps for correctness. How-
ever, if timestamps that uniquely identify the ports are avail-
able, then permutation invariance/equivariance of the GNN

will be preserved.
Proposition 0.2. An MPNN with max aggregation and multi-
graph port numbering can solve fan-in.

A proof is provided in the appendix. Adding reverse MP,
one can argue similarly that fan-out can also be solved. Both
propositions are confirmed empirically in the Results section.
Proposition 0.3. An MPNN with max aggregation, multi-
graph port numbering, and reverse MP can solve fan-out.

Ego IDs
Although reverse MP and multigraph port numbering help
with detecting some of the suspicious patterns in Fig. 1, they
are not sufficient to detect directed cycles, scatter-gather pat-
terns, and directed bicliques. You et al. (2021) introduced ego
IDs specifically to help detect cycles in graphs. The idea is
that by “marking” a “center” node with a distinct (binary) fea-
ture, this node can recognize when a sequence of messages
cycles back around to it, thereby detecting cycles that it is
part of. However, it turns out that the proof of Proposition 2
in the paper is incorrect, and ego IDs alone do not enable
cycle detection. We give a counterexample in the appendix.
Indeed, Huang et al. (2022) also note that the proof “confuses
walks with paths”.

We see this reflected in the individual results in Table 1.
Although ego IDs offer a boost in detecting short cycles, they
do not help the baseline (GIN) in detecting longer cycles.
This can also be explained theoretically: Assuming a graph
has no loops (edges from a node to itself), walks of length
two and three that return to the start node are also cycles
since there is no possibility to repeat intermediate nodes.
Therefore Proposition 2 from You et al. (2021) applies in
these cases and it is not surprising that GIN+EgoIDs can
achieve impressive F1 scores for 2- and 3-cycle detection.

However, in combination with reverse MP and port num-
bering, ego IDs can detect cycles, scatter-gather patterns,
and bipartite subgraphs, completing the list of suspicious
patterns. In fact, it can be shown that a suitably powerful stan-
dard MPNN with these adaptations can distinguish any two
non-isomorphic (sub-)graphs, and given a consistent use of
port-numbering they will not mistakenly distinguish any two
isomorphic (sub-)graphs. GNNs fulfilling these two proper-
ties are often referred to as universal. The crux of the proof is
showing how the ego ID, port numbers, and reverse MP can
be used to assign unique IDs to each node in the graph. Given
unique node IDs, sufficiently powerful standard MPNNs are
known to be universal (Loukas 2019; Abboud et al. 2020).
Theorem 0.4. Ego IDs combined with port numbering and
reverse MP can be used to assign unique node IDs in con-
nected directed multigraphs.

The idea of the proof is to show how a GNN can replicate a
labeling algorithm that assigns unique IDs to each node in an
ego node’s neighborhood. The labeling algorithm as well as
the full proof are provided in the appendix. The universality
of the adaptations follows from this theorem.
Corollary 0.4.1. GIN with ego IDs, port numbering, and
reverse MP can theoretically detect any directed subgraph
pattern.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11841

The proof follows from Theorem 0.4 above and Corol-
lary 3.1 from Loukas (2019). Similar statements can be made
for simple undirected graphs. One can remove the reverse
MP from the assumptions since this is only needed to make
the proof work with directed edges.

Theorem 0.5. Ego IDs and port numbering can be used to
assign unique node IDs in connected undirected graphs.

Corollary 0.5.1. GIN with ego IDs and port numbering can
theoretically detect any subgraph in undirected graphs.

The ablation study in Table 1 of the results again supports
the theoretical analysis. The combination of the three adapta-
tions achieves impressive scores for all subgraph patterns.

Note that passing the port numbers of both incident nodes
of an edge is crucial for inferring unique node IDs. We illus-
trate this with a simple example in the appendix. In particular,
port numbering, as introduced by Sato, Yamada, and Kashima
(2019), is not sufficient.

Complexity & Runtime
We propose a set of adaptations, so the final model complex-
ity will depend on the choice of base GNN. We describe the
additional runtime costs incurred by the adaptations in the ap-
pendix. All in all, the adaptations add a constant factor to the
runtime complexity in addition to a one-off pre-computation
cost of O(m log(m)). The empirical runtimes on AML Small
HI using GIN can be seen in in the appendix.

Datasets
Synthetic Pattern Detection Tasks. The AML subgraph
patterns seen in Fig. 1 are used to create a controllable testbed
of synthetic pattern detection tasks. The key design principle
is to ensure that the desired subgraph patterns appear ran-
domly, rather than being inserted post hoc into a graph. The
problem with inserting patterns is that it skews the random
distribution, and simple indicators (such as the degrees of
nodes) can be enough to solve the task approximately. For
example, consider the extreme case of generating a random
k-regular graph and then inserting a pattern. Nodes belonging
to the pattern could be identified by checking whether their
degree exceeds k. Additionally, if only inserted patterns are
labeled, then randomly occurring patterns will be overlooked.

To ensure that the desired subgraph patterns appear ran-
domly, we introduce the random circulant graph generator.
Details of the generator and pseudocode can be found in the
appendix. The pattern detection tasks include degree-in/out
(number of in/out edges), fan-in/out (number of unique in/out
neighbors), scatter-gather, directed biclique, and directed cy-
cles of length up to six. Detailed descriptions can be found
in the appendix.
Anti-Money Laundering (AML). Given the strict privacy
regulations around financial data, real-world datasets are not
readily available. Instead, we use simulated money launder-
ing data (Altman et al. 2023). The simulator behind these
datasets generates a financial transaction network by model-
ing agents (banks, companies, and individuals) in a virtual
world. The generator uses well-established laundering pat-
terns to add realistic money laundering (illicit) transactions.

We use two small and two medium-sized datasets, one of
each with a higher illicit ratio (HI) and with a lower illicit
ratio (LI). The dataset sizes and illicit ratios are provided in
the appendix. We use a 60-20-20 temporal train-validation-
test split, i.e., we split the transactions after ordering them by
their timestamps. Details can be found in the appendix.
Ethereum Phishing Detection (ETH). Since banks do not
release their data, we turn to cryptocurrencies for a real-world
dataset. We use an Ethereum transaction network published
on Kaggle (Chen et al. 2021), where some nodes are labeled
as phishing accounts. We use a temporal train-validation-test
split, but this time splitting the nodes. We use a 65-15-20
split because the illicit accounts are skewed towards the end
of the dataset. More details and dataset statistics can be found
in the appendix.
Real-World Directed Graph Datasets. The theory results
and the subgraph detection tasks demonstrate the general
purpose potential of the architectural adaptations. However,
testing our model on real-world benchmark datasets is impor-
tant to further support these claims. For lack of established
directed multi-graph benchmarks, we have taken three di-
rected graph datasets, Chameleon, Squirrel (Pei et al. 2020),
and Arxiv-Year (Hu et al. 2020), and compare our approach
with the state-of-the-art model for these benchmarks (Rusch
et al. 2022). As these datasets are not the focus of this paper,
we leave the experimental details and results to the appendix;
please see Appendix G.

Experimental Setup
Base GNNs and Baselines. GIN with edge features (Hu
et al. 2019) is used as the main GNN base model with our
adaptations added on top. GAT (Veličković et al. 2017) and
PNA (Velickovic et al. 2019) are also used as base models,
and we refer to their adapted versions as Multi-GAT and
Multi-PNA, respectively. All three are also considered base-
lines. Additionally, GIN with ego IDs can be considered an
ID-GNN (You et al. 2021) baseline, and GIN with port num-
bering can be considered a CPNGNN (Sato, Yamada, and
Kashima 2019) baseline. Since AML is an edge classifica-
tion problem, we also include a baseline using edge updates
(Battaglia et al. 2018), denoted GIN+EU. This approach is
similar to replacing edges with nodes and running a GNN
on said line graph, which recently achieved state-of-the-art
(SOTA) results in self-supervised money laundering detec-
tion (Cardoso, Saleiro, and Bizarro 2022). We also include
R-GCN (Schlichtkrull et al. 2018) as a baseline. We do not
focus on including a more expansive range of GNN baselines,
for the simple reason that without (the proposed) adaptations,
they are not equipped to deal with directed multigraphs. How-
ever, some additional results with “more expressive” GNNs
can be found in the appendix. As far as we are aware, there
are no other GNNs that one could expect to achieve SOTA
results on directed multigraphs.

We include a baseline representing the parallel line of work
in financial crime detection that uses pre-calculated graph-
based features (GFs) and tree-based classifiers to classify
nodes or edges individually. We train XGBoost (Chen and
Guestrin 2016) and LightGBM (Ke et al. 2017) models on

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11842

the individual edges (or nodes) using the original raw fea-
tures combined with additional graph-based features. This
approach has produced SOTA results in financial applications
(Weber et al. 2019; Lo, Layeghy, and Portmann 2022).

Given the size of the AML and ETH datasets, we use neigh-
borhood sampling (Hamilton, Ying, and Leskovec 2017) for
all GNN-based models. Further details of the experimental
setup for the different datasets can be found in the appendix.

Scoring. Since we have very imbalanced datasets, accu-
racy and other popular metrics are not suitable. Instead, we
use the minority class F1 score. This aligns well with what
banks and regulators use in real-world scenarios.

Results
Synthetic Pattern Detection Results
The synthetic pattern detection results can be seen in Ta-
ble 1. The degree-out results reveal that the standard message-
passing GNNs are unable to solve the degree-out task, achiev-
ing F1 scores below 44%. However, all the GNNs that are
equipped with reverse MP score above 98%, thus supporting
Proposition 0.1. The next column shows that port numbering
is the critical adaptation for solving fan-in, though the F1
score is quite high even for the baseline GIN. On the other
hand, for the fan-out task, the combination of reverse MP
and port numbering is needed to score above 99%. Again,
these results support Propositions 0.2 and 0.3. The ablation
study of cumulative adaptations on top of GIN also supports
Corollary 0.4.1: The combination of reverse MP, port num-
bering, and ego IDs, scores high on all of the subtasks, with
only 6-cycle detection coming in below 90%. We see similar
results when using other base GNN models, with Multi-PNA
achieving the best overall results. Moreover, on the more
complex tasks — directed cycle, scatter-gather, and biclique
detection — the combination of the three is what leads to
the first significant improvement in F1 scores. In the most
extreme case, scatter-gather detection, the minority class F1
score jumps from 67.84% with only reverse MP and port
numbers to 97.42% when ego IDs are added. No adaptation
alone comes close to this score, so it is clear that the combi-
nation is needed. Similar jumps can be seen for directed 4-,
5-, and 6-cycle, and biclique detection. Increasing the dataset
size and restricting the task to only the “complex” subtasks
further increases the scores, with 6-cycle detection also reach-
ing above 97%. More details can be found in the appendix,
along with additional ablations. In particular, we rerun the
experiments using random unique node IDs as input features
and see that node IDs are unable to replace port numbers and
ego IDs in practice.

AML Results
The results for the AML datasets can be seen in Table 2.
For AML Small HI, we see that our adaptations boost the
minority class F1 score of GIN from 28.7% to 57.2%, a gain
of almost 30%. The largest improvements are brought by
reverse MP and port numbering, taking the F1 score from
28.7% to 56.9%, whilst ego IDs do not make much difference
here. The results for the other AML datasets show a similar
trend with overall gains of 14.2%, 14.0%, and 10.7% for

GIN, again with diminishing returns as more adaptations are
added. The two rows corresponding to port numbering —
GIN+Ports and +Ports — indicate clear gains from using
port numbering, both when used alone and on top of reverse
MP. The support for ego IDs is less clear, with clear gains
when used as an individual adaptation but no significant gains
when added on top of reverse MP and port numbering.

The full set of adaptations was tested with three other
base models, GIN+EU (GIN with edge updates), PNA, and
PNA+EU. In each case, and across almost all AML datasets,
we see clear gains from using the adaptations, underlining
the effectiveness and versatility of the approach. We fur-
ther note that Multi-PNA+EU outperforms all baselines on
all AML datasets. This is particularly impressive when com-
pared with the tree-based methods using graph-based features
(XGBoost+GFs and LightGBM+GFs) since the hand-crafted
features align perfectly with the illicit money laundering
patterns used by the simulator. Moreover, these tree-based
methods have been SOTA in previous financial applications
(Weber et al. 2019; Lo, Layeghy, and Portmann 2022).

Recall scores for individual money laundering patterns
can be found in the appendix. It is worth noting that the
majority of the illicit transactions that belong to money laun-
dering patterns are identified, and the overall dataset scores
are greatly influenced by the proportion of lone (not belong-
ing to a money laundering pattern) illicit transactions in the
datasets. Lone illicit transactions are very difficult to identify.

For training times and inference throughput rates of models
based on GIN, please see the appendix. Notably, with all the
adaptations, the inference rate of Multi-GIN still surpasses
18k transactions per second on a single GPU.

ETH Results
Finally, we test our adaptations on a real-world financial
crime dataset — Ethereum phishing account classification.
The results are provided in Table 2. Similar to the AML
datasets, we see a consistent improvement in final scores as
we add the adaptations. In total, the minority class F1 score
jumps from 26.9% without adaptations to 42.9% with reverse
MP, port numbering, and ego IDs. Again, the largest single
improvement is due to the reverse MP. In this case, Multi-GIN
does not outperform all of the baselines, but the adaptations
also significantly boost PNA performance, and Multi-PNA
and Multi-PNA+EU beat all the baselines by more than 12%.

Conclusion
This work has investigated a series of straightforward adapta-
tions capable of transforming conventional message-passing
GNNs into provably powerful directed multigraph learners.
Our contributions to the field of graph neural networks are
threefold. Firstly, our theoretical analysis addresses a notable
gap in the existing literature about the power of combining
different GNN adaptations/augmentations. Specifically, we
prove that ego IDs combined with port numbering and reverse
message passing enable a suitably powerful message-passing
GNN, such as GIN, to compute unique node IDs and there-
fore detect any directed subgraph patterns. Secondly, our
theoretical findings are validated empirically with a range

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11843

Model deg-in deg-out fan-in fan-out C2 C3 C4 C5 C6 S-G B-C

GIN (Xu et al. 2018; Hu et al. 2019) 99.77 43.58 95.57 35.91 34.67 58.00 50.80 43.12 48.59 69.31 63.12
GAT (Veličković et al. 2017) 10.33 10.53 9.69 0.00 0.00 0.00 25.86 0.00 0.00 0.00 0.00
PNA (Velickovic et al. 2019) 99.63 43.02 95.00 38.93 25.77 54.75 51.92 48.79 48.40 65.88 65.51
GIN+EU (Battaglia et al. 2018) 99.30 42.74 95.70 39.13 32.58 55.91 54.65 47.62 49.68 68.54 64.64

GIN+EgoIDs (You et al. 2021) 99.78 51.48 95.06 49.24 98.13 97.97 53.12 44.37 45.42 66.44 63.90
GIN+Ports (Sato, Yamada, and Kashima 2019) 99.47 45.00 99.59 41.51 27.79 56.11 42.68 41.11 44.99 67.99 65.76

GIN+ReverseMP (Jaume et al. 2019) 98.87 99.08 94.99 95.25 35.96 63.85 69.09 67.44 71.23 65.83 66.18
+Ports 98.41 98.35 98.51 99.16 39.15 63.58 69.00 70.35 75.04 67.84 65.78
+EgoIDs (Multi-GIN) 99.48 99.09 99.62 99.32 98.97 98.73 97.46 91.60 84.23 97.42 94.33

Multi-GAT 98.68 98.36 99.28 99.33 98.61 98.93 98.90 95.82 91.81 96.66 86.92
Multi-PNA 99.64 99.25 99.53 99.41 99.71 99.54 99.49 97.46 88.75 99.07 96.77
Multi-GIN+EU 99.55 99.53 99.76 99.77 99.37 99.71 98.73 95.73 88.38 98.81 97.82

Table 1: Minority class F1 scores (%) for the synthetic subgraph detection tasks. First from the top are the standard MPNN base-
lines; then the results with each adaptation added separately to GIN; followed by GIN with the adaptations added cumulatively;
and finally, results for other GNN baselines with the adaptations (Multi-GNNs). The Ck abbreviations stand for directed k-cycle
detection, S-G stands for scatter-gather and B-C stands for biclique detection. We report minority class F1 scores averaged over
five runs. We omit standard deviations in favor of readability. Scores within 2% of the top score (underlined) are shown in bold.

Model AML Small HI AML Small LI AML Medium HI AML Medium LI ETH

LightGBM+GFs (Altman et al. 2023) 62.86 ± 0.25 20.83 ± 1.50 59.48 ± 0.15 20.85 ± 0.38 53.20 ± 0.60
XGBoost+GFs (Altman et al. 2023) 63.23 ± 0.17 27.30 ± 0.33 65.70 ± 0.26 28.16 ± 0.14 49.40 ± 0.54
GIN (Xu et al. 2018; Hu et al. 2019) 28.70 ± 1.13 7.90 ± 2.78 42.20 ± 0.44 3.86 ± 3.62 26.92 ± 7.52
PNA (Velickovic et al. 2019) 56.77 ± 2.41 14.85 ± 1.46 59.71 ± 1.91 27.73 ± 1.65 51.49 ± 4.26
GIN+EU (Battaglia et al. 2018) 47.73 ± 7.86 20.62 ± 2.41 49.26 ± 4.02 6.19 ± 8.32 33.92 ± 7.34
R-GCN (Schlichtkrull et al. 2018) 41.78 ± 0.48 7.43 ± 0.38 OOM OOM OOM

GIN+EgoIDs (You et al. 2021) 39.65 ± 4.73 14.98 ± 2.66 45.26 ± 2.16 11.17 ± 6.41 26.01 ± 2.27
GIN+Ports (Sato, Yamada, and Kashima 2019) 54.85 ± 0.89 21.41 ± 2.40 54.22 ± 1.94 10.51 ± 12.82 32.96 ± 0.25

GIN+ReverseMP (Jaume et al. 2019) 46.79 ± 4.97 15.98 ± 4.39 51.93 ± 2.90 14.00 ± 9.34 36.86 ± 8.12
+Ports 56.85 ± 2.64 23.80 ± 4.07 57.15 ± 0.76 11.39 ± 8.36 42.51 ± 7.16
+EgoIDs (Multi-GIN) 57.15 ± 4.99 22.12 ± 2.88 56.23 ± 1.51 14.55 ± 2.91 42.86 ± 2.53

Multi-GIN+EU 64.79 ± 1.22 26.88 ± 6.63 58.92 ± 1.83 16.30 ± 4.73 48.37 ± 6.62
Multi-PNA 64.59 ± 3.60 30.65 ± 2.00 65.67 ± 2.66 33.23 ± 1.31 65.28 ± 2.89
Multi-PNA+EU 68.16 ± 2.65 33.07 ± 2.63 66.48 ± 1.63 36.07 ± 1.17 66.58 ± 1.60

Table 2: Minority class F1 scores (%) for the AML and ETH tasks. HI indicates a higher illicit ratio and LI indicates a lower
illicit ratio. The models are organized as in Table 1. “OOM” indicates that the model ran out of GPU memory. Scores within one
standard deviation of the top score (underlined) are shown in bold.

of synthetic subgraph detection tasks. The practical results
closely mirror the theoretical expectations, confirming that
the combination of all three adaptations is needed to detect
the more complex subgraphs. Lastly, we show how our adap-
tations can be applied to two important financial crime prob-
lems: detecting money laundering transactions and phishing
accounts. GNNs enhanced with our proposed adaptations
achieve impressive results in both tasks, either matching or
surpassing relevant baselines. Reverse message passing and
port numbering again prove crucial in reaching the highest
scores, however, we find that ego IDs do not provide much
additional benefit for these datasets.

Although this work has focused on financial crime applica-
tions, the theory and practical results have a broader relevance.
Immediate future work could involve exploring applications
of our methods to other directed multigraph problems. An

initial exploration can be found in the appendix, showing
promising results on three real-world datasets. However, fur-
ther experiments are needed to confirm general applicability
in various domains. Additionally, future work could explore
the relationship between the computational complexity of dif-
ferent subgraph detection problems and GNN performance.

Acknowledgements
The support of the Swiss National Science Foundation
(project numbers: 172610 and 212158) for this work is grate-
fully acknowledged.

References
Abboud, R.; Ceylan, I. I.; Grohe, M.; and Lukasiewicz, T. 2020.
The surprising power of graph neural networks with random node
initialization. arXiv preprint arXiv:2010.01179.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11844

Altman, E.; Blanuša, J.; Von Niederhäusern, L.; Egressy, B.; Anghel,
A.; and Atasu, K. 2023. Realistic Synthetic Financial Transactions
for Anti-Money Laundering Models. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets and Bench-
marks Track.
Babai, L.; Erdos, P.; and Selkow, S. M. 1980. Random graph
isomorphism. SIaM Journal on computing, 9(3): 628–635.
Barceló, P.; Geerts, F.; Reutter, J.; and Ryschkov, M. 2021. Graph
neural networks with local graph parameters. Advances in Neural
Information Processing Systems, 34: 25280–25293.
Battaglia, P.; Pascanu, R.; Lai, M.; Jimenez Rezende, D.; et al.
2016. Interaction networks for learning about objects, relations and
physics. Advances in neural information processing systems, 29.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-Gonzalez, A.;
Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro,
A.; Faulkner, R.; et al. 2018. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261.
Bongini, P.; Bianchini, M.; and Scarselli, F. 2021. Molecular gener-
ative graph neural networks for drug discovery. Neurocomputing,
450: 242–252.
Bouritsas, G.; Frasca, F.; Zafeiriou, S. P.; and Bronstein, M. 2022.
Improving graph neural network expressivity via subgraph isomor-
phism counting. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.
Cardoso, M.; Saleiro, P.; and Bizarro, P. 2022. LaundroGraph:
Self-Supervised Graph Representation Learning for Anti-Money
Laundering. In Proceedings of the Third ACM International Con-
ference on AI in Finance, 130–138.
Chen, L.; Peng, J.; Liu, Y.; Li, J.; Xie, F.; and Zheng, Z. 2021.
Phishing scams detection in Ethereum transaction network. ACM
Trans. Internet Technol., 21(1): 1–16.
Chen, T.; and Guestrin, C. 2016. Xgboost: A scalable tree boost-
ing system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining, 785–794.
Chen, Y.; Wei, Z.; and Huang, X. 2018. Incorporating corporation
relationship via graph convolutional neural networks for stock price
prediction. In Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management, 1655–1658.
Chen, Z.; Chen, L.; Villar, S.; and Bruna, J. 2020. Can graph neural
networks count substructures? Advances in neural information
processing systems, 33: 10383–10395.
Chen, Z.; Villar, S.; Chen, L.; and Bruna, J. 2019. On the equivalence
between graph isomorphism testing and function approximation
with gnns. Advances in neural information processing systems, 32.
Derrow-Pinion, A.; She, J.; Wong, D.; Lange, O.; Hester, T.; Perez,
L.; Nunkesser, M.; Lee, S.; Guo, X.; Wiltshire, B.; et al. 2021. Eta
prediction with graph neural networks in google maps. In Proceed-
ings of the 30th ACM International Conference on Information &
Knowledge Management, 3767–3776.
Dwivedi, V. P.; Luu, A. T.; Laurent, T.; Bengio, Y.; and Bresson, X.
2021. Graph neural networks with learnable structural and positional
representations. arXiv preprint arXiv:2110.07875.
Egressy, B.; and Wattenhofer, R. 2022. Graph Neural Networks with
Precomputed Node Features. arXiv preprint arXiv:2206.00637.
Feng, F.; He, X.; Wang, X.; Luo, C.; Liu, Y.; and Chua, T.-S. 2019.
Temporal relational ranking for stock prediction. ACM Transactions
on Information Systems (TOIS), 37(2): 1–30.
Frasca, F.; Bevilacqua, B.; Bronstein, M. M.; and Maron, H. 2022.
Understanding and extending subgraph gnns by rethinking their
symmetries. arXiv preprint arXiv:2206.11140.

Garg, V.; Jegelka, S.; and Jaakkola, T. 2020. Generalization and
representational limits of graph neural networks. In International
Conference on Machine Learning, 3419–3430. PMLR.
Granados, O. M.; and Vargas, A. 2022. The geometry of suspicious
money laundering activities in financial networks. EPJ Data Science,
11(1): 6.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive represen-
tation learning on large graphs. Advances in neural information
processing systems, 30.
He, J.; Tian, J.; Wu, Y.; Cia, X.; Zhang, K.; Guo, M.; Zheng, H.;
Wu, J.; and Ji, Y. 2021. An efficient solution to detect common
topologies in money launderings based on coupling and connection.
IEEE Intelligent Systems, 36(1): 64–74.
Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta,
M.; and Leskovec, J. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information pro-
cessing systems, 33: 22118–22133.
Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; and
Leskovec, J. 2019. Strategies for pre-training graph neural networks.
arXiv preprint arXiv:1905.12265.
Huang, Y.; Peng, X.; Ma, J.; and Zhang, M. 2022. Boosting the
Cycle Counting Power of Graph Neural Networks with I2-GNNs.
arXiv preprint arXiv:2210.13978.
Jaume, G.; Nguyen, A.-p.; Martínez, M. R.; Thiran, J.-P.; and
Gabrani, M. 2019. edGNN: a Simple and Powerful GNN for Di-
rected Labeled Graphs. arXiv preprint arXiv:1904.08745.
Kanezashi, H.; Suzumura, T.; Liu, X.; and Hirofuchi, T. 2022.
Ethereum Fraud Detection with Heterogeneous Graph Neural Net-
works. arXiv preprint arXiv:2203.12363.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.;
and Liu, T.-Y. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems,
30.
Keisler, R. 2022. Forecasting global weather with graph neural
networks. arXiv preprint arXiv:2202.07575.
Kipf, T. N.; and Welling, M. 2016. Semi-Supervised Classification
with Graph Convolutional Networks. In International Conference
on Learning Representations.
Li, C.; Jia, K.; Shen, D.; Shi, C.-J. R.; and Yang, H. 2019. Hier-
archical Representation Learning for Bipartite Graphs. In IJCAI,
volume 19, 2873–2879.
Li, W.; Bao, R.; Harimoto, K.; Chen, D.; Xu, J.; and Su, Q. 2021.
Modeling the stock relation with graph network for overnight stock
movement prediction. In Proceedings of the twenty-ninth interna-
tional conference on international joint conferences on artificial
intelligence, 4541–4547.
Liang, C.; Liu, Z.; Liu, B.; Zhou, J.; Li, X.; Yang, S.; and Qi, Y.
2019. Uncovering insurance fraud conspiracy with network learning.
In Proceedings of the 42nd international ACM SIGIR conference on
research and development in information retrieval, 1181–1184.
Liu, Z.; Chen, C.; Yang, X.; Zhou, J.; Li, X.; and Song, L. 2018.
Heterogeneous graph neural networks for malicious account detec-
tion. In Proceedings of the 27th ACM international conference on
information and knowledge management, 2077–2085.
Lo, W. W.; Layeghy, S.; and Portmann, M. 2022. Inspection-L:
Practical GNN-based money laundering detection system for bitcoin.
arXiv preprint arXiv:2203.10465.
Loukas, A. 2019. What graph neural networks cannot learn: depth
vs width. arXiv preprint arXiv:1907.03199.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11845

Ma, Y.; Hao, J.; Yang, Y.; Li, H.; Jin, J.; and Chen, G. 2019. Spectral-
based graph convolutional network for directed graphs. arXiv
preprint arXiv:1907.08990.
Maron, H.; Ben-Hamu, H.; Serviansky, H.; and Lipman, Y. 2019.
Provably powerful graph networks. Advances in neural information
processing systems, 32.
Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen, J. E.;
Rattan, G.; and Grohe, M. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, 4602–4609.
Nicholls, J.; Kuppa, A.; and Le-Khac, N.-A. 2021. Financial cy-
bercrime: A comprehensive survey of deep learning approaches
to tackle the evolving financial crime landscape. Ieee Access, 9:
163965–163986.
Papp, P. A.; Martinkus, K.; Faber, L.; and Wattenhofer, R. 2021.
DropGNN: Random dropouts increase the expressiveness of graph
neural networks. Advances in Neural Information Processing Sys-
tems, 34: 21997–22009.
Papp, P. A.; and Wattenhofer, R. 2022. A theoretical comparison of
graph neural network extensions. In International Conference on
Machine Learning, 17323–17345. PMLR.
Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B. 2020.
Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287.
Rao, S. X.; Zhang, S.; Han, Z.; Zhang, Z.; Min, W.; Chen, Z.;
Shan, Y.; Zhao, Y.; and Zhang, C. 2021. xFraud: explainable fraud
transaction detection. Proceedings of the VLDB Endowment, 15:
427–436.
Rusch, T. K.; Chamberlain, B. P.; Mahoney, M. W.; Bronstein,
M. M.; and Mishra, S. 2022. Gradient gating for deep multi-rate
learning on graphs. arXiv preprint arXiv:2210.00513.
Sato, R.; Yamada, M.; and Kashima, H. 2019. Approximation ratios
of graph neural networks for combinatorial problems. Advances in
Neural Information Processing Systems, 32.
Sato, R.; Yamada, M.; and Kashima, H. 2021. Random features
strengthen graph neural networks. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), 333–341. SIAM.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Berg, R. v. d.; Titov,
I.; and Welling, M. 2018. Modeling relational data with graph
convolutional networks. In Extended Semantic Web Conference,
593–607. Springer.
Shu, K.; Wang, S.; and Liu, H. 2019. Beyond news contents: The
role of social context for fake news detection. In Proceedings of
the twelfth ACM international conference on web search and data
mining, 312–320.
Starnini, M.; Tsourakakis, C. E.; Zamanipour, M.; Panisson, A.;
Allasia, W.; Fornasiero, M.; Puma, L. L.; Ricci, V.; Ronchiadin, S.;
Ugrinoska, A.; et al. 2021. Smurf-Based Anti-money Laundering
in Time-Evolving Transaction Networks. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases,
171–186. Springer.
Suzumura, T. 2022. AMLSIM library wiki. https://github.com/
IBM/AMLSim/wiki/Transaction-Model:-Alert-Model. Accessed:
30-11-2022.
Tong, Z.; Liang, Y.; Sun, C.; Li, X.; Rosenblum, D.; and Lim, A.
2020. Digraph inception convolutional networks. Advances in
neural information processing systems, 33: 17907–17918.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.;
and Bengio, Y. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Velickovic, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio, Y.; and
Hjelm, R. D. 2019. Deep Graph Infomax. ICLR (Poster), 2(3): 4.
Weber, M.; Chen, J.; Suzumura, T.; Pareja, A.; Ma, T.; Kanezashi,
H.; Kaler, T.; Leiserson, C. E.; and Schardl, T. B. 2018. Scal-
able graph learning for anti-money laundering: A first look. arXiv
preprint arXiv:1812.00076.
Weber, M.; Domeniconi, G.; Chen, J.; Weidele, D. K. I.; Bellei, C.;
Robinson, T.; and Leiserson, C. E. 2019. Anti-money laundering
in bitcoin: Experimenting with graph convolutional networks for
financial forensics. arXiv preprint arXiv:1908.02591.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip, S. Y.
2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 32(1): 4–24.
Xu, B.; Shen, H.; Sun, B.; An, R.; Cao, Q.; and Cheng, X. 2021.
Towards consumer loan fraud detection: Graph neural networks with
role-constrained conditional random field. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, 4537–4545.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826.
Yang, S.; Zhang, Z.; Zhou, J.; Wang, Y.; Sun, W.; Zhong, X.; Fang,
Y.; Yu, Q.; and Qi, Y. 2021. Financial risk analysis for SMEs with
graph-based supply chain mining. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences
on Artificial Intelligence, 4661–4667.
You, J.; Gomes-Selman, J. M.; Ying, R.; and Leskovec, J. 2021.
Identity-aware graph neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, 10737–10745.
Zhang, M.; and Li, P. 2021. Nested graph neural networks. Advances
in Neural Information Processing Systems, 34: 15734–15747.
Zhang, S.; Yao, L.; Sun, A.; and Tay, Y. 2019. Deep learning
based recommender system: A survey and new perspectives. ACM
computing surveys (CSUR), 52(1): 1–38.
Zhang, X.; He, Y.; Brugnone, N.; Perlmutter, M.; and Hirn, M. 2021.
Magnet: A neural network for directed graphs. Advances in neural
information processing systems, 34: 27003–27015.
Zhao, L.; Jin, W.; Akoglu, L.; and Shah, N. 2021. From stars to
subgraphs: Uplifting any GNN with local structure awareness. arXiv
preprint arXiv:2110.03753.
Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li,
C.; and Sun, M. 2020. Graph neural networks: A review of methods
and applications. AI open, 1: 57–81.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11846

