
Self-Interpretable Graph Learning with Sufficient and Necessary Explanations

Jiale Deng, Yanyan Shen*

Department of Computer Science and Engineering, Shanghai Jiao Tong University
{jialedeng, shenyy}@sjtu.edu.cn

Abstract
Self-interpretable graph learning methods provide insights to
unveil the black-box nature of GNNs by providing predic-
tions with built-in explanations. However, current works suf-
fer from performance degradation compared to GNNs trained
without built-in explanations. We argue the main reason is
that they fail to generate explanations satisfying both suffi-
ciency and necessity, and the biased explanations further hurt
GNNs’ performance. In this work, we propose a novel frame-
work for generating SUfficient aNd NecessarY explanations
(SUNNY-GNN for short) that benefit GNNs’ predictions. The
key idea is to conduct augmentations by structurally per-
turbing given explanations and employ a contrastive loss to
guide the learning of explanations toward sufficiency and ne-
cessity directions. SUNNY-GNN introduces two coefficients
to generate hard and reliable contrastive samples. We fur-
ther extend SUNNY-GNN to heterogeneous graphs. Empir-
ical results on various GNNs and real-world graphs show
that SUNNY-GNN yields accurate predictions and faithful
explanations, outperforming the state-of-the-art methods by
improving 3.5% prediction accuracy and 13.1% explainabil-
ity fidelity on average. Our code and data are available at
https://github.com/SJTU-Quant/SUNNY-GNN.

Introduction
Graph Neural Networks (GNNs) are widely employed for
learning representations of graph-structured data, such as
social networks (Xiao et al. 2023), co-purchase graphs (Li
et al. 2020), and paper citation networks (Luo et al. 2020a).
Despite their remarkable expressive power to model com-
plex graph data, the black-box nature of GNNs poses a sig-
nificant obstacle that hinders their usage in many applica-
tion domains that require trust and accountability. Therefore,
exploring the explainability of GNNs is crucial since good
explanations can provide insights into the decision logic in-
side GNNs. There have been numerous works proposed for
explaining trained GNNs by extracting salient substructures
of input graphs as explanations in a post-hoc manner (Ying
et al. 2019; Luo et al. 2020b; Wang et al. 2021b; Li et al.
2023). However, post-hoc explanations are not directly gen-
erated from GNNs and they are recognized to be biased or
inconsistent (Dai and Wang 2021; Miao, Liu, and Li 2022).

*corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ML

Original input

E1: sufficient & necessary:

E2: sufficient:

Explanations Predictions

ML

c
a

b
v

d

e

c
a

b
v

d

e ML DB SE

E3: necessary:

c
a

b
v

d

e

c
a

b
v

d

e

DB
SE

DB

?

ML DB SE

ML DB SE

Figure 1: An example of predicting the label (research area)
of the author node v in a coauthor network. A sufficient and
necessary explanation needs to preserve crucial information
such that a GNN can make the correct prediction confidently.

To overcome the shortcomings of post-hoc GNN explain-
ers, self-interpretable graph learning methods that simulta-
neously provide predictions and built-in explanations has
become a prominent solution. A self-interpretable graph
learning framework typically consists of (1) an explanation
generator that extracts substructure from the input graph as
the explanation, and (2) a GNN encoder that learns the rep-
resentation of the generated explanation for the final predic-
tion. While such a framework produces a distinct explana-
tion for each prediction, the quality of the generated expla-
nations is a crucial factor that determines the GNN perfor-
mance. One line of works (Yu et al. 2020; Dai and Wang
2021; Miao, Liu, and Li 2022) seek explanations that con-
tain sufficient information for the GNN to make correct pre-
dictions. Another line of works (Sui et al. 2022; Fan et al.
2022; Wu et al. 2022) focus on discovering necessary sub-
structures, expecting that any corruption to the substructures
would prevent the GNN from predicting correctly. Neverthe-
less, a sufficient explanation may introduce noisy informa-
tion and a necessary explanation may miss crucial patterns,
both hurting the GNN performance. In fact, existing self-
interpretable graph learning methods suffer from the degra-
dation of the GNN performance, i.e., up to 15.2% lower ac-
curacy than the original GNNs (see Table 2 for details).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11749

Example 1 Fig. 1 shows an example of a coauthor network,
where nodes represent authors and edges denote coauthor
relationships. Consider a GNN model that aims to predict
the research area of a target node v from ML, DB and SE.
Assume the truth label of v is ML.E1 is an ideal explanation
that enables the GNN to infer the truth label of v confidently
according to the rationale that v, a, b form an ML research
group. E2 is a sufficient explanation which contains the cru-
cial clique among v, a, b for the prediction. E3 is a neces-
sary explanation since corrupting (a, v) causes damage to
the complete ML research group information (the clique)
and hurts the prediction. However, E2 involves two noisy
edges (v, c), (c, e). As c, e are labeled as DB, E2 may mis-
lead the GNN to classify v as DB. Meanwhile, E3 fails to
disclose the crucial clique to the GNN and may reduce its
confidence on ML. In either case, the GNN’s performance
tends to be compromised due to the biased explanations.

In this paper, we propose SUNNY-GNN, a novel self-
interpretable graph learning framework with sufficient and
necessary explanations. Our objective is to promote the qual-
ity of the generated explanations toward both sufficiency and
necessity directions, encouraging the explanations to reach
a sweet spot that improves GNN’s performance.

To achieve this, for each generated explanation E, we
perform augmentations on E to get its positive and nega-
tive samples by adding and corrupting edges, respectively.
Our novel attempt is to utilize a contrastive loss Lcts that
supervises the explanation generator to produce sufficient
and necessary explanations, enabling the GNN to make cor-
rect predictions confidently. By analogy to contrastive learn-
ing (Oord, Li, and Vinyals 2018), minimizing Lcts means
pulling positive samples closer to the anchor while push-
ing negative samples distant from the anchor. In our con-
text, if E is not a sufficient explanation, it fails to provide
enough crucial information for the prediction. Adding edges
toE judiciously is able to fill in the missing information that
benefits the prediction (e.g., E3 versus E1 in Example 1).
Hence, we minimize Lcts to pull closer E and its positive
samples in their representations produced by the GNN en-
coder, aiming to turn the explanation to be more sufficient.
If E is not a necessary explanation, corrupting E slightly
will not change the prediction significantly (e.g., E2 versus
E1 in Example 1). This deduces that the representations of
E and its negative samples are closer after the GNN en-
coder. Hence, pushing them apart by minimizing Lcts is a
supervision signal that promotes the explanation towards the
necessity direction. To these ends, minimizing Lcts guides
the explanation generator to improve explanations from both
sufficiency and necessity perspectives. Finally, our SUNNY-
GNN framework combines Lcts with the classification loss,
facilitating the GNN’s predictions to benefit from the gener-
ated faithful explanations in an end-to-end manner.

It is noteworthy that how to augment explanations for gen-
erating effective contrastive signals remains challenging. On
one hand, we prefer hard positive and negative samples that
strengthen the contrastive signals. To build them, we intro-
duce distance coefficients to control the strength of perturba-
tions on E and emphasize hard contrastive samples. On the

other hand, the positive and negative samples should be reli-
able. We thus introduce confidence coefficients to help filter
out positive samples that introduce noisy edges into expla-
nations and negative samples that trivially remove irrelevant
edges from explanations (w.r.t. the prediction).

The contribution of this paper can be summarized as:

• We demonstrate existing self-interpretable graph learn-
ing suffers from the GNN performance degradation and
describe the importance of generating sufficient and nec-
essary explanations that benefit the GNN performance.

• We propose a novel self-interpretable graph learning
framework named SUNNY-GNN. It augments explana-
tions to derive contrastive samples and employs a con-
trastive loss to supervise the explanation generator to-
ward distilling sufficient and necessary explanations.

• We introduce the distance and confidence coefficients to
generate hard and reliable contrastive samples that lead
to effective contrastive signals.

• SUNNY-GNN achieves state-of-the-art performance in
terms of prediction accuracy and explanation quality on
various real-world graph datasets. Furthermore, we ex-
tend our approach to self-interpretable heterogeneous
graph learning and observe a remarkable improvement.

Preliminaries
Graph. LetG=(E ,V) denote a graph where V is the node
set and E ∈V×V is the edge set. The graph structure can be
described by an adjacency matrix A ∈ {0, 1}|V|×|V|, with
Auv = 1 indicating the existence of a directed edge (u, v)
from node u to node v and Auv = 0 otherwise. We denote
the node feature matrix as X ∈ R|V|×d(0) where d(0) is the
input feature dimension of each node.

Graph Neural Network. We consider a GNN model that
takes a graph G as input and learns node representations
for node classification tasks. Typically, GNN employs the
message-passing mechanism to propagate and aggregate in-
formation from immediate neighbors along edges. For the
l-th layer of an L-layer GNN g, we can compute the repre-
sentation of node v as: z(l)v =g(l)(z

(l−1)
v , {z(l−1)

u |u, (u, v)∈
E}), where z(0)v = Xv . The last-layer node representations
will be used to make predictions. Each node in the training
set Vtrain is labeled with y ∈ Y . Label y ∈ R|T | is a one-
hot vector and T is the set of classes. Commonly |Vtrain| is
much smaller than |V| in real-world tasks.

For an L-layer GNN, the representation of target node v is
determined by its L-hop neighbors (Ying et al. 2019). Gen-
erally, its local computation graph GC = (EC ,VC)1 can be
extracted from G using these neighbors. As shown in Fig.
3, GC indicates how messages are propagated, aggregated,
and updated layer by layer inside a GNN.

Problem Formulation. We follow previous works (Miao,
Liu, and Li 2022; Sui et al. 2022) and employ salient

1Subscripts for target node v are omitted in the rest of this paper
for the simplification of notations.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11750

GNN

GNN

MLP

MLP

MLP

(1) Explanation generation

(2) Predict ion

(3) Augmentation
perturbation

Figure 2: The framework of SUNNY-GNN.

edges as explanations. This paper aims to develop a self-
interpretable graph learning framework containing an expla-
nation generator h, a GNN encoder g, and a classifier f .
Given a node v∈V and a graph G, the framework is able to
produce faithful explanations using GS=h(G, v) and accu-
rate predictions with ŷ=f(g(GS)).

Methodology
In this section, we first introduce the framework of SUNNY-
GNN, including explanation generation, explanation aug-
mentation, model prediction and the optimization objective.
We then extend SUNNY-GNN to heterogeneous graphs.

Framework Overview
Fig. 2 illustrates the overall workflow. (1) Explanation gen-
eration: We first extract the computation graph GC of target
node v from G, and encode it into node representations Z
by GNN encoder hφ. With Z as input, the decoder MLP
hθ outputs a saliency map M ∈ R|EC |, where mij denotes
the importance score of edge (i, j). The explanation GS is
then generated by combining GC and M . (2) Prediction:
We encode GS into representations ZS using another GNN
encoder gϕ, and produce prediction ŷ with MLP-based clas-
sifier fπ . The prediction loss Lpred is the cross-entropy be-
tween ŷ and the label y. (3) Augmentation: we augment GS
into a set of positive and negative samples {G+

S , G
−
S }. The

encoded representations of augmented samples are fed into
a projection head fψ to compute the contrastive loss Lcts.
The whole framework is trained in an end-to-end manner by
iteratively updating model parameters Θ = {φ, θ, ϕ, π, ψ}
supervised by Lpred and Lcts. Without loss of generality,
we employ 2-layer GNN encoders, i.e., L=2 for hφ and gϕ.

Explanation Generation
For any target node v, the explanation generator h assigns a
saliency map M to the edges of GC , and generates an atten-
tive explainable graph GSatt =GC⊙M . To ensure the dif-
ferentiability of backpropagation during training, the expla-
nation GS is in the form of GSatt

, where the weighted edge
importance score is used to control the message aggregation,
similar to the graph attention mechanism (Hamilton, Ying,
and Leskovec 2017). To provide human-understandable ex-
planations after training, we sample important edges from

GSatt to form GS , for example, GS ∼Bern(GSatt), where
Bern(·) is the Bernoulli distribution parameterized by M
(Miao, Liu, and Li 2022). The number of sampled edges is
|ES |=⌊k|EC |⌋, where k∈(0, 1] is the sample ratrio.

We now introduce how to produce the saliency map M
with h. We first extract the 2-hop computation graph GC of
v, as illustrated in the first step of Fig. 3, and then compute
the importance scores for edges in GC . To be more specific,
for a directed edge (i, j) from node i to node j in GC , we
compute its importance score by:

• mij = hθ(z
(0)
i ||z(1)j ||z(2)v), if (i, j) connects nodes in

layer 0 and layer 1, e.g., edge (e, c) in Fig. 3;

• mij = hθ(z
(1)
i ||z(2)j ||z(2)v), if (i, j) connects nodes in

layer 1 and layer 2, e.g., edge (c, v) in Fig. 3;

where hθ is an MLP parameterized with θ and || means
the concatenation operation. We concatenate the target node
representation z(2)v into the edge embedding, because the ex-
planations of different nodes in a graph may have diverse
structures (Luo et al. 2020b). For GNN encoders with differ-
ent feature dimensions in each layer (e.g., d(0) ̸=d(1) ̸=d(2)),
we train MLP-based mapping functions pµ parameterized
with µ that project the features of each layer into a common
dimension d(2), i.e., z̃(0)i = pµ0

(z
(0)
i) and z̃(1)i = pµ1

(z
(1)
i).

The mapped representation z̃ is then used to compute mij .

Augmentation
For a given explanationGS , we respectively augmentGS to-
ward sufficiency and necessity directions and treat the aug-
mented explanation as positive and negative samples in con-
trastive learning. We perform augmentations by structurally
perturbing the generated explanatory subgraph GS . To be
more specific, considering GS as the anchor:

• Positive samples G+
S ={G+

S1
, · · · , G+

Sn+
} are created by

adding edges to GS , where n+ is the number of posi-
tive samples. If GS is an insufficient explanation and the
samples in G+

S lead to correct prediction as GS , pulling
G and the samples in G+

S closer in their representations
is essentially guiding the explanation toward the suffi-
ciency direction. To construct eachG+

Si
, i∈{1, · · · , n+},

we sample r+ edges from GC\GS and add them to
GS . Fig. 3 provides an example of a positive sample
G+
Si
=GS ⊕ (c, v), where we add one edge (c, v) to GS ;

• Negative samples G−
S = {G−

S1
, · · · , G−

Sn−
} are created

by removing edges from GS , where n− is the number
of negative samples. If GS lacks necessity, corrupting its
edges into the samples inG−

S may not change the predic-
tion. Hence, by pushing GS distant from the samples in
G−
S in their representations, we expect GS and the sam-

ples in G−
S leading to different predictions, thus guiding

the explanation toward the necessity direction. To con-
struct G−

Sj
, j ∈ {1, · · · , n−}, we sample r− edges from

GS and remove them from GS . An example for negative
samples is shown as G−

Sj
= GS ⊖ (a, b) in Fig. 3, where

we remove one edge (a, b) from GS .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11751

a
c

d

e
v

?

x

b

v

a bc

v b vd e a v

v

a bc

v b vd e a v

v

a bc

v b vd e a v

v

a bc

v b vd e a v

(1) (2)

(3)

layer 2

layer 1

layer 0

Figure 3: An example of getting augmented samples. For a
target node v on the input graphG, we (1) extract its compu-
tation graph GC from G, and (2) sample the explanation GS
from GC , then (3) get the augmented positive and negative
samples {G+

S , G
−
S } by adding or corrupting edges.

Note that in the training phase, GS is in the form of
GSatt and we actually perform soft augmentations onGSatt .
Specifically, we increase the edge weights of sampled pos-
itive edges, equivalent to adding them into GS , and reduce
the edge weights of sampled negative edges, equivalent to
removing them from GS . Due to the space limit, we provide
the detailed algorithm in the supplementary material.

A simple way to generate positive and negative samples
is to sample edges based on their importance scores in M .
However, this way may result in trivial samples that impair
the self-supervision signals or unreliable samples that mis-
lead the GNN training. To address the problem, we introduce
two coefficients, aiming to get hard and reliable positive and
negative samples that ensure effective self-supervision.

Distance Coefficients. As contrastive learning benefits
from hard samples (Robinson et al. 2020), we introduce the
distance coefficients to control the perturbation strength and
create hard positive and negative samples. Recall that the ad-
dition and removal operations of edges are implemented by
increasing or reducing the corresponding edge weights. Due
to the hierarchical tree structure of GC , intuitively, pertur-
bations on edges closer to the target node v tend to have
a greater impact to v than those on farther edges. For the
example in Fig. 3, increasing the weight of edge (c, v) will
amplify not only the information flowing from c to v, but
also the information from d, v, and e through c to v. This
principle also applies to the removal operation.

Hence, for positive samples, adding an edge that is closer
and related to the target node will introduce more informa-
tion than adding a farther, unrelated one, which is harder to
be pulled closer to GS . For example, GS ⊕ (c, v) is a harder
positive sample thanGS⊕(d, c). Similarly, for negative sam-
ples, removing a farther edge leads to less information de-
crease, which is more difficult to be pushed away from GS .
For example, GS ⊖ (a, b) is a harder negative sample than
GS ⊖ (b, v). Formally, we define the distance coefficients
δ+ and δ− as additional weights to the edges in GC :

δ+ = 1− α · exp(d) ∈ R|EC|, (1)

δ− = α · exp(d) ∈ R|EC|, (2)

where α ∈R+ is a positive constant and d∈ {1, ..., L}|EC |.
d(i,j) = l means there are l steps starting from the source
node i of edge (i, j) to reach v. For example, d(e,c) = 2
since it takes 2 steps from e to v. The positive samples are
obtained by adding edges (i.e., increasing edge weights) ran-
domly sampled by M ⊙ δ+, while the negative samples are
obtained by removing edges (i.e., reducing edge weights)
sampled byM ⊙ δ−.

Confidence Coefficient. We leverage label information
and model output to filter out unreliable augmented sam-
ples. Specifically, when constructing positive samples, intro-
ducing noise into GS may result in a decrease in prediction
confidence, making these samples far away from the suffi-
ciency direction. Similarly, when constructing negative sam-
ples, removing irrelevant edges from GS may not affect the
prediction, i.e., the negative samples tend to have the same
prediction asGS . In either case, the augmented explanations
are untrustworthy and will mislead the GNN training. There-
fore, we want to mitigate the effects of untrustworthy posi-
tive and negative samples on the training process. Formally,
we define the confidence coefficients η+ and η− to reweight
the augmented samples:

η+ = SoftMax(fπ(gϕ(G
+
S))Yvt) ∈ Rn+

, (3)

η− = (1− SoftMax(fπ(gϕ(G
−
S))Yvt)) ∈ Rn−

, (4)

where fπ(gϕ(G+
S))Yvt

is the prediction probability of aug-
mented samples in the truth label t ∈ T of target node v.

Prediction and Optimization
Given explanation GS , the model outputs the prediction by:

zS = gϕ(GS), ŷ = fπ(zS). (5)

We devise the following objective to train SUNNY-GNN:
min
Θ

Lpred + γLcts, (6)

where γ is a trade-off hyperparameter, Lpred is the super-
vised prediction loss term and Lcts is the contrastive loss
term for optimizing the explanations.

Prediction Loss. We compute Lpred by the average cross-
entropy loss on all labeled nodes, which is defined as:

Lpred = − 1

|Vtrain|
∑

v∈Vtrain

T∑
t=1

Yvt log Ŷvt, (7)

where Ŷvt is the t-th entry of the model output for labeled
node v and Yvt is the corresponding truth label.

Contrastive Loss. We compute Lcts(v) for node v by:

Lcts(v) = E

− log
η+
i e

z⊤S z+
Si

/τ∑
j η

+
j e

z⊤
S

z+
Sj

/τ
+

∑
k η

−
k e

z⊤
S

z−
Sk

/τ

 ,

(8)

where zS = fψ(gϕ(GS)), z+S = fψ(gϕ(G
+
S)) and z−S =

fψ(gϕ(G
−
S)) are the projected representations of GS , G+

S

and G−
S , respectively. τ >0 is a scalar temperature hyperpa-

rameter. Then Lcts over all labeled nodes is computed by:

Lcts =
1

|Vtrain|
∑

v∈Vtrain

Lcts(v). (9)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11752

Citeseer Cora Pubmed Amazon Coauthor-
CS Physics

|V| 3327 2708 19717 7650 18333 34493
|EC | 2 68 162 318 31443 861 3413
|E| 9228 10556 88651 238163 163788 495924
|T | 6 7 3 8 15 5
|Vtrain| 120 140 60 100 100 100

Table 1: The statistics of the datasets.

Adapting SUNNY-GNN to Heterogeneous Graphs
Real-world graph learning is often more complex due to the
heterogeneity of node and edge types. For example, in a cita-
tion network, nodes may have different types such as paper,
author, and conference. To generalize our method to such
scenarios, we make the following adjustments. The detailed
algorithm is provided in the supplementary material.

• We train different mapping functions to map representa-
tions of different node types into the same dimension for
calculating the saliency map with h.

• We take edge types and meta-path information into
consideration when performing augmentations. Meta-
path is a predefined semantic pattern. For example, the
author↔paper↔author meta-path defines the “coau-
thor” relationship. Nodes/edges in a path that instantiates
the meta-path are semantically related. To construct pos-
itive samples, we prioritize the edges that, when added to
GS , will instantiate a pre-defined meta-path. These sam-
ples are considered hard positive samples since they in-
troduce more semantic information and make it harder to
optimize h toward the sufficiency direction. Similarly, to
construct negative samples, we prioritize the edges that
are not present in the meta-path instances. They are con-
sidered hard negative samples since the corrupted edges
are not informative and make it harder to optimize h to-
ward the necessity direction.

Time Complexity Analysis
In the training phase, for each node v∈Vtrain, the time cost
is based on its local computation graph size |EC |. The cost of
generating an explanation is O(|EC |). Given the explanation
GS , the cost of computing Lpred is O(|ES |) and the cost
of computing Lcts is O((n++n−)|ES |). |ES |= k|EC | with
k ∈ (0, 1]. Hence, the overall training time complexity is
O(T

∑
v((1+n

++n−)k|EC |)), where T is the number of
training iterations. In the inference phase, the time cost for
generating the explanation and prediction is O((1+k)|EC |).

Experiments
Experimental Settings
Datasets. We run experiments on five real-world datasets
for node classification tasks. Their statistics are presented
in Table 1. We select three widely-used benchmark datasets

2 |EC | is average number of edges in 2-hop computation graphs,
which describes the local structural complexity of a graph dataset.

in citation networks: Citeseer, Cora, and Pubmed (Yang,
Cohen, and Salakhudinov 2016), where nodes represent sci-
entific publications and edges represent citation relation-
ships. To further validate the effectiveness of our method
on large-scale graphs, we introduce another three datasets.
Their local connectivity of nodes is more complex. Ama-
zon (Shchur et al. 2018) is the Amazon Photo subset of the
Amazon co-purchase graph, whose nodes represent goods
and edges represent that two goods are frequently bought to-
gether. Coauthor-CS and Coauthor-Physics (Shchur et al.
2018) are coauthorship networks based on the Microsoft
Academic Graph, where nodes are authors, that are con-
nected by an edge if they co-authored a paper. For further
tasks in heterogeneous scenarios, we use IMDB, DBLP and
ACM datasets. Their detailed statistics can be found in pre-
vious works (Wang et al. 2021a; Lv et al. 2021).

Self-Interpretability Baselines. The backbone GNN en-
coders are implemented with the widely-employed GCN
(Kipf and Welling 2016) and GAT (Hamilton, Ying, and
Leskovec 2017) architectures. We use the original graph
as input to train the base GNNs, and regard their predic-
tion performance as the base performance. We use Simple-
HGN (Lv et al. 2021) as the backbone GNN in hetero-
geneous datasets. We also compare prediction performance
with state-of-the-art self-interpretable graph learning meth-
ods. (1) GSAT (Miao, Liu, and Li 2022) injects stochasticity
to edges and leverages the reduction of stochasticity to se-
lect important edges under the guidance of information bot-
tleneck principle. (2) CAL (Sui et al. 2022) proposes the
causal attention graph learning strategy that encourages the
GNNs to exploit the causal rationales necessary for making
correct predictions. (3) SE-GNN (Dai and Wang 2021) iden-
tifies a set of K-nearest labeled nodes in the holistic graph
as explanations, and utilizes them to make predictions. (4)
ProtGNN (Zhang et al. 2022) learns a set of abstract proto-
types as explanations and makes predictions by comparing
the input graph with prototypes.

Post-hoc Explainability Baselines. We compare the ex-
plainability performance with advanced post-hoc explain-
ers with edge saliency masks as explanations. (1) GNNEx-
plainer (Ying et al. 2019) individually learns soft masks
for target nodes. (2) PGExplainer (Luo et al. 2020b) trains
a global parameterized mask predictor to generate edge
masks. (3)ReFine (Wang et al. 2021b) employs a pre-
training and fine-tuning framework to train the mask pre-
dictor. Additionally, self-interpretable methods, e.g., GSAT,
CAL, and SUNNY-GNN are able to give post-hoc explana-
tions by replacing the GNN encoder with the target GNN.

Metrics. We report classification accuracy (Acc) to mea-
sure prediction performance. For explainability, we use fi-
delity metrics (Yuan et al. 2022) measuring the faithful-
ness of explanations to the model. Fidelity includes nega-
tive fidelity (fid−) and positive fidelity (fid+). fid− mea-
sures sufficiency by evaluating the prediction change when
only explanations are retained. fid+ measures necessity
by comparing the original predictions with new predictions
obtained without explanations. Lower fid− indicates bet-
ter sufficiency, while higher fid+ indicates better necessity.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11753

Citeseer Cora Pubmed Amazon Coauthor-CS Coauthor-Physics

GCN 69.84±0.7 81.20±0.7 77.68±0.7 90.18±0.3 83.52±0.4 92.46±0.2
+ GSAT 70.90±1.1 81.48±0.7 77.44±0.3 88.36±1.3 83.76±0.6 92.14±0.5
+ CAL 65.60±1.1 75.72±1.2 73.66±0.8 84.32±1.7 82.12±1.2 91.26±0.7
+ SE-GNN 68.90±0.9 80.72±0.1 77.56±0.3 - 83.14±0.8 -
+ ProtGNN 66.30±2.1 77.48±8.7 74.18±3.3 82.46±1.4 79.50±3.7 88.80±3.3
+ SUNNY-GNN 70.72±0.8 81.68±0.9 78.68±0.2 90.43±0.4 85.03±1.1 93.10±0.8

Average impro. (%) 3.6 ↑ 3.1 ↑ 3.4 ↑ 4.8 ↑ 3.2 ↑ 3.0 ↑
GAT 69.68±1.2 81.22±0.7 77.50±0.4 89.08±1.8 84.42±0.8 92.30±0.5

+ GSAT 69.42±0.8 81.20±0.7 77.04±0.3 89.73±0.4 84.37±0.7 91.90±0.8
+ CAL 67.64±1.5 76.64±1.1 74.74±0.7 84.86±11.5 78.69±3.8 78.24±5.1
+ SE-GNN 68.18±1.1 79.46±0.4 75.88±0.4 - 83.71±0.5 -
+ ProtGNN 69.90±1.5 80.40±0.9 76.84±0.8 86.52±0.3 80.95±1.2 90.42±2.3
+ SUNNY-GNN 71.30±0.7 82.18±1.3 78.14±0.3 90.78±0.4 85.13±0.5 93.06±0.6

Average impro. (%) 3.2 ↑ 3.1 ↑ 2.3 ↑ 3.0 ↑ 3.4 ↑ 6.0 ↑

Table 2: Classification Acc(%). The best and second-best results are bolded and underlined, respectively.

GAT
GSAT
SUNNY-GNN

20 40 60 80

0.8

0.7

0.6
20 40 60 80

GCN
GSAT
SUNNY-GNN

Figure 4: The classification Acc (y-axis) in Pubmed dataset
w.r.t. the number of labeled nodes (x-axis).

Formally, they are computed by:

fid− =
1

N

N∑
i=1

|1(ŷi = yi)− 1(ŷi
GS = yi)|, (10)

fid+ =
1

N

N∑
i=1

|1(ŷi = yi)− 1(ŷi
GC\GS = yi)|, (11)

where the indicator function 1(ŷi = yi) returns 1 if ŷi = yi
and returns 0 otherwise. N is the number of test samples.
ŷi
GS and ŷiGC\GS are the model output when inputting the

explanation GS and its complement GC\GS , respectively.

Implementation Details. We use PyTorch to implement
SUNNY-GNN. For baselines, we utilize their original codes
with minor adaptations to fit them to tasks in this paper. For
SUNNY-GNN, we set coefficient of contrastive loss γ=0.01
and the temperature hyperparameter τ =0.1. All the exper-
iments are conducted 5 times with different random seeds
and average results with standard deviations are reported.
More details can be found in the supplementary material.

Evaluations of Prediction Performance
Table 2 shows the prediction performance of SUNNY-
GNN and all baseline methods. Our method outperforms the
baselines by 3.5% on average and up to 6.0%. We have the
following observations:

IMDB DBLP ACM

Simple-HGN 62.24±0.7 95.70±0.8 91.44±0.5
+ GSAT 62.18±1.3 95.74±0.8 91.06±0.7
+ SUNNY-GNN 63.10±0.9 95.73±0.5 92.10±0.6

Table 3: Classification Acc(%) in heterogeneous datasets.

(1) SUNNY-GNN surpasses the base performance
while most baselines fail to. SUNNY-GNN improves the
base performance by 1.1% on average and up to 2.3%, as
it is able to preserve sufficient and necessary explanations
for capturing useful information. GSAT is the second-best
baseline, as it achieves an average approximation of -0.1%
over the base performance, with a maximum improvement
of 1.5%. Its graph information bottleneck principle is loosed
to preserve a sufficient amount of salient information while
lacking the ability to filter out noise. CAL uses causal at-
tention to select important causal substructures. However,
in most cases, the discovered causal structures are sparse.
The lack of important information leads to a significant de-
cline in prediction performance compared to the base perfor-
mance. We are not able to reproduce the results of SE-GNN
in Coauthor-Physics and Amazon, due to the extreme mem-
ory cost (more than 90 GB) for storing pairwise edge simi-
larity to derive the K-nearest neighbors as explanations.

(2) SUNNY-GNN is more robust when the labeled
nodes get fewer. Based on Table 2, we observe that SUNNY-
GNN exhibits a higher average improvement (3.7%)
in datasets with fewer labels (e.g., Pubmed, Amazon,
Coauthor-CS and Coauthor-Physics) compared to the im-
provement (3.2%) in other datasets with more labels. We
conduct an extensive experiment to verify this observation.
We reduce the number of labeled nodes in Pubmed dataset
and record the change of prediction accuracy, as shown
in Fig. 4. We compare SUNNY-GNN with base GNNs
and the second-best baseline, GSAT. We find that SUNNY-
GNN could steadily approximate the base performance as
the number of labels decreased, while GSAT fails to. As the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11754

Citeseer Cora

fid+ ↑ fid− ↓ fid+ ↑ fid− ↓
GCN

+ GNNExplainer 72.27±4.2 9.31±3.4 38.29±4.1 1.08±0.4
+ PGExplainer 82.09±7.2 0.92±2.6 87.47±0.9 1.42±0.3
+ ReFine 83.01±7.1 0.78±0.5 88.19±0.6 0.00±0.0
+ GSAT 86.75±5.7 2.72±1.1 76.11±16.0 1.82±1.0
+ CAL 86.44±4.3 12.25±3.9 82.15±9.1 5.78±0.8
+ SUNNY-GNN 87.29±5.3 0.25±0.4 90.24±0.3 0.00±0.0

GAT
+ GNNExplainer 52.95±16.9 8.61±10.1 36.44±21.0 1.43±2.2
+ PGExplainer 76.80±0.3 1.71±2.8 88.25±6.1 0.17±0.2
+ ReFine 77.78±2.8 0.32±1.3 88.79±3.2 0.00±0.0
+ GSAT 72.52±8.1 1.55±1.3 77.43±8.7 1.03±0.5
+ CAL 77.78±6.5 11.46±1.4 85.23±9.6 5.34±1.5
+ SUNNY-GNN 79.25±2.4 0.46±0.5 91.79±3.2 0.00±0.0

Table 4: Explainability performance (%). The best and
second-best results are bolded and underlined, respectively.

Figure 5: The visualization of explanations generated by (a)
SUNNY-GNN, (b) GSAT and (c) CAL in Coauthor-CS.

number of labels decreases, the supervision signal also de-
creases sharply, making GSAT fail to discover salient ex-
planations. SUNNY-GNN introduces a contrastive loss and
constructs more samples through data augmentation, mak-
ing it more robust to the few-label issue.

(3) SUNNY-GNN is more effective as the graph struc-
ture grows more complex. In datasets with higher local
structural complexity |EC | (e.g., Amazon and Coauthor-
Physics), SUNNY-GNN shows a higher improvement
(4.2%) compared to the improvement (3.2%) in other sim-
pler datasets. To further investigate the performance of self-
interpretable methods when it comes to more complex tasks,
we conduct extensive experiments in heterogeneous graphs.
As shown in Table 3, SUNNY-GNN outperforms heteroge-
neous baselines 0.8% on average and up to 1.5%.

Evaluations of Explainability Performance
Quantitative Evaluations. Table 4 presents a compari-
son of the explainability performance of SUNNY-GNN with
post-hoc explainable and self-interpretable baselines. Our
method outperforms the baselines by 13.1% on average and
up to 33.5%. We observe that SUNNY-GNN generates ex-
planations satisfying both good sufficiency and neces-
sity, while other baselines fail to. In most cases, SUNNY-

Acc ↑ fid+ ↑ fid− ↓
SUNNY-GNN 71.26±0.7 79.25±2.4 0.46±0.5
w/o Lcts 69.01±1.2 76.50±1.4 1.78±0.4
w/o δ 70.78±0.7 79.13±1.8 0.47±0.5
w/o η 70.48±0.8 77.83±1.9 1.28±1.0

Table 5: Individual contributions of proposed modules.

GNN achieves low fid− scores approaching 0 and high
fid+ scores, indicating its capability in generating suf-
ficient and necessary explanations. However, GSAT con-
sistently retains sufficient explanations and CAL tends to
generate necessary explanations. For instance, in Citeseer
dataset with GAT as backbone, GSAT achieves lower fid−
than CAL, suggesting that it provides more sufficient ex-
planations. Analogously, higher fid+ implies CAL gener-
ates more necessary explanations than GSAT. Experiments
in other datasets can be found in the supplementary material.

Case Studies. We visualize the generated explanations for
author-node No.15155 of Coauthor-CS, where edges marked
in red are considered explanations. As presented in Fig.
5, SUNNY-GNN highlights the most salient input informa-
tion and prevents harmful information from flowing into vt,
while other baselines (e.g., GSAT and CAL) may introduce
noisy information into explanations.

Ablation Studies
As illustrated in Table 5, we evaluate the individual contri-
butions of the contrastive loss Lcts, distance coefficients δ,
and confidence coefficients η in Citeseer dataset with GAT
as backbone. Without Lcts, the overall performance has a
decrease of 3.4%, suggesting that solely relying on the self-
interpretation principle can have a detrimental effect on the
model’s performance as it fails to learn effective explana-
tions. In contrastive learning, δ is used to prioritize hard
samples, and η is used to filter out unreliable samples. The
absence of the two coefficients also harms the performance
(0.3%↓ and 1.2%↓ respectively).

Conlusion
In this paper, we illustrate the importance of generating suf-
ficient and necessary explanations for improving the perfor-
mance of self-interpretable graph learning methods. We pro-
pose a novel framework, SUNNY-GNN, to generate such ex-
planations while improving prediction performance. It aug-
ments an explanation by adding or corrupting edges to ob-
tain positive or negative samples. By empowering the pre-
diction loss with contrastive loss computed from the aug-
mented samples, SUNNY-GNN enbables the explanation
generator to produce beneficial explanations that are both
sufficient and necessary. Extensive experimental results in
real-world datasets show that SUNNY-GNN achieves re-
markable improvement in GNNs’ performance by providing
sufficient and necessary explanations. Furthermore, we ex-
tend SUNNY-GNN to heterogeneous graph learning tasks
and achieve preliminary results. We leave its applications in
more complex graph learning scenarios for future work.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11755

Acknowledgements
This work is supported by the National Key Research
and Development Program of China (2022YFE0200500),
Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102), and SJTU Global Strategic Partner-
ship Fund (2021SJTU-HKUST).

References
Dai, E.; and Wang, S. 2021. Towards self-explainable graph
neural network. In Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Manage-
ment, 302–311.
Fan, S.; Wang, X.; Mo, Y.; Shi, C.; and Tang, J. 2022. Debi-
asing graph neural networks via learning disentangled causal
substructure. Advances in Neural Information Processing
Systems, 35: 24934–24946.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Li, T.; Deng, J.; Shen, Y.; Qiu, L.; Yongxiang, H.; and
Cao, C. C. 2023. Towards Fine-Grained Explainability for
Heterogeneous Graph Neural Network. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37,
8640–8647.
Li, Z.; Shen, X.; Jiao, Y.; Pan, X.; Zou, P.; Meng, X.; Yao,
C.; and Bu, J. 2020. Hierarchical bipartite graph neural net-
works: Towards large-scale e-commerce applications. In
2020 IEEE 36th International Conference on Data Engi-
neering (ICDE), 1677–1688. IEEE.
Luo, D.; Bian, Y.; Yan, Y.; Liu, X.; Huan, J.; and Zhang, X.
2020a. Local community detection in multiple networks. In
Proceedings of the 26th ACM SIGKDD international con-
ference on knowledge discovery & data mining, 266–274.
Luo, D.; Cheng, W.; Xu, D.; Yu, W.; Zong, B.; Chen, H.;
and Zhang, X. 2020b. Parameterized explainer for graph
neural network. Advances in neural information processing
systems, 33: 19620–19631.
Lv, Q.; Ding, M.; Liu, Q.; Chen, Y.; Feng, W.; He, S.; Zhou,
C.; Jiang, J.; Dong, Y.; and Tang, J. 2021. Are we really
making much progress? revisiting, benchmarking and refin-
ing heterogeneous graph neural networks. In Proceedings of
the 27th ACM SIGKDD conference on knowledge discovery
& data mining, 1150–1160.
Miao, S.; Liu, M.; and Li, P. 2022. Interpretable and gener-
alizable graph learning via stochastic attention mechanism.
In International Conference on Machine Learning, 15524–
15543. PMLR.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Robinson, J. D.; Chuang, C.-Y.; Sra, S.; and Jegelka, S.
2020. Contrastive Learning with Hard Negative Samples.
In International Conference on Learning Representations.

Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868.
Sui, Y.; Wang, X.; Wu, J.; Lin, M.; He, X.; and Chua, T.-
S. 2022. Causal attention for interpretable and generaliz-
able graph classification. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, 1696–1705.
Wang, X.; Liu, N.; Han, H.; and Shi, C. 2021a. Self-
supervised heterogeneous graph neural network with co-
contrastive learning. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Min-
ing, 1726–1736.
Wang, X.; Wu, Y.; Zhang, A.; He, X.; and Chua, T.-S. 2021b.
Towards multi-grained explainability for graph neural net-
works. Advances in Neural Information Processing Systems,
34: 18446–18458.
Wu, Y.-X.; Wang, X.; Zhang, A.; He, X.; and Chua, T.-S.
2022. Discovering invariant rationales for graph neural net-
works. arXiv preprint arXiv:2201.12872.
Xiao, S.; Zhu, D.; Tang, C.; and Huang, Z. 2023. Combin-
ing Graph Contrastive Embedding and Multi-head Cross-
Attention Transfer for Cross-Domain Recommendation.
Data Science and Engineering, 8(3): 247–262.
Yang, Z.; Cohen, W.; and Salakhudinov, R. 2016. Revisiting
semi-supervised learning with graph embeddings. In Inter-
national conference on machine learning, 40–48. PMLR.
Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnnexplainer: Generating explanations for graph
neural networks. Advances in neural information processing
systems, 32.
Yu, J.; Xu, T.; Rong, Y.; Bian, Y.; Huang, J.; and He, R.
2020. Graph Information Bottleneck for Subgraph Recogni-
tion. In International Conference on Learning Representa-
tions.
Yuan, H.; Yu, H.; Gui, S.; and Ji, S. 2022. Explainability
in graph neural networks: A taxonomic survey. IEEE trans-
actions on pattern analysis and machine intelligence, 45(5):
5782–5799.
Zhang, Z.; Liu, Q.; Wang, H.; Lu, C.; and Lee, C. 2022. Prot-
gnn: Towards self-explaining graph neural networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 36, 9127–9135.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11756

