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Abstract
Fraud detection has increasingly become a prominent re-
search field due to the dramatically increased incidents of
fraud. The complex connections involving thousands, or even
millions of nodes, present challenges for fraud detection
tasks. Many researchers have developed various graph-based
methods to detect fraud from these intricate graphs. However,
those methods neglect two distinct characteristics of the fraud
graph: the non-additivity of certain attributes and the distin-
guishability of grouped messages from neighbor nodes. This
paper introduces the Dynamic Grouping Aggregation Graph
Neural Network (DGA-GNN) for fraud detection, which ad-
dresses these two characteristics by dynamically grouping at-
tribute value ranges and neighbor nodes. In DGA-GNN, we
initially propose the decision tree binning encoding to trans-
form non-additive node attributes into bin vectors. This ap-
proach aligns well with the GNN’s aggregation operation and
avoids nonsensical feature generation. Furthermore, we de-
vise a feedback dynamic grouping strategy to classify graph
nodes into two distinct groups and then employ a hierarchi-
cal aggregation. This method extracts more discriminative
features for fraud detection tasks. Extensive experiments on
five datasets suggest that our proposed method achieves a
3% ∼ 16% improvement over existing SOTA methods. Code
is available at https://github.com/AtwoodDuan/DGA-GNN.

Introduction
In recent years, the rapid development of the information
technology industry has correspondingly led to a dramatic
increase in various types of fraud, culminating in substan-
tial annual losses worldwide. As fraud typically manifests
within reciprocal links between entities, recent research has
chiefly focused on graph-based fraud detection, with partic-
ular emphasis on Graph Neural Networks (GNNs). Conse-
quently, numerous researchers have deployed a variety of
graph-based techniques to address fraud detection in diverse
sectors, including e-Payment (Liu et al. 2021a), social net-
work (Wu et al. 2022), and review management (Li et al.
2019) among others.

To address the aforementioned problem of fraud detection
in graph structures, numerous scholars have initiated spe-
cific research. Recent methodologies in fraud detection can
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be categorized into two distinct types: spectral methods and
spatial methods. Spectral methods, represented by AMNet,
BWGNN, and GHRN (Chai et al. 2022; Tang et al. 2022;
Gao et al. 2023), primarily aim to regulate the proportion
of low-frequency to high-frequency signals. Among spa-
tial methods, CARE-GNN (Dou et al. 2020), PC-GNN (Liu
et al. 2021b), and RioGNN (Peng et al. 2021) adopt an edge
pruning strategy, retaining the connections between simi-
lar nodes before proceeding with feature aggregation. H2-
FDetector (Shi et al. 2022) differentiates edges into homoge-
neous and heterogeneous types and performs segregated in-
formation aggregation, thereby enabling the conservation of
more comprehensive information. However, these methods
overlook the non-additivity of certain attributes and the dis-
tinguishability of grouped messages from neighbor nodes.

Certain non-additive attributes, such as age and transac-
tion frequency, serve as features of nodes within the fraud
graph. Consider the following example: An individual node
representing a child or an elderly person tends to have a
lower likelihood of being a fraudulent entity. Paradoxically,
the arithmeticmean of a child’s age and an elderly person’s
age approximates the age of a middle-aged individual, who
generally has a higher probability of being a fraudulent en-
tity. Consequently, the existing GNN’s mean aggregation
approach encounters conflict due to these non-additive at-
tributes within the fraud graph.

On the other hand, nodes can be categorized as either
fraudulent or benign. The integration of messages from
these divergent categories can lead to the generation of
generalized features. However, such an approach might
potentially compromise the distinguishability of grouped
messages from neighbor nodes, thereby influencing the
decision-making capacity of the model. GAGA (Wang et al.
2023), considering the heterophily of the fraud graph, seg-
regates neighbor-labeled nodes into fraudulent and benign
groups and aggregates the data from unlabeled nodes as
a single group. However, this method overlooks the het-
erophily of the unlabeled nodes.

In this paper, to address the issue of non-additivity of
attributes and to enhance the distinguishability of grouped
messages from neighbor nodes, we propose a Dynamic
Grouping Aggregation GNN (DGA-GNN). Firstly, to ad-
dress the non-additivity of attributes such as age, transaction
frequency, and features inclusive of missing values, we have
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designed a tree binning encoding mechanism. This tech-
nique segregates the original value domain of each attribute
based on their prior probabilities into different groups, sub-
sequently generating a one-hot vector representation for
each. This technique sorts each attribute feature into differ-
ent bins, generating a one-hot bin vector. During the aggre-
gation process of DGA-GNN, the one-hot bin vectors, fol-
lowing feature dimensionality reduction and incorporating
original attribute values, are point-wise combined into a new
feature vector. This effectively preserves the information re-
lated to bin position and prior probabilities. By leveraging
dynamic grouping aggregation at both the attribute feature
level and the neighbor message level, the proposed method
outperforms the current state-of-the-art solutions.

Furthermore, to tackle the distinguishability of grouped
messages, we developed a feedback dynamic grouping
mechanism. At the end of each epoch, the model estimates
the categories of all nodes, including both labeled and un-
labeled ones. The model output is recursively transmitted to
the subsequent epoch, serving as the grouping information
for the next epoch. The task of grouping neighbor nodes
is in perfect alignment with the ultimate goal of fraud de-
tection. A more accurate estimation of node categories en-
hances the distinguishability of grouped messages, thereby
further boosting the precision of the task.

Our contribution is therefore the proposed Dynamic
Grouping Aggregation approach. At the attribute feature
level, we employ value domain grouping, effectively mit-
igating interference from non-additive attribute features.
Also, a dynamic neighbor node grouping mechanism is de-
vised to enhance the distinguishability of neighbor mes-
sages. Comprehensive experiments conducted on five real-
world datasets demonstrate that the proposed DGA-GNN
results in an impressive performance increase of approxi-
mately 3% ∼ 16%.

Related Work
Graph Neural Networks. GNNs (Defferrard, Bresson,
and Vandergheynst 2016; Kipf and Welling 2017; Hamil-
ton, Ying, and Leskovec 2017; Veličković et al. 2018) are
firstly motivated by the success of Convolutional Neural
Networks (LeCun et al. 1998; LeCun 1998; Krizhevsky,
Sutskever, and Hinton 2012) to perform graph convolution
in the non-grid data, learning graph representations in a
dense-vector paradigm. The learned node and graph repre-
sentations based on GNNs benefit various downstream tasks
like node classification (Kipf and Welling 2017), link predic-
tion (Zhang and Chen 2018), and graph classification (Xu
et al. 2019). The universality of GNNs for non-grid graph
data has attracted much attention from the industry field and
achieved several successful applications (Ying et al. 2018;
Wang et al. 2019b). Despite their successful applications,
these methods usually assume the homophily neighborhood
and behave like a low-pass filter, which is unsuitable for
complex fraud detection scenarios.

GNN-based Fraud Detection Method. The mainline re-
search of GNNs focuses on the neighborhood homophily as-
sumption that a node and its neighborhood nodes share sim-

ilar labels. However, fraud nodes in fraud detection graphs
are usually surrounded by nodes that have been cheated,
which are typically normal nodes. Previous works have not
taken neighborhood heterophily into account when introduc-
ing GNNs for fraud detection tasks. Ding et al. (2019) gen-
erates anomaly scores of nodes in an AutoEncoder paradigm
based on GNNs; Li et al. (2019) and Wang et al. (2019a)
introduce the advanced GNNs techniques for spam detection
and fraud detection, respectively; Liu et al. (2019) designs a
specific multi-hop aggregation mechanism to filter the fraud
signal from distant neighbors. Nonetheless, these methods
suffer from the homophily assumption of common GNNs,
resulting in suboptimal performance in fraud detection. Re-
cently, several methods have been developed for fraud de-
tection, treating graph nodes as two categories: fraudulent
and ordinary individuals. These methods, which include the
spectral method AMNet (Chai et al. 2022), BWGNN (Tang
et al. 2022), and spatial methods H2-FDetector (Shi et al.
2022), and GAGA (Wang et al. 2023), have shown promis-
ing results. These methods still fail to solve the distinguisha-
bility of grouped messages from neighbor nodes and do not
consider the negative impact of non-additive attributes on
the fraud detection task.

Methodology
To address the non-additivity of attributes and the distin-
guishability of grouped messages from neighbor nodes in
large-scale fraud graphs effectively, we propose the DGA-
GNN, which is composed of three main components: dy-
namic grouping of the attributes value range, dynamic
grouping of neighbor nodes, and hierarchical aggregation.
Figure 1 shows the framework of the proposed DGA-GNN.

Dynamic Grouping of Attributes Value Range
In fraud graph datasets, certain non-additive attributes are
prevalent, such as age and transaction frequency. When
these attributes serve as input, addition-based aggregation
can lead to nonsensical feature generation. For instance, cal-
culating the mean age of a child and an elderly individ-
ual—both of whom have a minimal likelihood of perpetrat-
ing fraud—may yield a result corresponding to middle age,
which is associated with a high risk of committing fraud.
This can distort the classification in fraud detection.

To address this, we introduce the decision tree binning
encoding method, which dynamically groups attribute value
ranges. This process effectively transforms non-additive fea-
tures into additive vectors. In the fraud graph, features of
the n-th node are denoted as a d-dimensional feature vec-
tor (xn ∈ Rd) and the corresponding GT (ground truth)
label is denoted as yn ∈ {0, 1} (0: benign, 1: fraudu-
lent). Each feature vector comprises a series of attributes
A={a1, ..., ad}. Additionally, the set of node features and
GT label can be denoted as X = {x1, x2, ..., xn, ..., xN}
and Y = {y1, y2, ..., yn, ..., yN}, respectively.

For every attribute a, it’s pivotal to decide the number of
groups and the range of each group for optimal fraud de-
tection. With the GT label as supervision, we adopt a de-
cision tree to sort the features of each attribute into differ-
ent leaf nodes. The number of leaf nodes corresponds to
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Figure 1: The framework of DGA-GNN comprises three parts: dynamic grouping of attributes value range, dynamic grouping
of neighbor nodes, and hierarchical aggregation. The former converts on-additive attributes to bin vectors, which are well-
matched with GNN’s aggregation operation and avoid nonsensical feature generation. The latter two dynamically group graph
nodes into fraudulent and ordinary entities, then aggregate intra-group and inter-group features hierarchically, which will extract
more discriminating and independent features for fraud detection.

the number of groups, and the split condition values de-
termine the range of each group. With the trained deci-
sion tree for each attribute, all the split condition values are
sorted in ascending order and then used to divide the whole
range into K mutually exclusive bins. Based on the learned
groups for each attribute, the original features xn can be
converted into x̃n. The set of node features will be updated
into X̃ = {x̃1, x̃2, ..., x̃n, ..., x̃N}. Algorithm 1 describes the
pseudocode of decision tree binning encoding.

To better elucidate, consider an example. Take the age
attribute, which varies between 0 to 100 years. It can be
divided into 10 distinct groups, with each representing a
decade. Consequently, a 5-year-old individual would be rep-
resented by the one-hot vector [1, 0, 0, ..., 0]. When aggre-
gating the data for two 5-year-olds alongside a 95-year-old,
the resulting vector becomes [2, 0, 0, ..., 1], effectively pre-
serving the features from neighbors indicative of a low like-
lihood of committing fraud. An illustration of the decision
tree binning encoding is given in Figure 2.

Dynamic Grouping of Neighbor Nodes
To improve the distinguishability of grouped messages from
neighboring nodes, we need to dynamically classify these
nodes into fraudulent and benign groups at each layer sep-
arately. For each convolution layer, there are two steps
to obtain Hl from Hl−1: dynamic grouping and hierar-
chical aggregation, where H0 = MLP(X̃). Hl−1 ={
hl−1
1 ,hl−1

2 ,hl−1
3 , . . . ,hl−1

N

}
is the set of node embedding

at l − 1-th layer. HL represents node embedding output on
the last layer. The following additional Multi-Layer Percep-
tron neural network (MLP) serves as the prediction head.

To achieve optimal grouping outcomes, we have devel-
oped a feedback dynamic grouping strategy. This implies
that the grouping information for the current epoch is de-
rived from the preceding epoch. Throughout the model train-
ing process, as the loss continuously decreases, the over-
all model’s predictions for grouping become more accurate.
The increase in prediction accuracy is fed back into the
grouping stage, thereby facilitating dynamic enhancement
of the grouping. It is noteworthy that the grouping process
is directed not only at the training set but also at the entire
dataset, including unlabeled graph nodes. The feedback dy-
namic grouping can utilize estimated grouping information
to achieve improved grouping outcomes.

Hierarchical Aggregation
In a multi-relation graph, to reduce the disturbance of redun-
dant features, we design a hierarchical aggregation strategy,
including intra-aggregation and inter-aggregation. For each
relation, in the intra-group, different nodes have similar in-
formation. Therefore, the same added weight is adopted. On
the contrary, inter-group information is quite different, and
various central nodes have different weight distributions for
different groups. Therefore, we introduce a GAT-like inter-
group aggregation strategy to aggregate information from
the above groups and relations with dynamic weights.

Within a multi-relation graph, r ∈ {1, 2, ..R} represents
a specific type of edge relation. the neighbor set under each
relation r of the center node v is defined as N (v), which is
composed of two groups of nodes as follows:

Nr,∗(v) =
⋃
g

Nr,g(v), g ∈ {0, 1}, (1)
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Algorithm 1: Decision Tree Binning Encoding

Input: Feature matrix and labels (X ,Y), attribute set A,
the number of bins k in the decision tree
Output: Decision tree binning encoded feature matrix X̃

1: X̃ ← X
2: for a in A do
3: Build a Decision Tree (DT) base on (X a,Y)
4: Extract all split values as split list from DT
5: Sort split list and build k bins
6: Replace origin values ofX a to the serial number of

bins, 0 <= serial number < k
7: One-hot encode X a to get X̃ a

8: X̃ ← X̃ ||X̃ a

9: end for
10: return X̃

Nr,∗(v) denotes the entire set of neighbors of the central
node v under relation r. Nr,g(v) represents the set of neigh-
bors associated with the central node v under relation r for
the g-th group. u ∈ Nr,0(v) if ŷu = 0, u ∈ Nr,1(v) if ŷu =
1 where u is each neighbor of node v. ŷu is the estimated
prediction of node u based on the previous epoch. Further-
more, for notational simplicity, we define g ∈ {0, 1, ∗}.
Intra-group Aggregation. Under each type of relation, an
intra-relation aggregation is performed once, and an intra-
group aggregation is carried out two times for two groups.
Intra-relation aggregation involves amalgamating all neigh-
bor nodes along with the central node under a specific rela-
tion. This can be formalized as follows:

h′,l
v,r,∗ = Aggmean

(
hl−1
u

)
, ∀u ∈ Nr,∗(v), (2)

hl
v,r,∗ = ReLU

(
Wl

intra r

(
hl−1
v ||h′,l

v,r,∗
))

, (3)

where Aggmean() denotes the mean aggregation opera-
tion, Wl

intra r is the corresponding weight matrix for intra-
relation aggregation, || denotes the concatenation operation,
ReLU() denotes the ReLU activation function.

For the certain group neighbors inNr,g(v), the features of
different nodes are equally aggregated as follows:

h′,l
v,r,g = Aggmean

(
hl−1
u

)
, ∀u ∈ Nr,g(v), (4)

hl
v,r,g = ReLU

(
Wl

intra gh
′,l
v,r,g

)
, (5)

where Wl
intra g is the corresponding weight matrix for

intra-group aggregation.

Inter-group Aggregation. To collect information on all
groups, the attention mechanism is adopted to obtain the
central node v’s embedding hv of the l-th layer as follows:

hl
v =

∑
r

∑
g

αl
r,gh

l
v,r,g, (6)

αl
r,g =

exp
(
ωl
r,g

)∑
m exp

(
ωl
r,g

) , (7)

ωl
r,g = qT · tanh

(
Wl

inter1h
l−1
v +Wl

inter2h
l
v,r,g

)
, (8)
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Figure 2: An illustration of decision tree binning encoding.
Age is one of the node attributes. Building a decision tree
for the age column. In the tree of age, the feature space is
divided into four bins. The feature split points are 11.5, 15.5
and 63.5. The age of node A is in the third bin. Therefore,
its one-hot bin vector is denoted as ‘[0,0,1,0]’.

where Wl
inter1 and Wl

inter2 are the corresponding weight
matrix for the inter-aggregation. q is a learnable parameter
vector, which decides the value size of the attention parame-
ter αl

g for group g and relation r. T denotes the transposition
operation.

Iterative Optimization
With the aforementioned intra-group and inter-group aggre-
gation operations, we feed the final layer’s embedding hL

v
into a Multilayer Perceptron (MLP). The MLP function pro-
duces a predicted value pv , representing the probability that
node v is predicted to be fraudulent. Subsequently, to train
the DGA-GNN model, we utilize a cross-entropy classifica-
tion loss for identifying node v, as elaborated below:

pv = Sigmoid
(
MLP

(
hL
v

))
, (9)

L = −
∑
v∈V

[yv log pv + (1− yv) log (1− pv)]. (10)

At the end of each epoch, we evaluate the category es-
timation for all nodes using the current model, represented
as Ŷ = {ŷ1, ŷ2, ..., ŷn, ..., ŷN}. For each node v with a pre-
dicted probability pv , we apply a decision threshold z. If
pv > z, node v is classified as fraudulent (ŷv = 1); other-
wise, it is considered benign (ŷv = 0):

ŷv =

{
1 if pv > z

0 otherwise
. (11)

During the optimization process of the model, the cate-
gory estimation for all nodes is updated with each iteration.
More accurate estimations lead to more precise groupings,
which in turn yield features with better discriminability,
thereby improving the model’s performance. Algorithm 2
shows the pseudocode of the training procedure.
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Method
Scenario Finance Social Review
Dataset Elliptic T-Finance T-Social YelpChi Amazon
Metrics AP AUC AP AUC AP AUC AP AUC AP AUC

Non-GNN
Baseline

MLP (Hinton 1990) 61.71 80.08 65.95 91.31 5.28 67.78 29.18 68.27 66.23 92.62
RF (Breiman 2001) 65.20 82.69 81.16 94.42 42.50 80.38 69.77 89.47 83.02 94.47

Homophilic
GCN (Kipf and Welling 2017) 38.27 85.28 78.47 92.34 56.35 91.72 24.89 60.99 29.68 80.89
GAT (Veličković et al. 2018) 27.15 76.54 78.94 92.89 52.26 93.40 34.86 73.98 85.16 94.50

Spectral
Heterophilic

AMNet (Chai et al. 2022) 69.49 88.89 83.41 95.72 \ \ 52.85 83.57 87.87 97.90
BWGNN (Tang et al. 2022) 48.39 89.63 85.50 96.29 79.53 97.77 68.05 90.64 88.52 98.08

GHRN (Gao et al. 2023) 55.20 89.95 83.78 96.76 87.66 98.26 66.68 91.51 89.84 98.18

Spatial
Heterophilic

CARE-GNN (Liu et al. 2020) 37.19 87.84 61.84 89.95 41.15 78.32 52.96 83.99 85.64 96.96
PC-GNN (Liu et al. 2021b) 34.70 88.52 65.11 89.90 51.40 89.29 49.06 81.75 84.85 95.46
RioGNN (Peng et al. 2021) 29.06 86.35 62.60 91.32 17.62 81.74 56.45 85.72 87.62 96.91

H2-FDetector (Shi et al. 2022) 10.53 63.18 \ \ \ \ 57.48 89.88 84.94 96.05
GAGA (Wang et al. 2023) 28.01 82.72 84.13 96.53 78.52 97.80 76.58 93.86 88.34 97.18

Ours DGA-GNN 81.12
+11.63

94.22
+4.27

90.51
+5.01

97.77
+1.01

98.19
+10.53

99.88
+1.62

92.80
+16.22

97.95
+4.09

92.97
+3.13

98.39
+0.21

Table 1: Comparison results(%) with twelve methods (organized into four groups) on five benchmark datasets. Within each
group, the leading score is marked with an underscore ‘ ’. The notation ‘\’ signifies ‘out of video memory’, while the value
following ‘+’ illustrates the enhancement our method attained over the next best score.

Algorithm 2: The Training Algorithm of DGA-GNN

Input: The maximum number of iterations Eepoch, and an
attribute graph represented as G = (V,X ,A, E ,Y).

1: Use (Xtrain,Ytrain) to fit binning encoder
2: Use binning encoder to get X̃ ;
3: H0 = MLP(X̃);
4: while e < Eepoch do
5: Get node grouping from dynamic grouping buffer;
6: for l = 0, 1, ..., L do
7: for r = 0, 1, ..., R do
8: Calculate hl

v,r,∗ by Eq.(2)(3)
9: Calculate hl

v,r,g by Eq.(4)(5) for each group;
10: end for
11: Update hl by Eq.(6)(7)(8);
12: Update the total loss using Eq.(9)(10);
13: Use back-propagation to update model parameters;
14: end for
15: Update dynamic grouping buffer with output;
16: end while

Experiments
Dataset
Experiments are conducted on five real-world fraud detec-
tion datasets. These datasets comprise Elliptic, designed for
illicit Bitcoin transaction detection (Weber et al. 2019); T-
Finance, a financial transaction fraud dataset (Tang et al.
2022); T-Social, a social network abnormal account de-
tection dataset (Tang et al. 2022). Additionally, YelpChi

and Amazon are included, both widely utilized as fake re-
view datasets in graph fraud detection literature (Rayana and
Akoglu 2015; McAuley and Leskovec 2013).

Addressing these datasets presents distinct challenges.
For instance, the Elliptic dataset comprises multiple sub-
graphs sequenced over a timeline, with isolated nodes in
the training and validation sets potentially affecting static
grouping based solely on the training set. Both T-Finance
and T-Social have tens of millions of edges, introduc-
ing computational challenges due to algorithmic complex-
ity. Conversely, YelpChi and Amazon are multi-relational
graphs, requiring flexible management of multiple relation-
ships and their inter-group effects. A summary of these
datasets is provided in Table 2. The detailed descriptions are
given in supplementary materials.

Experimental Setup
Baseline and Implementation. We employ four distinct
groups of baseline methodologies for comparison with the
proposed method. The first group, encompassing Multi-
layer Perceptron (MLP) (Hinton 1990) and Random Forest
(RF) (Breiman 2001), serves as a foundational reference to
observe outcomes when graph information is absent. We uti-
lize the Scikit-learn toolkit for the implementation of MLP
and RF. The second group comprises conventional Graph
Neural Network algorithms, namely Graph Convolutional
Network (GCN), and Graph Attention Network (GAT) (Kipf
and Welling 2017; Veličković et al. 2018). These were
implemented utilising the DGL framework. The third and
fourth groups represent spectral heterophilic and spatial het-
erophilic methodologies respectively. The former includes
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Figure 3: Parameter analysis with emphasis on the number of bins k and the threshold value z.

Dataset #nodes #edges #features fraud(%)
T-Finance 39,357 21,222,543 10 4.58
T-Social 5,781,065 73,105,508 10 3.01
Elliptic 46,564 73,248 93 9.76
YelpChi 45,954 3,846,979 32 14.53
Amazon 11,944 4,398,392 25 6.87

Table 2: Statistic of five fraud datasets. Fraud(%) denotes
the proportion of fraudulent people. #nodes and #edges de-
note the number of nodes and edges respectively. #features
denotes the attribute number in each dataset.

AMNet, BWGNN, GHRN (Chai et al. 2022; Tang et al.
2022; Gao et al. 2023), while the latter comprises CARE-
GNN, PC-GNN, RioGNN, H2, and GAGA (Liu et al. 2020;
Dou et al. 2020; Liu et al. 2021b; Peng et al. 2021; Shi et al.
2022; Wang et al. 2023). The last two groups were imple-
mented using the official versions supplied by the authors.
We present the mean result of ten trials across all datasets
for each method, excluding the T-Social dataset, where we
performed and reported the average of five trials. All exper-
iments are run on a NVIDIA A100 GPU and an Intel i9-
13900K processor @5.80 GHz.

Metrics. For fraud detection tasks, the evaluation indica-
tors should balance precision and recall. Therefore, we use
two widely used indicators to measure the performance of
all comparative methods, which are AP and AUC.

Data Split. For all datasets excluding Elliptic, the propor-
tions for training, validation, and testing are distributed in a
4:2:4 ratio. The partitioning is performed with utilities from
the sklearn package, and we maintain a consistent random
seed as per prior work. In the case of the Elliptic dataset,
the partitioning respects transaction entity timestamps, con-
forming to official recommendations for dataset division.

Hyperparameters. For all methods involving neural net-
works, we employ the Adam optimizer with a learning rate
of 0.001 and a weight decay of 0.001. The maximum num-
ber of iterations is set to 1000. The model achieving the
lowest validation loss is saved and subsequently utilized for
test set predictions. All baseline models are fine-tuned post-
initialization using the officially recommended parameters.
For the DGA-GNN, the number of bins k and the decision

Dataset T-Social YelpChi
Metric AP AUC AP AUC

w/o encoding 86.15 98.55 78.73 94.47
w/ equality 92.09 98.96 87.02 96.24

w/o grouping 79.97 98.14 80.72 94.90
w/ static 90.16 99.03 88.21 96.79

DGA-GNN 98.19 99.88 92.80 97.95

Table 3: The results(%) of an ablation study conducted on
two proposed components using the T-Social and YelpChi
datasets are shown above. The terms ‘w/o encoding’ and
‘w/o grouping’ represent the removal of the decision tree
binning encoding and the grouping strategy, respectively. On
the other hand, ‘w/ equality’ and ‘w/ static’ denote the sub-
optimal variants of the components.

threshold z are determined based on the validation set score.
The detailed settings are given in supplementary materials.

Quantitative Performance Comparison
Table 1 shows that the proposed method has shown promis-
ing results on both evaluation measures across all data,
achieving about 3% ∼ 16% increases on different metrics of
different datasets. Non-GNN baseline methods do not con-
sider the information from the graph. The superior perfor-
mance of the random forest indicates the significant ability
of decision trees to utilize features in fraud detection tasks.

The traditional GNN methods (GCN, GAT) are based on
the homophilic hypothesis, so they show poor performance.
The superior performance of GAT could be attributed to its
use of the attention mechanism. This mechanism effectively
weights information from different neighbors, thereby miti-
gating the effects of heterophily.

The improved heterophilic GNN algorithms for fraud de-
tection take into account the non-homophily of the fraud
graph. So that they achieve better results. In the spectral do-
main, GHRN (Gao et al. 2023) leads due to its dynamic
consideration of label distribution. In the spatial domain,
the GAGA method (Wang et al. 2023) excels as it consol-
idates the original information and label distribution infor-
mation from different category neighbors into fixed groups
and learns through an attention mechanism.

The success of GAGA demonstrates the efficacy of group-
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Figure 4: As the number of training epochs increases, there
is a variation in the flip rate of ŷ and the accuracy of the
validation set. Subfigures (a) and (b) correspond to the T-
Social dataset and YelpChi dataset, respectively.

Method non-additivity additivity DGA-GNN
AP 90.02 81.86 92.80

AUC 97.27 96.03 97.95

Table 4: The model’s performance(%) after applying a bin-
ning encoder to each subset, respectively.

ing strategies. The proposed method is also rooted in the
grouping, but due to the introduction of dynamic grouping,
coupled with the consideration of non-additivity in original
features, our results surpass those of GAGA.

Ablation Study and Parameter Analysis

To assess the efficacy of the components within DGA-GNN,
we performed an ablation study focusing on the decision
tree binning encoding and the feedback dynamic grouping
strategy. For our proposed modules, we designed two sub-
optimal variants: equidistant binning encoding and static
grouping strategy. The equidistant binning refers to using
quantiles to complete value range grouping, while the static
grouping strategy involves grouping based solely on la-
beled node information. The results, as showcased in Table
3, manifest that the fully-equipped DGA-GNN consistently
achieves the best performance, thereby demonstrating the ef-
fectiveness of each component.

Number of Bins k. Figure 3(a) and Figure 3(b) present
the AUC and AP scores of DGA-GNN on five datasets when
varying k from 0 to 32. The experimental outcomes reveal
that the datasets’ performance typically reaches its peak with
an increasing k. Specifically, the apex values for the Ama-
zon, T-Finance, and Elliptic datasets are observed at k = 4.
The T-Social and YelpChi datasets attain their maximum
value at k = 32. This discrepancy can likely stem from the
varying degrees of non-additivity inherent to each dataset.

Value of threshold z. The results are not highly sensitive
to the value of the threshold z. For certain datasets, opti-
mal values tend to cluster around the fraud proportion in the
dataset, as depicted in Figure 3(c) and Figure 3(d).
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Figure 5: The study of non-additive attributes. Attributes are
binned equally, and then ordered numerically. In Subfigures
(a) and (b), the x-axis represents the bin index and the y-axis
represents averages of y values for each bin. Attributes are
divided into non-additive and additive subsets, depending on
monotonicity. Subfigures (a) and (b) exhibit three represen-
tative attributes for each subset.

Visualization and Discussion
Dynamic Neighbor Grouping. During the initial phases
of training, owing to the incomplete training of the model,
there are significant fluctuations in the estimations across all
node categories. However, as the training deepens, these es-
timation flips become less frequent, resulting in improved
accuracy, as depicted in Figure 5.

Non-additivity. The widely recognized YelpChi fraud re-
view dataset was selected for non-additivity analysis. Its
thirty-two features were divided evenly into bins, which
were then categorized into non-additive and additive subsets
based on the degree of monotonicity. Figure 5(a) and Fig-
ure 5(b) visualize three representative attributes from each
subset. Attributes from the non-additive subset display pro-
nounced non-monotonicity, thereby amplifying the learning
complexity of graph network models. Table 4 displays the
DGA-GNN’s efficiency when a binning encoder is solely
employed on the attributes from both subsets. It was ob-
served that the non-additive subset surpassed the additive
subset markedly, affirming the binning encoder’s capability
to mitigate the challenges posed by feature non-additivity.

Conclusion
In this work, we introduce the DGA-GNN framework for
tackling feature non-additivity and enhancing message dis-
tinguishability in fraud detection. The framework employs
decision tree binning encoding for feature transformation
and utilizes feedback dynamic grouping with hierarchical
aggregation for improved message distinguishability. This
method dynamically classifies adjacent nodes and aggre-
gates their features in an additive manner, hierarchically en-
hancing their discriminative capabilities. Tests on five fraud
datasets confirm the effectiveness of DGA-GNN. Future
work will focus on integrating decision trees with GNNs and
further exploring heterophily information in fraud detection.
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