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Abstract

Semi-supervised learning (SSL) is a powerful tool to ad-
dress the challenge of insufficient annotated data in medical
segmentation problems. However, existing semi-supervised
methods mainly rely on internal knowledge for pseudo la-
beling, which is biased due to the distribution mismatch be-
tween the highly imbalanced labeled and unlabeled data. Seg-
menting left atrial appendage (LAA) from transesophageal
echocardiogram (TEE) images is a typical medical image
segmentation task featured by scarcity of professional an-
notations and diverse data distributions, for which existing
SSL models cannot achieve satisfactory performance. In this
paper, we propose a novel strategy to mitigate the inher-
ent challenge of distribution mismatch in SSL by, for the
first time, incorporating a large foundation model (i.e. SAM
in our implementation) into an SSL model to improve the
quality of pseudo labels. We further propose a new self-
reconstruction mechanism to generate both noise-resilient
prompts to demonically improve SAM’s generalization capa-
bility over TEE images and self-perturbations to stabilize the
training process and reduce the impact of noisy labels. We
conduct extensive experiments on an in-house TEE dataset;
experimental results demonstrate that our method achieves
better performance than state-of-the-art SSL models.

Introduction
Transesophageal Echocardiogram (TEE) is an increasingly
utilized modality in ultrasonic cardiac imaging due to its
unique advantage of proximity to cardiac structures (Faz-
linezhad et al. 2020). The segmentation of left atrial ap-
pendage (LAA) from TEE images plays a crucial role in per-
cutaneous LAA occlusion procedure, which is an effective
treatment for preventing patients with atrial fibrillation from
stroke (Nielsen-Kudsk et al. 2019). However, it is an ex-
tremely challenging task as: (1) compared with CT and MR
images, the quality of TEE images is relatively low due to
speckle noise, acoustic shadow, and motion artifacts, leading
to severe boundary ambiguity and deficiency (Faletra et al.
2014); (2) there exist large variations in the size and mor-
phology of the LAA among patients (Chen et al. 2020); and
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Figure 1: Comparison of the pseudo labels generated by (a)
the teacher model and (b) SAM with the proposed noise-
resilient prompts. (c) is the ground-truth mask for reference,
and (d) shows the average dice of pseudo labels at different
labeled ratios, which implies that SAM in our method gen-
erated more robust and reliable pseudo labels compared to
the vanilla teacher model.

(3) it is laborious and expensive to obtain sufficient pixel-
level annotated data from TEE experts for training.

Many efforts have been dedicated to addressing this chal-
lenging task. Early methods for LAA segmentation (Song
et al. 2016; Morais et al. 2019, 2018) mainly rely on manual
configurations and adjustments, which are time-consuming
and heavily dependent on individual expertise. More re-
cently, deep learning-based methods have shown promising
performance by incorporating shape priors (Zhu et al. 2023)
or contextual information (Jin et al. 2018). However, these
methods are fully-supervised and rely on large amount of
labeled training data, which is hard to obtain in practice.

One promising solution to this problem is to leverage
abundant unlabeled data through semi-supervised learning
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(SSL), which have been actively explored in medical seg-
mentation tasks (Luo et al. 2021a; You et al. 2023; Peiris
et al. 2023; Zhu et al. 2021). Existing SSL methods typi-
cally leverage knowledge leart from a few labeled images
through pseudo labeling, and then enhance representation
learning through consistency regularization on unlabeled
data (Luo et al. 2021b; Wang et al. 2022; You et al. 2022;
Zhou et al. 2019). However, as pointed out in (Wang, Li,
and Gool 2019), in practical scenarios, the distribution of
labeled data often more or less deviates from the true dis-
tribution of the real-world dataset, which is caused by the
small sample size and the randomness in sampling. This
phenomenon greatly discounts the performance of most SSL
models, which assume both labeled and unlabeled datasets
follows same or similar distributions (Calderon-Ramirez,
Yang, and Elizondo 2022). To address this issue and improve
the performance of SSL models, some studies introduce ad-
versarial learning to align the feature distributions (Wang,
Li, and Gool 2019) between labeled and unlabeled datasets.
Recently, some researchers propose random mixing strate-
gies (Zhou et al. 2021; Bai et al. 2023) to build artificially
aligned inputs to alleviate this inherent challenge of SSL.
Such strategies, however, are not suitable for medical appli-
cations as they may disrupt original anatomical priors and
confuse SSL models with mimic structures.

Different from existing SSL approaches, we, for the
first time, propose to incorporate large foundation models
with, rich yet general, external knowledge into SSL mod-
els to guide the pseudo label generation, reducing the ad-
verse effect of distribution discrepancy and hence improving
the quality of pseudo labels. As our task is segmentation,
we choose the recently proposed segment anything model
(SAM) (Kirillov et al. 2023) as our foundation model. To
sufficiently take the advantage of SAM, we propose a novel
strategy that iteratively harness SAM to enhance pseudo la-
bel generation for the SSL model while simultaneously im-
proving SAM’s generalization capability over the targeting
datasets, i.e. the TEE images. The key idea of this strategy
is to build a bidirectional interactive path between the SSL
model and SAM, with one direction generating high-quality
pseudo labels from ‘external expert’ (SAM) to the ‘internal
expert’ (teacher model in SSL) and the other providing ap-
propriate prompts by ‘internal expert’ for the ‘external ex-
pert’. We further propose a novel noise-resilient prompting
scheme based on a self-reconstruction mechanism (SRM)
within the teacher-student model. The SRM produces the re-
constructed images and candidate masks to generate noise-
resilient prompts to enhance the reliability of SAM infer-
ence, and then the SAM reciprocally revises the pseudo la-
bels for supervising the SSL learning. Moreover, to enhance
the robustness against noisy pseudo labels, based on the
prior work (Yang et al. 2022, 2023) that combines data aug-
mentation with feature-level perturbation, we propose a self-
perturbation for feature-level augmentation (SPFA) module
based on the SRM. Different from the random drop-out strat-
egy (Yang et al. 2023), our SPFA is able to stabilize the train-
ing process and hence achieve better performance on small
datasets. Our contributions can be summarized as following:
• We propose a novel strategy to mitigate the inherent chal-

lenge of distribution mismatch in SSL by, for the first
time, incorporating a large foundation model (i.e. SAM
in our implementation) into an SSL model to improve the
quality of pseudo labels.

• We further propose a new self-reconstruction mechanism
to generate both noise-resilient prompts to demonically
improve SAM’s generalization capability over TEE im-
ages and self-perturbations to stabilize the training pro-
cess and reduce the impact of noisy labels.

• We conduct extensive experiments on an in-house TEE
dataset, and experimental results demonstrate that our
method achieves better performance than state-of-the-art
SSL models.

Related Work
LAA segmentation Segmentation of the left atrial ap-
pendage (LAA) anatomy in transesophageal echocardiog-
raphy (TEE) images can greatly assist transcatheter LAA
closure (LAAC) surgery. In the last decade, many algo-
rithms have been developed to conduct automatic or semi-
automatic extraction of LAA in TEE images (Song et al.
2016; Morais et al. 2019; Jin et al. 2018; Zhu et al.
2023). The semi-automatic methods were the mainstream
approaches in the early stages, relying on manual setup
and adjustments. In (Song et al. 2016), threshold segmen-
tation was simply applied with human interactions for re-
finement. In (Morais et al. 2019), a double stage segmen-
tation process based on B-spline Explicit Active Surfaces
framework (BEAS) model was conducted to capture the
LAA anatomical particularities. This method relied on man-
ually defined centerline to generate preliminary results and
involved multi-step refinement procedures. Benefiting from
the development of deep learning techniques, completely au-
tomatic LAA segmentation methods have shown promising
results over the time-consuming semi-automatic mehtods. In
(Jin et al. 2018), a fully convolutional neural (FCN) net-
work was fine-tuned to segment 2D LAA slice images on
computed tomography (CT) images. Subsequently, to pile
all predicted 2D slices to 3D volume, a dense 3D condi-
tional random field was used to account for the 3D contex-
tual information. In (Zhu et al. 2023), adversarial learning
was introduced for mask reconstruction and LAA segmenta-
tion. Specifically, an adversarial latent space alignment loss
incorporates the shape prior knowledge encoded by the re-
construction network into the segmentation network and im-
prove the accuracy of LAA edge segmentation.

Semi-supervised learning The majority of existing SSL
segmentation methods can be divided into two categories:
consistency regularization (Tarvainen and Valpola 2017) and
pseudo labeling (Lee et al. 2013). Pseudo labeling aims to
generate labels for unlabeled data using the model’s current
predictions, and treating these generated labels as ground
truth labels. To enhance the quality of pseudo labels, a novel
local contrastive loss function was proposed in (Chaitanya
et al. 2023) to enhance the extraction of pixel-level features.
In (Seibold et al. 2022), annotated images were employed
as the reference for establishing pixel correspondences be-
tween an unlabeled image and its semantic counterparts. In
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Figure 2: The overview of our proposed method during the training phase. The red, blue and green lines represent the path of
initial, reconstructed and perturbed features, respectively. The teacher and student models share the same architecture, which is
the self-reconstruction based segmentation network. The network accept the input noisy image I and obtain the reconstruction
Ir within the inner loop, and then segment (I, Ir) to obtain the mask pair (M,Mr). PL denotes the pseudo label produced
by the SAM-guided pseudo label generator, which is used as the supervision signal for mask predictions (M,Mr,Mp) from
unlabeled images. Among them, Mp is the mask decoded from the perturbed feature generated by the proposed SPFA module.
At test stage, the predicted mask after self-reconstruction Mr is the final output.

(Yao, Hu, and Li 2022), Fourier transformation was lever-
aged to acquire cross-domain knowledge, which can be in-
terpreted as perturbation and regularization techniques that
enhance the model’s ability to learn more reliable pseudo la-
bels. In (Wang et al. 2023), a dynamic competitive pseudo-
label generation (DCPLG) module was presented to auto-
matically select the best-performing sub-net as the pseudo
label generator. Differently, the consistency regularization
focuses on encouraging consistent predictions under pertur-
bations to learn more robust and generalizable representa-
tions (Chen et al. 2021a; Luo et al. 2021c; Li et al. 2020).
Specifically, various perturbations were employed to train
the model, including perturbation of input data (Li et al.
2020; Tu et al. 2022), feature-level perturbations (Ouali,
Hudelot, and Tami 2020), and perturbation between differ-
ent networks (Chen et al. 2021b; Wu et al. 2022). The co-
herence across diverse tasks were also explored (Luo et al.
2021c). It was also argued that consistency regularization
helps to prevent over-fitting over inaccurate pseudo labels
(Yang et al. 2022). The authors in (Yang et al. 2022) pro-
posed an advanced self-training framework equipped with
strong data augmentation and selective re-training via pri-
oritizing reliable unlabeled images. Their following work
(Yang et al. 2023) further introduce feature-level perturba-
tions as an effective supplement to the original data-level
augmentation methods. Similarly, our approach combines
pseudo-labeling and consistency regularization, aiming to
enhance the pseudo-label quality while simultaneously re-
ducing the impact of erroneous pseudo-labels.

Methodology

Preliminaries

To pave the way for clear comprehension, we begin by elu-
cidating foundational concepts in the realm of our method.

Teacher-student model. The teacher-student model (Tar-
vainen and Valpola 2017) stands as a quintessential
paradigm within semi-supervised learning. This model
framework comprises a teacher network responsible for gen-
erating pseudo-labels for unlabeled images, in tandem with
a student network that receives training leveraging both ac-
tual labels from labeled images and pseudo-labels from un-
labeled images.

Noise2noise mapping. Traditional image denoising meth-
ods often demand substantial paired noisy/clean data for ef-
fective training. However, the procurement of such matched
datasets can pose significant challenges. To alleviate this
constraint, Noise2noise mapping (N2N) (Lehtinen et al.
2018) introduced an unsupervised image denoising ap-
proach. This technique operates under the assumption of
zero-mean noise and trains a network to transform noisy
images into other noisy observations sampled from the
same distribution. An evolution of this concept, Neigh-
bor2Neighbor (NB2NB) (Huang et al. 2021), took a stride
towards further refinement. In NB2NB, the creation of mul-
tiple observations involves the sampling of a single input
noisy image. For a given noisy input image In, NB2NB opti-
mizes the reconstruction network by minimizing a compos-
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ite loss function Lrec, expressed as:
Lrec = ||f(g1(In))− g2(In)||22, (1)

where g1(·) and g2(·) respectively denote the sub-image
sampler functions, while f(·) represents the reconstruction
network. Simultaneously, an additional regularization term
Lreg emphasizes the fundamental distinction in pixel values
between ground-truth sub-sampled noisy image pairs:
Lreg = ||f(g1(In))− g2(In)− (g1(f(In))− g2(f(In)))||22.

(2)
These preliminary concepts lay the groundwork for the sub-
sequent unveiling of our comprehensive methodology.

The Overall Architecture of Our Method
We present the architecture of our method, depicted in Fig.
2. Our approach is fundamentally rooted in the teacher-
student model, offering a unified structure. Both the teacher
and student networks adopt a self-reconstruction based seg-
mentation model, which takes the input image I and au-
tonomously produces a pair of mask predictions: M and
Mr (from images prior to and after reconstruction). In the
teacher network, we introduce the SAM-guided pseudo la-
bel generator (PLG), building upon the predicted mask
pair and the reconstructed image Ir. This PLG employs a
two-fold process: firstly, it devises noise-resistant prompts
for SAM prediction (MSAM ), and subsequently, it learns
to amalgamate the various mask predictions into the ulti-
mate pseudo label (PL). For images with available ground-
truth labels (GT ), these labels are employed to regulate all
mask predictions. This regulation, in turn, influences the
updates to both the self-reconstruction based segmentation
network and the learnable parameters within the PLG. In
the context of unlabeled images, the teacher model gen-
erates the pseudo label PL. This pseudo label acts as a
supervisory signal for all outputs generated by the stu-
dent model. This encompasses the mask prediction pair (M
and Mr), along with an additional perturbed version (Mp)
derived from self-perturbation for feature-level augmenta-
tion (SPFA). The conclusive segmentation outcome during
the test phase emerges as the mask prediction post self-
reconstruction (Mr) attained through the student model.
This comprehensive approach melds various strategies to en-
hance segmentation performance and adapt to diverse sce-
narios.

Segmentation with Self-Reconstruction
TEE images often grapple with noisy backgrounds and ill-
defined boundaries, which significantly impair segmenta-
tion performance and exacerbate the domain gap issue be-
tween TEE and natural images. The conventional strategy of
pre-training a denoising model to mitigate these challenges
might prove ineffective. This is due to the potential presence
of noise, invisible to human perception yet detrimental to
subsequent tasks (Li et al. 2023).

Hence, we introduce a novel approach by incorporating
the self-reconstruction module into the segmentation net-
work. Our architecture intertwines the segmentation mod-
ule with the self-reconstruction module, sharing an en-
coder (E1(·)) while employing separate decoders (D1(·)

and D2(·)). The reconstructed image (Ir) is derived through
Ir = frec(I), where frec = D1(E1(·)). This reconstructed
image, in turn, undergoes iterative processing through the
segmentation module (fseg = D2(E1(·))) to yield Mr. The
outputs from the segmentation module are subjected to su-
pervision via a fusion of focal loss (Lin et al. 2017) and dice
loss (Milletari, Navab, and Ahmadi 2016):

Lseg(x, y) = FocalLoss(x, y) + 0.1 · DiceLoss(x, y) . (3)

Differing from NB2NB, we introduce an additional reg-
ularization term Lrel within the self-reconstruction module.
This term emphasizes the relative disparity between Mr and
M from a task-oriented standpoint. It is expressed as:

Lrel = max(Dice(M,GT )− Dice(Mr, GT ), 0) . (4)

The holistic self-reconstruction loss is thereby consolidated
as Lsrec = Lrec + Lreg + Lrel. Through this integration
of self-reconstruction, our method adapts to noisy environ-
ments while addressing the TEE image-to-natural image do-
main gap, ultimately enhancing the segmentation accuracy.

SAM-Powered Pseudo Label Generation
Our Pseudo Label Generator (PLG) harmonizes internal in-
sights from the teacher model and external knowledge from
SAM, culminating in more precise pseudo labels. Operat-
ing on the reconstructed image (Ir) alongside mask predic-
tion pairs (M and Mr) from the teacher model, the PLG
yields enhanced pseudo labels, which subsequently refine
the teacher-student model. This intricate process unfolds
in three sequential components: noise-resilient prompting,
SAM integration, and Adaptive label selection.

Noise-resilient prompting The efficacy of the prompt
holds paramount importance, profoundly influencing the fi-
nal mask prediction produced by SAM. SAM employs di-
verse prompt types, encompassing masks, points, boxes,
and text, sourced from interactive learning. Building on
findings from (Gong et al. 2023), SAM’s robustness to
point position variations underscores the reliability of points
prompts. For medical image segmentation, point prompts
retain similarity in segmentation outcomes across different
point positions. This characteristic strengthens our reliance
on point prompts, particularly for TEE data. Given a labeled
noisy input image (I) and corresponding mask prediction
pairs (Mr,M ), we initially identify high-confidence fore-
ground/background points for each predicted mask. The cri-
terion for this identification is as follows:

criterion =

{
foreground if conf > α
background if conf > 1− α

(5)

where conf signifies the confidence of each point,
and α is set at 0.85. The noise-resilient prompts
emerge as a unanimous selection from P (M,Mr) =
Random(criterion(M) ∩ criterion(Mr), k). Here, we ran-
domly select k reliable points as prompts.

Adaptive label selection Our primary goal is to facilitate
the model’s adaptive selection of a more dependable pseudo
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Algorithm 1: Pseudo code of our training strategy
Input: Labeled data{x, y}, Unlabeled data u

1 Parameter: Teacher T , Student S, total epoch
number Nt

2 for i = 1 to Nt do
3 xT

r = fT
rec(x), x

S
r = fS

rec(x)

4 [mT
r ,m

T ] = fT
seg([x

T
r , x])

[mS
r ,m

S ] = fS
seg([x

S
r , x])

5 Calculate loss: Lsrec, Lseg(m
·
·, y)

6 Prompt = P (mT
r ,m

T )

7 mSAM = SAM(xT
r , P rompt)

8 pl = Con1x1(m
T
r ,mSAM )))

9 Calculate loss: Lsel

10 uT
r = fT

rec(u), u
S
r = fS

rec(u)

11 [m̃T
r , m̃

T ] = fT
seg([u

T
r , u])

12 [m̃S
r , m̃

S ] = fS
seg([u

S
r , u])

13 ˜Prompt = P (m̃T
r , m̃

T )

14 m̃SAM = SAM(uT
r , ˜Prompt)

15 p̃l = Con1x1(Cat(m̃T
r , m̃SAM ))

16 Calculate loss: Lpt, Lseg(m̃
S
· , m̃pseudo)

17 Back propagation to update parameters in T&S

label from the teacher model’s internal expertise and the ex-
ternal insights offered by SAM during training. This adapt-
ability enhances the training process’s effectiveness and re-
sults in improved performance. To achieve this, we employ
a 1 × 1 convolution layer for soft selection. This layer is
fine-tuned based on the following optimization criterion:

Lsel = Lseg(PL,GT ) , (6)
where PL = Con1x1(Cat(fseg(Ic), SAM(Ic, P (In))))
embodies the ultimate pseudo label. This formulation inte-
grates the outputs of the segmentation module (fseg) applied
to Ic and the SAM module (SAM ) operating on Ic and
P (In) (noise-resilient prompts). The Con1x1 signifies the
1×1 convolutional layer. This adaptive selection mechanism
effectively guides the training process, resulting in more ac-
curate pseudo labels.

Self-Perturbation for Feature-Level Augmentation
Taking into account the distinct attributes of TEE data,
namely the limited dataset size and diminished image qual-
ity, we harness features extracted from the noisy input image
to substitute a portion (p) of the features derived from the
reconstructed image. This integration introduces domain-
specific feature-level perturbations. To elaborate, when han-
dling unlabeled data, we are presented with both the recon-
structed image (Ir) and its corresponding noisy input coun-
terpart (I). The ensuing mask prediction after feature-level
perturbation is mathematically expressed as:

Mp = D2(Replace(E1(I), E1(Ir))) . (7)
In this equation, Replace(·) signifies the feature perturba-
tion process, with a user-defined proportion of p. Subse-
quently, we aim to minimize the loss between the pseudo

label (PL) and the perturbed variant of the mask prediction
(Mp):

Lpt = Lseg(Mp, PL) . (8)
This mechanism for feature-level augmentation, achieved
through self-perturbation, injects adaptively tailored per-
turbations into the feature space. This approach bolsters
model robustness and performance, particularly for TEE
data marked by constrained dataset size and suboptimal im-
age quality.

Training Strategy
We outline the training strategy in Algorithm 1, detailing
the learning procedures for our proposed semi-supervised
segmentation method. The algorithm also illustrates the
dynamic interplay between SAM and the teacher-student
model. For labeled images, the network update revolves
around minimizing both the self-reconstruction loss and the
segmentation losses:

Llb = β1Lsrec + β2Lseg(M·, GT ) + β3Lsel . (9)
When addressing unlabeled images, the pertinent loss func-
tion is formulated as:

Lulb = γ1Lseg(M·, PL) + γ2Lpt . (10)
The comprehensive loss that governs the training process is
encapsulated in the total loss:

Ltotal = Llb + Lulb . (11)
The combination of these distinct loss components opti-
mizes the model’s performance for both labeled and unla-
beled images, achieving the goal of semi-supervised medical
image segmentation.

Experimental Results
Implementation Details
Dataset The transesophageal echocardiography (TEE)
imaging was collected using either an EPIQ7C or CVx ul-
trasound system (Philips Medical Systems, Andover, MA).
The dataset consists of TEE data from 100 patients. We ran-
domly divided the patients into three sets, with 70/30 for
training and testing.

Metrics We employ two metrics to assess the segmenta-
tion performance in this paper, including the Dice similar-
ity coefficient (Dice), and Average Surface Distance (ASD).
Dice emphasizes the overlap of segmented and true regions,
highlighting their similarity in terms of area, and ASD fo-
cuses on the spatial accuracy of the segmentation by mea-
suring the distance between surface points, which is more
sensitive to the boundary accuracy.

Network architecture and hyper-parameters The en-
coder E1 and decoders D1, D2 adopt the same architec-
ture borrowing from the classical segmentation model Unet
(Ronneberger, Fischer, and Brox 2015). The weights of the
losses for labeled images, β1, β2, and β3, are experimen-
tally set as 0.01, 1, and 1 respectively. For unlabeled images,
the values of γ1 and γ2 are set as 0.01 and 0.1 respectively.
The proportion of p in the SPFA algorithm and the selected
points number k is set as 0.7 and 6 in our experiment.
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Method
Data used Metrics

Labeled Unlabeled Dice ↑ ASD ↓
Unet 100% 0 0.9019±0.0315 1.23±0.5158

Unet 50% 0 0.8457±0.0789 1.72±0.8821
ST++ 50% 50% 0.8694±0.1059 1.48±1.4128
UM 50% 50% 0.8764±0.0271 1.40±0.9589

MCF 50% 50% 0.8490±0.1075 1.76±0.9014
BCP 50% 50% 0.8546±0.1302 1.51±1.5220

UCMT 50% 50% 0.8595±0.0864 1.68±0.3388
Ours 50% 50% 0.8830±0.0367 1.28±0.5723
Unet 20% 0 0.8290±0.0973 2.08±1.2337
ST++ 20% 80% 0.8453±0.1862 1.77±0.0124
UM 20% 80% 0.8347±0.0748 1.83±1.6189

MCF 20% 80% 0.8303±0.0932 2.00±0.1621
BCP 20% 80% 0.8405±0.1434 1.75±1.0740

UCMT 20% 80% 0.8336±0.1110 1.99±0.8511
Ours 20% 80% 0.8604±0.0518 1.65±0.6551

Table 1: Comparisons with state-of-the-art semi-supervised
segmentation methods on our TEE dataset, and the best re-
sults are highlighted.

Training details The hyper-parameters are consistent be-
tween the teacher model and student model. During train-
ing, each slice of TEE data is randomly cropped to obtain
patches of size 192X192. The network is optimized using
AdamW with a mini-batch size of 8 and trained for a to-
tal of 300 epochs. The learning rate is initialized as 0.004,
which is divided by 2 every 60 epochs. All the experiments
are conducted on 4 NVIDIA 3090 GPUs.

Comparison with State-of-the-art Methods
We compare our method with several SOTA methods on the
TEE dataset, including two semi-supervised segmentation
methods (originally for natural images): ST++ (Yang et al.
2022), UM (Yang et al. 2023), and three semi-supervised
segmentation (originally for medical images): MCF (Wang
et al. 2023), BCP (Bai et al. 2023), UCMT (Shen et al.
2023). The comparison was conducted using different la-
beled ratios: 50% and 20%. The quantitative evaluation re-
sults are presented in Table 1, which It can be observed
that our method demonstrates the our method consistently
outperformed other SOTA methods on both evaluation met-
rics. The visual comparisons are shown in Fig. 3, it can be
observed that our segmentation result contains significantly
fewer outliers and more faithfully reproduces the anatomy
of the left atrial appendage.

Ablation Study and Analysis
In Tab. 2, we show quantitative results in order to vali-
date the effectiveness of: SAM-powered pseudo label gen-
erator (GPL), self-reconstruction mechanism (SRM), Self-
perturbation for feature-level augmentation (SPFA).

Analysis on SAM-powered GPL To validate the efficacy
of SAM-powered GPL, we exclude it from our approach and
simply employ the pseudo labels generated by the teacher
model for training. As depicted in Table 2, the Dice and ASD
is observed to decline from 0.8604 to 0.8366 and from 1.65
to 1.94, respectively, due to the removal of the GPL. This

Method GPL SPFA Dice ↑ ASD ↓
Unet × × 0.8293 2.08
Unet ✓ × 0.8469 1.92
Unet × ✓ 0.8366 1.94
Ours ✓ ✓ 0.8604 1.65

Table 2: Quantitative comparison of the different compo-
nents of our method. The experiment was conducted on our
TEE dataset with of 20% labeled data.

implies that the inclusion of the SAM with its extensive yet
general knowledge significantly enhances the performance
of semi-supervised segmentation.

Analysis on SRM Self-reconstruction mechanism (SRM)
is the key component in our pipeline that enables the con-
struction of SAM-powered GPL and SPFA. We validate the
effectiveness of SRM by removing it and utilizing the SAM
to directly generate pseudo labels for unlabeled data, which
gives Dice/ASD of 0.8249/2.16, dropped by 0.03 and 0.51,
respectively. The performance of directly using SAM to gen-
erate the pseudo labels is even worse than that of the corre-
sponding fully-supervised Unet (0.8290/2.08 in Tab. 1). This
observation suggests that, without the SRM produced noise-
resilient prompts and the reconstructed image, the SAM pre-
dictions become unreliable due to the large domain gap,
which will severely compromise the model’s performance.

Additionally, in Fig. 4, we present the visualization of
noisy/reconstructed images and their corresponding seg-
mentation results, where the effects of self-reconstruction
can be obviously observed. The image noise caused plenty
disconnected outliers and the ambiguous boundaries greatly
decimate the overall accuracy. However, thanks to the pro-
posed SRM, the regularization term Lrel in SRM enforced
the reconstructed image to have better task performance than
the noisy one, which also encouraged the blurred edges to
become more distinct during the reconstruction process.

Analysis on SPFA We have also excluded the SPFA from
our method, and the corresponding results are presented in
Table 2. After the removal of SPFA, the model’s perfor-
mance witnessed a decline due to the influence of noisy
pseudo labels. Moreover, we also argue that inappropriate
augmentation choices may impact the performance of seg-
mentation. To investigate this, we compare two different
data augmentation techniques with our SPFA approach: DA
in (Yang et al. 2022), and supplemented with feature-level
augmentation (FA dropout) in (Yang et al. 2023). The com-
parative results are shown in Table 3, SPFA appears to be the
best partner of GPL (Tab. 2), and their synergistic effect has
achieved the promising performance gain.

Conclusion
In this paper, we present a semi-supervised segmentation
approach powered by the large generalized segmentation
model SAM. Different from existing methods that inevitably
suffered from the sample bias, our method introduces SAM
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(d) BCP (e) UCMT (f) Ours (g) GT(c) MCF(b) UM(a) ST++ (d) BCP (e) UCMT (f) Ours (g) GT(c) MCF(b) UM(a) ST++

Figure 3: Comparisons of the segmentation results on our TEE data. From (a)-(g): The segmentation result of (a) ST++, (b)
UniMatch, (c) MCF, (d) BCP, (e) UCMT, (f) ours and (g) the ground truth, respectively.

(a) Noisy Image (b) Reconstructed Image (c) SAM's Prediction  
of Noisy Image

(d) SAM's Prediction  
of Reconstructed Image

(e) The Ground-
Truth

(a) Noisy Image (b) Reconstructed Image (c) SAM's Prediction  
of Noisy Image

(d) SAM's Prediction  
of Reconstructed Image

(e) The Ground-
Truth

Figure 4: Visualization of noisy/reconstructed images and their corresponding segmentation results.

Metrics only DA FA
dropout Ours

Dice ↑ 0.8385 0.8404 0.8604
ASD ↓ 1.97 1.84 1.65

Table 3: Ablation results from vanilla SAM and different
augmentation methods. The experiment was conducted on
our TEE dataset with of 20% labeled data.

with general knowledge to revise the biased pseudo la-
bels. For our TEE segmentation task, which represents an
extremely challenging type for medical image segmenta-
tion, we propose the self-reconstruction mechanism, au-
tonomously reconstructing the noisy input within the in-
ner loop of our segmentation network, which enables the
designs in SAM-powered PLG to improve the quality of

pseudo labels, and SPFA to avoid over-fitting towards inac-
curate pseudo labels. Our experiments, encompassing both
qualitative and quantitative evaluations, showcase the supe-
riority of our approach over existing semi-supervised meth-
ods. In essence, our proposed strategy advances LAA seg-
mentation in TEE images by synergizing self-reconstruction
learning and external knowledge integration within a semi-
supervised framework, offering promise for robust segmen-
tation in medical scenarios.
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