Provably Powerful Graph Neural Networks for Directed Multigraphs

Béni Egressy1, 2, Luc von Niederhäusern1, 2, Jovan Blanuša2, Erik Altman3, Roger Wattenhofer1, 2, Kubilay Atasu2

1ETH Zurich, Zurich, Switzerland
2IBM Research Europe, Zurich, Switzerland
3IBM Watson Research, Yorktown Heights, NY, USA
begressy@ethz.ch, lucv@ethz.ch, jov@zurich.ibm.com, ealtman@us.ibm.com, wattenhofer@ethz.ch, kat@zurich.ibm.com

Abstract

This paper analyses a set of simple adaptations that transform standard message-passing Graph Neural Networks (GNN) into provably powerful directed multigraph neural networks. The adaptations include multigraph port numbering, ego IDs, and reverse message passing. We prove that the combination of these theoretically enables the detection of any directed subgraph pattern. To validate the effectiveness of our proposed adaptations in practice, we conduct experiments on synthetic subgraph detection tasks, which demonstrate outstanding performance with almost perfect results.

Moreover, we apply our proposed adaptations to two financial crime analysis tasks. We observe dramatic improvements in detecting money laundering transactions, improving the minority-class F1 score of a standard message-passing GNN by up to 30\%, and closely matching or outperforming tree-based and GNN baselines. Similarly impressive results are observed on a real-world phishing detection dataset, boosting three standard GNNs' F1 scores by around 15\% and outperforming all baselines. An extended version with appendices can be found on arXiv: https://arxiv.org/abs/2306.11586.

Introduction

Graph neural networks (GNNs) have become the go-to machine learning models for learning from relational data. GNNs are used in various fields, ranging from biology, physics, and chemistry to social networks, traffic, and weather forecasting (Bongini, Bianchini, and Scarselli 2021; Zhou et al. 2020; Derrow-Pinion et al. 2021; Shu, Wang, and Liu 2019; Wu et al. 2020; Keisler 2022; Zhang et al. 2019; Battaglia et al. 2016). More recently, there has been growing interest in using GNNs to identify financial crime (Cardoso, Saleiro, and Bizarro 2022; Kanezashi et al. 2022; Weber et al. 2019, 2018; Nicholls, Kuppa, and Le-Khac 2021).

Our motivating task is to detect financial crimes manifesting as subgraph patterns in transaction networks. For example, see Fig. 1, which depicts established money laundering patterns. But note that similar patterns are relevant for graph tasks in many areas, ranging from chemistry to traffic forecasting. The task seems to lend itself nicely to the use of GNNs. Unfortunately, current GNNs are ill-equipped to deal with financial transaction networks effectively.

Firstly, financial transaction networks are, in fact, directed multigraphs, i.e., edges (or transactions) have a direction, and there can be multiple edges between two nodes (or accounts). Secondly, most GNNs cannot detect some subgraph patterns, such as cycles (Chen et al. 2020, 2019). There have been many efforts to overcome this limitation (You et al. 2021; Huang et al. 2022; Papp and Wattenhofer 2022; Zhang and Li 2021; Loukas 2019; Sato, Yamada, and Kashima 2019), all focusing on simple (undirected) graphs. But even on simple graphs, the problem is far from solved. Until very recently, for example, there was no linear-time permutation-equivariant GNN that could count 6-cycles (Huang et al. 2022).

This paper addresses both of these issues. To our knowledge, this is the first GNN architecture designed specifically for directed multigraphs. Secondly, we first prove that the proposed architecture can theoretically detect any subgraph pattern in directed multigraphs and then empirically confirm that our proposed architecture can detect the patterns illustrated in Fig. 1. Our proposed architecture is based on a set of simple adaptations that can transform any standard GNN architecture into a directed multigraph GNN. The adaptations are reverse message passing (Jaume et al. 2019), port numbering (Sato, Yamada, and Kashima 2019), and ego IDs (You et al. 2021). Although these individual building blocks are present in existing literature, the theoretical and empirical power of combining them has not been explored. In this work, we fill this gap: We combine them, adapt them to directed multigraphs, and showcase the theoretical and empirical advantages of using them in unison.

Our contributions. (1) We propose a set of simple and intuitive adaptations that can transform message-passing GNNs into provably powerful directed multigraph neural networks. (2) We prove that suitably powerful GNNs equipped with ego IDs, port numbering, and reverse message passing can identify any directed subgraph pattern. (3) The theory is tested on synthetic graphs, confirming that GNNs using these adaptations can detect a variety of subgraph patterns, including directed cycles up to length six, scatter-gather patterns, and directed bicliques, setting them apart from previous GNN architectures. (4) The improvements translate to significant gains on two financial datasets. The adaptations boost GNN performance dramatically on money laundering and phishing datasets, matching or surpassing state-of-the-art financial crime detection models on both simulated and real data.

Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Figure 1: Money Laundering Patterns. The gray fill indicates the nodes to be detected by the synthetic pattern detection tasks. The exact degree/fan pattern sizes here are for illustrative purposes only.

Related Work

Xu et al. (2018) showed that standard MPNNs are at most as powerful as the Weisfeiler-Lehman (WL) isomorphism test, and provided a GNN architecture, GIN, that theoretically matches the power of the WL test. Although the WL test can asymptotically almost surely differentiate any two non-isomorphic graphs (Babai, Erdos, and Selkow 1980), standard MPNNs cannot — in certain graphs — detect simple substructures like cycles (Chen et al. 2020, 2019). This motivated researchers to go beyond standard MPNNs.

One direction considers emulating the more powerful k-WL isomorphism test, by conducting message passing between k-tuples or using a tensor-based model (Maron et al. 2019; Morris et al. 2019). Unfortunately, these models have high complexity and are impractical for most applications. Another line of work uses pre-calculated features to augment the GNN. These works explore adding subgraph counts (Bouritsas et al. 2022; Barceló et al. 2021), positional node embeddings (Egressy and Wattenhofer 2022; Dwivedi et al. 2021), random IDs (Abboud et al. 2020; Sato, Yamada, and Kashima 2021), and node IDs (Loukas 2019).

A recent class of expressive GNNs called Subgraph GNNs, model graphs as collections of subgraphs (Frasca et al. 2022; Zhao et al. 2021). Papp et al. (2021) drop random nodes from the input and run the GNN multiple times, gathering more information with each run. Zhang and Li (2021) instead extract subgraphs around each node and run the GNN on these. Also falling into this category is ID-GNN, which uses ego IDs (You et al. 2021), whereby each node is sampled with its neighborhood and given an identifier to differentiate it from the neighbors. Although the authors claim that ID-GNNs can count cycles, the proof turns out to be incorrect. In fact, Huang et al. (2022) show that the whole family of Subgraph GNNs cannot count cycles of length greater than 4, and propose P-GNNs that can count cycles up to length 6.

There has been much less work on GNNs for directed graphs. Zhang et al. (2021) propose a spectral network for directed graphs, but it is difficult to analyze the power of this network or apply it to larger datasets. Similar approaches can be found in (Tong et al. 2020) and (Ma et al. 2019). Jaume et al. (2019) extend message passing to aggregate incoming and outgoing neighbors separately, rather than naively treating the graph as undirected. Directed multigraphs have not specifically been considered.

GNNs have been used for various financial applications (Li et al. 2021; Feng et al. 2019; Chen, Wei, and Huang 2018; Zhang et al. 2019; Li et al. 2019; Xu et al. 2021; Yang et al. 2021). Closest to our work, GNNs have been used for fraud detection. Liang et al. (2019) and Rao et al. (2021) work on bipartite customer-product graphs to uncover insurance and credit card fraud, respectively. Liu et al. (2018) use heterogeneous GNNs to detect malicious accounts in the device-activity bipartite graph of an online payment platform. Weber et al. (2019) were the first to apply standard GNNs for anti-money laundering (AML), and more recently Cardoso, Saleiro, and Bizarro (2022) proposed representing the transaction network as a bipartite account-transaction graph and showed promising results in the semi-supervised AML setting. However, it is not clear how these approaches help with detecting typical fraud patterns.

Background

Graphs and Financial Transaction Graphs

We consider directed multigraphs, G, where the nodes $v \in V(G)$ represent accounts, and the directed edges $e = (u, v) \in E(G)$ represent transactions from u to v. Each node u (optionally) has a set of account features $h^{(0)}(u)$; this could include the account number, bank ID, and account balance. Each transaction $e = (u, v)$ has a set of associated transaction features $h^{(0)}_{(u, v)}$; this includes the amount, currency, and timestamp of the transaction. The incoming and outgoing neighbors of u are denoted by $N_{in}(u)$ and $N_{out}(u)$ respectively. Multiple transactions between the same two accounts are possible, making G a multigraph. In node (or edge) prediction tasks, each node (or edge) will have a binary label indicating whether the account (or transaction) is illicit.

Financial Crime Patterns. Fig. 1 shows a selection of subgraph patterns indicative of money laundering (Granados and Vargas 2022; He et al. 2021; Suzumura 2022; Weber et al. 2018; Starnini et al. 2021). Unfortunately, these are rather generic patterns, which also appear extensively amongst per-
fectly innocent transactions. As a result, detecting financial crime relies not just on detecting individual patterns, but also on learning relevant combinations. This makes neural networks promising candidates for the task. However, standard message-passing GNNs typically fail to detect the depicted patterns, except for degree-in. In the next section, we describe architectural adaptations, which enable GNNs to detect each one of these patterns.

Subgraph Detection. Given a subgraph pattern \(H \), we define subgraph detection for nodes as deciding for each node in a graph whether it is part of a subgraph that is isomorphic to \(H \); i.e., given a node \(v \in V(G) \), deciding whether there exists a graph \(G' \), with \(E(G') \subseteq E(G) \) and \(V(G') \subseteq V(G) \), such that \(v \in V(G') \) and \(G' \cong H \).

Message Passing Neural Networks

Message-passing GNNs, commonly referred to as Message Passing Neural Networks (MPNNs), form the most prominent family of GNNs. They include GCN (Kipf and Welling 2016), GIN (Xu et al. 2018), GAT (Velićković et al. 2017), GraphSAGE (Hamilton, Ying, and Leskovec 2017), and many more architectures. They work in three steps: (1) Each node sends a message with its current state \(h(v) \) to its neighbors, (2) Each node aggregates all the messages it receives from its neighbors in the embedding \(a(v) \), and (3) Each node updates its state based on \(h(v) \) and \(a(v) \) to produce a new state. These 3 steps constitute a layer of the GNN, and they can be repeated to gather information from further and further reaches of the graph. More formally:

\[
\begin{align*}
a^{(t)}(v) &= \text{AGGREGATE} \left(\{ h^{(t-1)}(u) \mid u \in N(v) \} \right), \\
h^{(t)}(v) &= \text{UPDATE} \left(h^{(t-1)}(v), a^{(t)}(v) \right),
\end{align*}
\]

where \(\{ \cdot \} \) denotes a multiset, and \(\text{AGGREGATE} \) is a permutation-invariant function. We will shorten \(\text{AGGREGATE} \) to \(\text{AGG} \), and for readability, we will use \(\{ \cdot \} \) rather than \(\{ \{ \cdot \} \} \) to indicate multisets.

In the case of directed graphs, we need to distinguish between the incoming and outgoing neighbors of node \(u \). In a standard MPNN, the messages are passed along the directed edges in the direction indicated. As such, the aggregation step only considers messages from incoming neighbors:

\[
a^{(t)}(v) = \text{AGG} \left(\{ h^{(t-1)}(u) \mid u \in N_{\text{in}}(v) \} \right),
\]

where we aggregate over the incoming neighbors, \(N_{\text{in}}(v) \).

The edges of an input graph may also have input features. We denote the input features of directed edge \(e = (u, v) \) by \(h^{(0)}((u, v)) \). When using edge features during the message passing, the aggregation step becomes:

\[
a^{(t)}(v) = \text{AGG} \left(\{ (h^{(t-1)}(u), h^{(0)}((u, v))) \mid u \in N_{\text{in}}(v) \} \right).
\]

In the remainder, we omit edge features from formulas when unnecessary in favor of brevity.

Methods

In this section, we introduce simple adaptations for standard MPNNs (Message Passing Neural Networks) to enable the detection of the fraud patterns in Fig. 1. We consider the adaptations in increasing order of complexity in terms of the patterns they help to detect. We provide theory results to motivate the adaptations and include corresponding experiments on the synthetic subgraph detection dataset in the Results section to support the theory empirically.

Reverse Message Passing

When using a standard MPNN with directed edges, a node does not receive any messages from outgoing neighbors (unless they happen to also be incoming neighbors), and so is unable to count its outgoing edges. For example, a standard MPNN is unable to distinguish nodes \(a \) and \(b \) in Fig. 2. Further, note that naive bidirectional message passing, where edges are treated as undirected and messages travel in both directions, does not solve the problem, because a node then cannot distinguish incoming and outgoing edges. So this would fail to distinguish nodes \(a \) and \(d \) in the same figure.

To overcome this issue, we need to indicate the direction of the edges in some way. We propose using a separate message-passing layer for the incoming and outgoing edges respectively, i.e., adding reverse message passing. Note that this is akin to using a relational GNN with two edge types (Schlichtkrull et al. 2018). More formally, the aggregation and update mechanisms become:

\[
\begin{align*}
a^{(t)}_{\text{in}}(v) &= \text{AGG}_{\text{in}} \left(\{ h^{(t-1)}(u) \mid u \in N_{\text{in}}(v) \} \right), \\
a^{(t)}_{\text{out}}(v) &= \text{AGG}_{\text{out}} \left(\{ h^{(t-1)}(u) \mid u \in N_{\text{out}}(v) \} \right), \\
h^{(t)}(v) &= \text{UPDATE} \left(h^{(t-1)}(v), a^{(t)}_{\text{in}}(v), a^{(t)}_{\text{out}}(v) \right),
\end{align*}
\]

where \(a_{\text{in}} \) is now an aggregation of incoming neighbors and \(a_{\text{out}} \) of outgoing neighbors. We now prove that message-passing GNNs with reverse MP can solve degree-out.

Proposition 0.1. An MPNN with sum aggregation and reverse MP can solve degree-out.

The proof of Proposition 0.1 can be found in the appendix. We use a synthetic pattern detection task later in the paper to confirm that the theory translates into practice.

Directed Multigraph Port Numbering

People often make multiple transactions to the same account. In transaction networks, these are represented as parallel edges. To detect fan-in (or fan-out) patterns, a model has to distinguish between edges from the same neighbor and edges...
from different neighbors. Using unique account numbers (or in general node IDs) would naturally allow for this. However, using account numbers does not generalize well. During training, a model can memorize fraudulent account numbers without learning to identify fraudulent patterns, but this will not generalize to unseen accounts.

Instead, we adapt port numbering (Sato, Yamada, and Kashima 2019) to directed multigraphs. Port numbering assigns local IDs to each neighbor at a node. This allows a node to identify messages coming from the same neighbor in consecutive message-passing rounds. To adapt port numbering to directed multigraphs, we assign each directed edge an incoming and an outgoing port number, and edges coming from (or going to) the same node, receive the same incoming (or outgoing) port number. Unlike Sato, Yamada, and Kashima (2019), who attach only the local port numbers at a node to received messages, we attach the port numbers in both directions, i.e., a node sees both the port number it has assigned to a neighbor and the port number that the neighbor has assigned to it. This turns out to be crucial for our expressivity arguments.

Port numbers have been shown to increase the expressivity of GNNs on simple graphs, but message-passing GNNs with port numbers alone cannot even detect 3-cycles in some cases (Garg, Jegelka, and Jaakkola 2020).

In general, the assignment of port numbers around a node is arbitrary. A node with \(d\) incoming neighbors can assign incoming port numbers in \(d!\) ways. To break this symmetry in our datasets, we use the transaction timestamps to order the incoming (or outgoing) neighbors. In the case of parallel edges, we use the earliest timestamp to decide the order of the neighbors. Since timestamps carry meaning in financial crime detection, the choice of ordering is motivated; indeed two identical subgraph patterns with different timestamps can have different meanings.

Computing the port numbers in this way can be a time-intensive step, with runtime complexity dominated by sorting all edges by their timestamps: \(O(m \log m)\), where \(m = |E(G)|\). However, port numbers can be calculated in advance, so training and inference times are unaffected. Each edge receives an incoming and an outgoing port number as additional edge features. Fig. 3 shows an example of graphs with port numbers. We now prove that GNNs using port numbers can correctly identify fan-in and fan-out patterns.

Note that the following proof, and later proofs using port numbers, do not rely on the timestamps for correctness. However, if timestamps that uniquely identify the ports are available, then permutation invariance/equivariance of the GNN will be preserved.

Proposition 0.2. An MPNN with max aggregation and multi-graph port numbering can solve fan-in.

A proof is provided in the appendix. Adding reverse MP, one can argue similarly that fan-out can also be solved. Both propositions are confirmed empirically in the Results section.

Proposition 0.3. An MPNN with max aggregation, multi-graph port numbering, and reverse MP can solve fan-out.

Ego IDs

Although reverse MP and multigraph port numbering help with detecting some of the suspicious patterns in Fig. 1, they are not sufficient to detect directed cycles, scatter-gather patterns, and directed bicliques. You et al. (2021) introduced ego IDs specifically to help detect cycles in graphs. The idea is that by “marking” a “center” node with a distinct (binary) feature, this node can recognize when a sequence of messages cycles back around to it, thereby detecting cycles that it is part of. However, it turns out that the proof of Proposition 2 in the paper is incorrect, and ego IDs alone do not enable cycle detection. We give a counterexample in the appendix. Indeed, Huang et al. (2022) also note that the proof “confuses walks with paths”.

We see this reflected in the individual results in Table 1. Although ego IDs offer a boost in detecting short cycles, they do not help the baseline (GIN) in detecting longer cycles. This can also be explained theoretically: Assuming a graph has no loops (edges from a node to itself), walks of length two and three that return to the start node are also cycles since there is no possibility to repeat intermediate nodes. Therefore Proposition 2 from You et al. (2021) applies in these cases and it is not surprising that GIN+EgoIDs can achieve impressive F1 scores for 2- and 3-cycle detection.

However, in combination with reverse MP and port numbering, ego IDs can detect cycles, scatter-gather patterns, and bipartite subgraphs, completing the list of suspicious patterns. In fact, it can be shown that a suitably powerful standard MPNN with these adaptations can distinguish any two non-isomorphic (sub-)graphs, and given a consistent use of port-numbering they will not mistakenly distinguish any two isomorphic (sub-)graphs. GNNs fulfilling these two properties are often referred to as universal. The crux of the proof is showing how the ego ID, port numbers, and reverse MP can be used to assign unique IDs to each node in the graph. Given unique node IDs, sufficiently powerful standard MPNNs are known to be universal (Loukas 2019; Abboud et al. 2020).

Theorem 0.4. Ego IDs combined with port numbering and reverse MP can be used to assign unique node IDs in connected directed multigraphs.

The idea of the proof is to show how a GNN can replicate a labeling algorithm that assigns unique IDs to each node in an ego node’s neighborhood. The labeling algorithm as well as the full proof are provided in the appendix. The universality of the adaptations follows from this theorem.

Corollary 0.4.1. GIN with ego IDs, port numbering, and reverse MP can theoretically detect any directed subgraph pattern.
We propose a set of adaptations, so the final model complex-
world. The generator uses well-established laundering pat-
tterns to add realistic money laundering (illicit) transactions.

The ablation study in Table 1 of the results again supports
the theoretical analysis. The combination of the three adapta-
tions achieves impressive scores for all subgraph patterns.

Note that passing the port numbers of both incident nodes
of an edge is crucial for inferring unique node IDs. We illustrate
this with a simple example in the appendix. In particular,
port numbering, as introduced by Sato, Yamada, and Kashima
(2019), is not sufficient.

Complexity & Runtime
We propose a set of adaptations, so the final model complexity
will depend on the choice of base GNN. We describe the
additional runtime costs incurred by the adaptations in the ap-
pendix. All in all, the adaptations add a constant factor to the
runtime complexity in addition to a one-off pre-computation
cost of \(O(m \log(m))\). The empirical runtimes on AML Small
HI using GIN can be seen in the appendix.

Datasets

Synthetic Pattern Detection Tasks. The AML subgraph
patterns seen in Fig. 1 are used to create a controllable testbed
of synthetic pattern detection tasks. The key design principle
is to ensure that the desired subgraph patterns appear ran-
domly, rather than being inserted post hoc into a graph. The
problem with inserting patterns is that it skews the random
distribution, and simple indicators (such as the degrees of
nodes) can be enough to solve the task approximately. For
example, consider the extreme case of generating a random
\(k\)-regular graph and then inserting a pattern. Nodes belonging
to the pattern could be identified by checking whether their
degree exceeds \(k\). Additionally, if only inserted patterns are
labeled, then randomly occurring patterns will be overlooked.
To ensure that the desired subgraph patterns appear ran-
domly, we introduce the \textit{random circulant graph} generator.
Details of the generator and pseudocode can be found in the
appendix. The pattern detection tasks include degree-in/out
(number of in/out edges), fan-in/out (number of unique in/out
neighbors), scatter-gather, directed biclique, and directed cy-
cles of length up to six. Detailed descriptions can be found in
the appendix.

Anti-Money Laundering (AML). Given the strict privacy
regulations around financial data, real-world datasets are not readily available. Instead, we use simulated money laundering
data (Altman et al. 2023). The simulator behind these
datasets generates a financial transaction network by model-
ing agents (banks, companies, and individuals) in a virtual
world. The generator uses well-established laundering pat-
tterns to add realistic money laundering (illicit) transactions.

We use two small and two medium-sized datasets, one of
each with a higher illicit ratio (HI) and with a lower illicit
ratio (LI). The dataset sizes and illicit ratios are provided in
the appendix. We use a 60-20-20 temporal train-validation-
test split, i.e., we split the transactions after ordering them by
their timestamps. Details can be found in the appendix.

Experimental Setup

Base GNNs and Baselines. GIN with edge features (Hu
et al. 2019) is used as the main GNN base model with our
adaptations added on top. GAT (Veličković et al. 2017) and
PNA (Veličkovic et al. 2019) are also used as base models, and we refer to their adapted versions as Multi-GAT and
Multi-PNA, respectively. All three are also considered baselines. Additionally, GIN with ego IDs can be considered an
ID-GNN (You et al. 2021) baseline, and GIN with port num-
bering can be considered a CPNGNN (Sato, Yamada, and
Kashima 2019) baseline. Since AML is an edge classification
problem, we also include a baseline using edge updates
(Battaglia et al. 2018), denoted GIN+EU. This approach is
similar to replacing edges with nodes and running a GNN
on said \textit{line graph}, which recently achieved state-of-the-art
(SOTA) results in self-supervised money laundering detection
(Cardoso, Saleiro, and Bizarro 2022). We also include R-GCN
(Schlichtkrull et al. 2018) as a baseline. We do not focus on including a more expansive range of GNN baselines,
for the simple reason that without (the proposed) adaptations,
they are not equipped to deal with directed multigraphs. How-
ever, some additional results with “more expressive” GNNs
can be found in the appendix. As far as we are aware, there
are no other GNNs that one could expect to achieve SOTA
results on directed multigraphs.

We include a baseline representing the parallel line of work
in financial crime detection that uses pre-calculated graph-
based features (GFs) and tree-based classifiers to classify
nodes or edges individually. We train XGBoost (Chen and
Guestrin 2016) and LightGBM (Ke et al. 2017) models on
the individual edges (or nodes) using the original raw features combined with additional graph-based features. This approach has produced SOTA results in financial applications (Weber et al. 2019; Lo, Layeghy, and Portmann 2022).

Given the size of the AML and ETH datasets, we use neighborhood sampling (Hamilton, Ying, and Leskovec 2017) for all GNN-based models. Further details of the experimental setup for the different datasets can be found in the appendix.

Scoring. Since we have very imbalanced datasets, accuracy and other popular metrics are not suitable. Instead, we use the minority class F1 score. This aligns well with what banks and regulators use in real-world scenarios.

Results

Synthetic Pattern Detection Results

The synthetic pattern detection results can be seen in Table 1. The degree-out results reveal that the standard message-passing GNNs are unable to solve the degree-out task, achieving F1 scores below 44%. However, all the GNNs that are equipped with reverse MP score above 98%, thus supporting Proposition 0.1. The next column shows that port numbering is the critical adaptation for solving fan-in, though the F1 score is quite high even for the baseline GIN. On the other hand, for the fan-out task, the combination of reverse MP and port numbering is needed to score above 99%. Again, these results support Propositions 0.2 and 0.3. The ablation study of cumulative adaptations on top of GIN also supports Corollary 0.4.1: The combination of reverse MP, port numbering, and ego IDs, scores high on all of the subtasks, with only 6-cycle detection coming in below 90%. We see similar results when using other base GNN models, with Multi-PNA achieving the best overall results. Moreover, on the more complex tasks — directed cycle, scatter-gather, and biclique detection — the combination of the three is what leads to the first significant improvement in F1 scores. In the most extreme case, scatter-gather detection, the minority class F1 score jumps from 67.84% with only reverse MP and port numbers to 97.42% when ego IDs are added. No adaptation alone comes close to this score, so it is clear that the combination is needed. Similar jumps can be seen for directed 4-, 5-, and 6-cycle, and biclique detection. Increasing the dataset size and restricting the task to only the “complex” subtasks further increases the scores, with 6-cycle detection also reaching above 97%. More details can be found in the appendix, along with additional ablations. In particular, we rerun the experiments using random unique node IDs as input features and see that node IDs are unable to replace port numbers and ego IDs in practice.

AML Results

The results for the AML datasets can be seen in Table 2. For AML Small HI, we see that our adaptations boost the minority class F1 score of GIN from 28.7% to 57.2%, a gain of almost 30%. The largest improvements are brought by reverse MP and port numbering, taking the F1 score from 28.7% to 56.9%, whilst ego IDs do not make much difference here. The results for the other AML datasets show a similar trend with overall gains of 14.2%, 14.0%, and 10.7% for GIN, again with diminishing returns as more adaptations are added. The two rows corresponding to port numbering — GIN+Ports and +Ports — indicate clear gains from using port numbering, both when used alone and on top of reverse MP. The support for ego IDs is less clear, with clear gains when used as an individual adaptation but no significant gains when added on top of reverse MP and port numbering.

The full set of adaptations was tested with three other base models, GIN+EU (GIN with edge updates), PNA, and PNA+EU. In each case, and across almost all AML datasets, we see clear gains from using the adaptations, underlining the effectiveness and versatility of the approach. We further note that Multi-PNA+EU outperforms all baselines on all AML datasets. This is particularly impressive when compared with the tree-based methods using graph-based features (XGBoost+GFs and LightGBM+GFs) since the hand-crafted features align perfectly with the illicit money laundering patterns used by the simulator. Moreover, these tree-based methods have been SOTA in previous financial applications (Weber et al. 2019; Lo, Layeghy, and Portmann 2022).

Recall scores for individual money laundering patterns can be found in the appendix. It is worth noting that the majority of the illicit transactions that belong to money laundering patterns are identified, and the overall dataset scores are greatly influenced by the proportion of lone (not belonging to a money laundering pattern) illicit transactions in the datasets. Lone illicit transactions are very difficult to identify.

For training times and inference throughput rates of models based on GIN, please see the appendix. Notably, with all the adaptations, the inference rate of Multi-GIN still surpasses 18k transactions per second on a single GPU.

ETH Results

Finally, we test our adaptations on a real-world financial crime dataset — Ethereum phishing account classification. The results are provided in Table 2. Similar to the AML datasets, we see a consistent improvement in final scores as we add the adaptations. In total, the minority class F1 score jumps from 26.9% without adaptations to 42.9% with reverse MP, port numbering, and ego IDs. Again, the largest single improvement is due to the reverse MP. In this case, Multi-GIN does not outperform all of the baselines, but the adaptations also significantly boost PNA performance, and Multi-PNA and Multi-PNA+EU beat all the baselines by more than 12%.

Conclusion

This work has investigated a series of straightforward adaptations capable of transforming conventional message-passing GNNs into provably powerful directed multigraph learners. Our contributions to the field of graph neural networks are threefold. Firstly, our theoretical analysis addresses a notable gap in the existing literature about the power of combining different GNN adaptations/augmentations. Specifically, we prove that ego IDs combined with port numbering and reverse message passing enable a suitably powerful message-passing GNN, such as GIN, to compute unique node IDs and therefore detect any directed subgraph patterns. Secondly, our theoretical findings are validated empirically with a range
Table 2: Minority class F1 scores (%) for the synthetic subgraph detection tasks. First from the top are the standard MPNN baselines; then the results with each adaptation added separately to GIN; followed by GIN with the adaptations added cumulatively; and finally, results for other GNN baselines with the adaptations (Multi-GNNs). The Ck abbreviations stand for directed k-cycle detection, S-G stands for scatter-gather and B-C stands for biclique detection. We report minority class F1 scores averaged over five runs. We omit standard deviations in favor of readability. Scores within 2% of the top score (underlined) are shown in bold.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model deg-in</th>
<th>deg-out</th>
<th>fan-in</th>
<th>fan-out</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>S-G</th>
<th>B-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIN (Xu et al. 2018; Hu et al. 2019)</td>
<td>99.77</td>
<td>43.58</td>
<td>95.57</td>
<td>35.91</td>
<td>34.67</td>
<td>58.00</td>
<td>50.80</td>
<td>43.12</td>
<td>48.59</td>
<td>69.31</td>
<td>63.12</td>
</tr>
<tr>
<td>GAT (Velickovic et al. 2017)</td>
<td>10.33</td>
<td>10.53</td>
<td>9.69</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>25.86</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>PNA (Velickovic et al. 2019)</td>
<td>99.63</td>
<td>43.02</td>
<td>95.00</td>
<td>38.93</td>
<td>25.77</td>
<td>54.75</td>
<td>51.92</td>
<td>48.79</td>
<td>48.40</td>
<td>65.88</td>
<td>65.51</td>
</tr>
<tr>
<td>GIN+EU (Battaglia et al. 2018)</td>
<td>99.50</td>
<td>42.74</td>
<td>95.70</td>
<td>39.13</td>
<td>32.58</td>
<td>55.91</td>
<td>54.65</td>
<td>47.62</td>
<td>49.68</td>
<td>68.54</td>
<td>64.64</td>
</tr>
<tr>
<td>GIN+EgoIDs (You et al. 2021)</td>
<td>99.78</td>
<td>51.48</td>
<td>95.06</td>
<td>49.24</td>
<td>98.13</td>
<td>97.97</td>
<td>53.12</td>
<td>44.37</td>
<td>45.42</td>
<td>66.44</td>
<td>63.90</td>
</tr>
<tr>
<td>GIN+Ports (Sato, Yamada, and Kashima 2019)</td>
<td>99.47</td>
<td>45.00</td>
<td>99.59</td>
<td>41.51</td>
<td>27.79</td>
<td>56.11</td>
<td>42.68</td>
<td>41.11</td>
<td>44.99</td>
<td>67.99</td>
<td>65.76</td>
</tr>
<tr>
<td>GIN+ReverseMP (Jaume et al. 2019)</td>
<td>98.87</td>
<td>99.08</td>
<td>94.99</td>
<td>95.25</td>
<td>35.96</td>
<td>63.85</td>
<td>69.09</td>
<td>67.44</td>
<td>71.23</td>
<td>65.83</td>
<td>66.18</td>
</tr>
<tr>
<td>+Ports</td>
<td>98.41</td>
<td>98.35</td>
<td>98.51</td>
<td>99.16</td>
<td>39.15</td>
<td>63.58</td>
<td>69.00</td>
<td>70.35</td>
<td>75.04</td>
<td>67.84</td>
<td>65.78</td>
</tr>
<tr>
<td>+EgoIDs (Multi-GIN)</td>
<td>99.48</td>
<td>99.09</td>
<td>99.62</td>
<td>99.32</td>
<td>98.97</td>
<td>98.73</td>
<td>97.46</td>
<td>91.60</td>
<td>84.23</td>
<td>97.42</td>
<td>94.33</td>
</tr>
<tr>
<td>Multi-GAT</td>
<td>98.68</td>
<td>98.36</td>
<td>99.28</td>
<td>99.33</td>
<td>98.61</td>
<td>98.93</td>
<td>98.90</td>
<td>95.82</td>
<td>91.81</td>
<td>96.66</td>
<td>89.92</td>
</tr>
<tr>
<td>Multi-PNA</td>
<td>99.64</td>
<td>99.25</td>
<td>99.53</td>
<td>99.41</td>
<td>99.71</td>
<td>99.54</td>
<td>99.49</td>
<td>97.46</td>
<td>88.75</td>
<td>99.07</td>
<td>96.77</td>
</tr>
<tr>
<td>Multi-GIN+EU</td>
<td>99.55</td>
<td>99.53</td>
<td>99.76</td>
<td>99.77</td>
<td>99.37</td>
<td>99.71</td>
<td>98.73</td>
<td>95.73</td>
<td>88.38</td>
<td>98.81</td>
<td>97.82</td>
</tr>
</tbody>
</table>

Table 2: Minority class F1 scores (%) for the AML and ETH tasks. HI indicates a higher illicit ratio and LI indicates a lower illicit ratio. The models are organized as in Table 1. “OOM” indicates that the model ran out of GPU memory. Scores within one standard deviation of the top score (underlined) are shown in bold.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model</th>
<th>AML Small HI</th>
<th>AML Small LI</th>
<th>AML Medium HI</th>
<th>AML Medium LI</th>
<th>ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LightGBM+GFs (Altmann et al. 2023)</td>
<td>62.86 ± 0.25</td>
<td>20.83 ± 1.50</td>
<td>59.48 ± 0.15</td>
<td>20.85 ± 0.38</td>
<td>53.20 ± 0.60</td>
<td></td>
</tr>
<tr>
<td>XGBoost+GFs (Altmann et al. 2023)</td>
<td>63.23 ± 0.17</td>
<td>27.30 ± 0.33</td>
<td>65.70 ± 0.26</td>
<td>28.16 ± 0.14</td>
<td>49.40 ± 0.54</td>
<td></td>
</tr>
<tr>
<td>GIN (Xu et al. 2018; Hu et al. 2019)</td>
<td>28.70 ± 1.13</td>
<td>7.90 ± 2.78</td>
<td>42.20 ± 0.44</td>
<td>3.86 ± 3.62</td>
<td>26.92 ± 7.52</td>
<td></td>
</tr>
<tr>
<td>PNA (Velickovic et al. 2019)</td>
<td>56.77 ± 2.41</td>
<td>14.85 ± 1.46</td>
<td>59.71 ± 1.91</td>
<td>27.73 ± 1.65</td>
<td>51.49 ± 4.26</td>
<td></td>
</tr>
<tr>
<td>GIN+EU (Battaglia et al. 2018)</td>
<td>47.73 ± 7.86</td>
<td>20.62 ± 2.41</td>
<td>49.26 ± 4.02</td>
<td>6.19 ± 8.32</td>
<td>33.92 ± 7.34</td>
<td></td>
</tr>
<tr>
<td>R-GCN (Schlichtkrull et al. 2018)</td>
<td>41.78 ± 0.48</td>
<td>7.43 ± 0.38</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td></td>
</tr>
<tr>
<td>GIN+EgoIDs (You et al. 2021)</td>
<td>39.65 ± 4.73</td>
<td>14.98 ± 2.66</td>
<td>45.26 ± 2.16</td>
<td>11.17 ± 6.41</td>
<td>26.01 ± 2.27</td>
<td></td>
</tr>
<tr>
<td>GIN+Ports (Sato, Yamada, and Kashima 2019)</td>
<td>54.85 ± 0.89</td>
<td>21.41 ± 2.40</td>
<td>54.22 ± 1.94</td>
<td>10.51 ± 12.82</td>
<td>32.96 ± 0.25</td>
<td></td>
</tr>
<tr>
<td>GIN+ReverseMP (Jaume et al. 2019)</td>
<td>46.79 ± 4.97</td>
<td>15.98 ± 4.39</td>
<td>51.93 ± 2.90</td>
<td>14.00 ± 9.34</td>
<td>36.86 ± 8.12</td>
<td></td>
</tr>
<tr>
<td>+Ports</td>
<td>56.85 ± 2.64</td>
<td>23.80 ± 4.07</td>
<td>57.15 ± 0.76</td>
<td>11.39 ± 8.36</td>
<td>42.51 ± 7.16</td>
<td></td>
</tr>
<tr>
<td>+EgoIDs (Multi-GIN)</td>
<td>57.15 ± 4.99</td>
<td>22.12 ± 2.88</td>
<td>56.23 ± 1.51</td>
<td>14.55 ± 2.91</td>
<td>42.86 ± 2.53</td>
<td></td>
</tr>
<tr>
<td>Multi-GIN+EU</td>
<td>64.79 ± 1.22</td>
<td>26.88 ± 6.63</td>
<td>58.92 ± 1.83</td>
<td>16.30 ± 4.73</td>
<td>48.37 ± 6.62</td>
<td></td>
</tr>
<tr>
<td>Multi-PNA</td>
<td>64.59 ± 3.60</td>
<td>30.65 ± 2.00</td>
<td>65.67 ± 2.66</td>
<td>33.23 ± 1.31</td>
<td>65.28 ± 2.89</td>
<td></td>
</tr>
<tr>
<td>Multi-PNA+EU</td>
<td>68.16 ± 2.65</td>
<td>33.07 ± 2.63</td>
<td>66.48 ± 1.63</td>
<td>36.07 ± 1.17</td>
<td>66.58 ± 1.60</td>
<td></td>
</tr>
</tbody>
</table>

of synthetic subgraph detection tasks. The practical results closely mirror the theoretical expectations, confirming that the combination of all three adaptations is needed to detect the more complex subgraphs. Lastly, we show how our adaptations can be applied to two important financial crime problems: detecting money laundering transactions and phishing accounts. GNNs enhanced with our proposed adaptations achieve impressive results in both tasks, either matching or surpassing relevant baselines. Reverse message passing and port numbering again prove crucial in reaching the highest scores, however, we find that ego IDs do not provide much additional benefit for these datasets.

Although this work has focused on financial crime applications, the theory and practical results have a broader relevance. Immediate future work could involve exploring applications of our methods to other directed multigraph problems. An initial exploration can be found in the appendix, showing promising results on three real-world datasets. However, further experiments are needed to confirm general applicability in various domains. Additionally, future work could explore the relationship between the computational complexity of different subgraph detection problems and GNN performance.

Acknowledgements

The support of the Swiss National Science Foundation (project numbers: 172610 and 212158) for this work is gratefully acknowledged.

References

Advances in neural information processing systems with gnns.

ACM Transactions

Temporal relational ranking for stock prediction.

Understanding and extending subgraph gnns by rethinking their symmetries.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11845

