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Abstract

Reinforcement Learning from Demonstrations (RLfD) has
emerged as an effective method by fusing expert demonstra-
tions into Reinforcement Learning (RL) training, harness-
ing the strengths of both Imitation Learning (IL) and RL.
However, existing algorithms rely on offline demonstrations,
which can introduce a distribution gap between the demon-
strations and the actual training environment, limiting their
performance. In this paper, we propose a novel approach,
Reinforcement Learning from Online Demonstrations (RL-
fOLD), that leverages online demonstrations to address this
limitation, ensuring the agent learns from relevant and up-to-
date scenarios, thus effectively bridging the distribution gap.
Unlike conventional policy networks used in typical actor-
critic algorithms, RLfOLD introduces a policy network that
outputs two standard deviations: one for exploration and the
other for IL training. This novel design allows the agent to
adapt to varying levels of uncertainty inherent in both RL and
IL. Furthermore, we introduce an exploration process guided
by an online expert, incorporating an uncertainty-based tech-
nique. Our experiments on the CARLA NoCrash benchmark
demonstrate the effectiveness and efficiency of RLfOLD. No-
tably, even with a significantly smaller encoder and a single-
camera setup, RLfOLD surpasses state-of-the-art methods
in this evaluation. These results, achieved with limited re-
sources, highlight RLfOLD as a highly promising solution
for real-world applications.

1 Introduction
Urban Autonomous Driving (AD) is considered a challeng-
ing and critical task. In order to navigate effectively, agents
must analyze a highly intricate environment and continu-
ously make real-time decisions to adhere to driving regula-
tions, while also interacting with other dynamic agents like
drivers and pedestrians (Coelho and Oliveira 2022). Conse-
quently, researchers have been redirecting their efforts from
rule-based methods to end-to-end learning approaches.

End-to-end learning methods can be divided into two cat-
egories: Imitation Learning (IL) and Reinforcement Learn-
ing (RL). In IL, an agent learns a task by imitating an ex-
pert’s behavior, leveraging expert demonstrations as ground
truth. The main advantage of IL is the ability to rapidly learn
from expert knowledge, accelerating the learning process
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and acquiring safe and efficient behaviors (Liu et al. 2022).
However, agents trained with IL may face challenges in gen-
eralizing to unseen scenarios, as they tend to be biased to-
wards the demonstrated behavior (Chekroun et al. 2021). On
the other hand, RL involves learning through trial and error,
where an agent explores the environment, receives feedback
in the form of rewards, and gradually improves its policy.
A key advantage of RL is its ability to handle unknown sit-
uations. However, RL often requires extensive exploration
and can be sample-inefficient, requiring significant time and
resources for learning (Van Hasselt, Guez, and Silver 2016).

Reinforcement Learning from Demonstrations (RLfD)
seeks to harness the benefits of both IL and RL by inte-
grating expert demonstrations into the RL training. Thus of-
fering a significant boost in sample efficiency compared to
standalone RL (Liu et al. 2022). This enhancement stems
from the ability of expert demonstrations to minimize the
required interactions with the environment for learning the
desired behavior. Moreover, the expert demonstrations pro-
vide valuable insights that enable the agent to explore the
state-action space more effectively (Goecks et al. 2019).

Despite the recent advancements of RLfD (Nair et al.
2018; Hansen et al. 2022), the conventional approach of
collecting a demonstration dataset has inherent limitations.
One major drawback is the requirement of pre-collecting a
dataset, which can be a laborious and time-consuming pro-
cess. In complex domains, like urban AD, it can be partic-
ularly arduous to ensure the dataset’s diversity and cover-
age of various scenarios and edge cases. Moreover, the re-
liance on an offline dataset introduces a potential distribution
gap between the demonstrations and the training environ-
ment, hindering the agent’s ability to generalize effectively
(Chekroun et al. 2021). One known strategy to mitigate
the distribution mismatch between offline datasets and the
training environment is the DAGGER algorithm (Ross, Gor-
don, and Bagnell 2011), which iteratively refines policies
by aggregating training data across a mixture of expert and
learner-induced distributions. However, while DAGGER re-
duces the distribution gap, it does not inherently account for
the uncertainty in decision-making, which can be critical in
dynamic and unpredictable urban driving scenarios.

To tackle the limitations of traditional RLfD, we introduce
RLfOLD. RLfOLD utilizes online demonstrations, collected
using privileged information from the simulator, which cir-
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cumvents the need for a pre-collected dataset. These demon-
strations are seamlessly integrated into the agent’s replay
buffer, ensuring that the agent learns from up-to-date and
pertinent scenarios, thereby effectively bridging the distri-
bution gap. Furthermore, RLfOLD innovates by merging IL
with RL through a dual standard deviation policy network.
By employing different standard deviations, the algorithm
can adapt to the varying levels of uncertainty inherent in RL
and IL. Inspired by recent works (Menda, Driggs-Campbell,
and Kochenderfer 2019; Peng et al. 2022; Kelly et al. 2019;
Li, Peng, and Zhou 2022; Dey et al. 2021), our approach fur-
ther refines the exploration process. It empowers the agent
with the ability to selectively invoke expert guidance when
faced with high uncertainty, enhancing the decision-making
process and potentially leading to more effective learning.

Overall, we summarize our main contributions as follows:

• Introduce RLfOLD, a novel approach that seamlessly in-
tegrates IL and RL by leveraging online demonstrations,
effectively bridging the distribution gap between demon-
stration and training environments;

• Propose a policy network that outputs two standard devi-
ations, enabling adaptive control for exploration and IL
training while considering uncertainty in both domains;

• Incorporate an uncertainty-based technique guided by an
online expert to enhance the exploration process;

• Conduct extensive experiments on the NoCrash bench-
mark, which demonstrate the superior effectiveness and
efficiency of RLfOLD, surpassing state-of-the-art meth-
ods even with reduced resources.

The source code of RLfOLD is available at
https://github.com/DanielCoelho112/rlfold.

2 Related Work
While RLfOLD is applicable to various tasks, our focus is
on testing RLfOLD in the context of urban AD using the
CARLA simulator (Dosovitskiy et al. 2017). As such, this
section is focused on the application of IL, RL, and RLfD
methods within the CARLA environment.

2.1 Imitation Learning
IL methods aim to learn from an expert using offline demon-
strations. In the domain of AD, various IL approaches have
been proposed, and they have demonstrated significant suc-
cess. Notably, IL-based methods have consistently achieved
top performance in the CARLA Leaderboard, showcas-
ing their effectiveness in tackling complex driving tasks.
Early works include CIL (Codevilla et al. 2017) and CILRS
(Codevilla et al. 2019) that employ a conditional architecture
to activate different policies based on the navigation com-
mand received. LBC (Chen et al. 2020) and Roach (Zhang
et al. 2021) use privilege experts to provide knowledge to
student models. Transfuser (Chitta et al. 2022; Prakash,
Chitta, and Geiger 2021) designs a multimodal transformer
that fuses the front camera image and LiDAR data, and then
a simple GRU to auto-regress navigation waypoints. LAV
(Chen and Krähenbühl 2022) trains on data from experi-
ences collected not just from the ego-vehicle, but also from

all surrounding vehicles. This is accomplished by learning a
viewpoint-invariant spatial intermediate representation. TCP
(Wu et al. 2022) proposes two branches that generate the
planned trajectory and the multi-step control commands,
respectively. Then the outputs of both branches are fused
to achieve complementary advantages. Finally, InterFuser
(Shao et al. 2023) uses a transformer to fuse multi-view
sensors to encourage global contextual perception. Despite
the remarkable achievements of IL approaches, a significant
challenge in their deployment lies in addressing the distribu-
tion gap between the demonstration dataset and the environ-
ment in which the agent interacts.

2.2 Reinforcement Learning
RL has been used in AD to overcome the shortcomings of
IL, however, vision-based RL presents several challenges.
One such challenge is the training of a convolution en-
coder alongside a policy network, which often leads to catas-
trophic self-overfitting (Coelho, Oliveira, and Santos 2023).
To address this issue, RLAD (Coelho, Oliveira, and San-
tos 2023) proposes an image encoder that leverages both
Adaptive Local Signal Mixing (A-LIX) (Cetin et al. 2022)
layers and image augmentations. While RLAD represents a
significant advancement in vision-based RL for urban AD,
its performance still falls short of the current state-of-the-art
methods. The most successful RL algorithms applied in ur-
ban AD disentangle the perception network from the policy
network by performing two-stage training (Coelho, Oliveira,
and Santos 2023). The first stage consists of encoding the
sensor data in a latent representation by pretraining a large
encoder on visual tasks, such as classification and segmenta-
tion (Chekroun et al. 2021). Then, the latent representation
is processed by an RL algorithm to train the policy network.
Following this line, IAs (Toromanoff, Wirbel, and Moutarde
2019) proposes an algorithm composed of two subsystems.
First, the encoder is trained using auxiliary tasks. Then the
encoder is frozen and an RL algorithm is trained on the en-
coder latent space. Another example of this disentanglement
is CADRE (Zhao et al. 2022). This method first trains offline
a co-attention perception module to learn the relationships
between the input and the corresponding control commands
from a dataset. Then, this module is frozen and is used to
feed an efficient distributed Proximal Policy Optimization
(PPO) that learns the driving policy. While RL overcomes
the distribution gap limitation of IL, it often suffers from
sample-inefficiency, requiring significant time and resources
for learning.

2.3 Reinforcement Learning From
Demonstrations

As stated in Section 1, both IL and RL have inherent limi-
tations, which have led to the growing interest in the con-
cept of RLfD over the years (Hester et al. 2017; Vecerik
et al. 2017; Liu et al. 2022). The main objective of RLfD
is to combine the sample-efficiency of IL with the explo-
ration capability of RL. For instance, CIRL (Liang et al.
2018) adopts a two-stage training approach. Initially, the
agent is trained using IL with human demonstrations, fol-
lowed by fine-tuning using an RL algorithm. BC-SAC (Lu
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et al. 2022) and SAC-IL (Liu et al. 2022) propose method-
ologies that integrate the Soft Actor-Critic (SAC) algorithm
with the IL loss. GRIAD (Chekroun et al. 2021) combines
IL and RL under the assumption that all expert demonstra-
tions are optimal and therefore assigned with maximum re-
wards. With this assumption, they process the expert demon-
strations indistinguishable from the experiences of the RL
exploration agent. While this assumption is overly opti-
mistic, GRIAD is able to achieve very satisfactory results in
both the CARLA Leaderboard and the NoCrash Benchmark
(Codevilla et al. 2019). WOR (Chen and Krähenbühl 2022)
assumes the world to be on rails, meaning that the actions of
the agent affect only its own state and do not influence the
environment. With this assumption, they convert the prob-
lem into a tabular model-based RL setup and supervise the
policy learning with offline demonstrations. While these ap-
proaches have shown promising results, they share a com-
mon limitation: the use of offline demonstrations, which can
introduce a distribution gap between the demonstrations and
the training environment. To address this limitation, we pro-
pose a novel approach called Reinforcement Learning from
Online Demonstrations (RLfOLD). Our method leverages
online demonstrations, obtained during the agent’s explo-
ration, to bridge the distribution gap and to guide the ex-
ploration of the agent.

3 Method
3.1 Learning Framework
The learning process follows a Partially Observable Markov
Decision Process (POMDP). The environment was built us-
ing the CARLA driving simulator (version 0.9.10.1). At ev-
ery timestep t, the environment generates an observation ot,
which is passed to the agent. An observation is defined as a
stack of three sets of tensors from the last K = 2 timesteps.
Specifically, ot = {(III,WWW,VVV )k}1k=0, where III represents a
3×256×256 image, WWW corresponds to the 2D coordinates
with respect to the vehicle for the next N = 10 waypoints
provided by the global planner from CARLA, and VVV is a
two-dimensional vector containing the current speed and
steering of the vehicle. The agent processes ot and executes
an action at according to its policy. Finally, the environment
returns a reward rt and the next observation ot+1. The ac-
tion at is composed of three continuous values: throttle and
brake, which range from 0 to 1, and steering, which ranges
from -1 to 1. Similar to (Coelho, Oliveira, and Santos 2023),
we parameterize the throttle and brake commands using a
target speed. Specifically, we append a PID controlled at the
end of the policy network to generate the throttle and brake
commands that correspond to the predicted target speed.

Figure 1 illustrates the architecture of RLfOLD. At a high
level, the system can be divided into three main parts: en-
coder, actor-critic algorithm with IL, and online expert. Ad-
ditionally, an important part of this work consists of using
the online expert to guide the exploration. In general, RLfD
algorithms use two replay buffers: one for the exploration
agent and one for the demonstration agent (Chekroun et al.
2021; Liu et al. 2022; Lu et al. 2022). However, in our ap-
proach, we take advantage of having an online expert and

create a single replay buffer, denoted as D, to integrate in-
formation from both the exploration agent and the online
expert. This replay buffer contains transitions in the form of{
(ot, at, a

∗
t, rt, ot+1)

}
, where at corresponds to the action

executed by the agent, and a∗t corresponds to action gener-
ated by the expert policy (π∗).

3.2 Encoder
As shown in Figure 1, RLfOLD trains simultaneously the
encoder and the policy network. The reason is to ensure
that the latent representations produced by the encoder are
fully aligned with the driving task. However, as several stud-
ies have reported, performing Temporal Differences (TD)
learning with a convolution encoder may lead to unsta-
ble training, premature convergence, and catastrophic self-
overfitting (Cetin et al. 2022; Kostrikov, Yarats, and Fergus
2020). In light of these limitations, we employ the encoder
proposed in RLAD, which incorporates techniques to miti-
gate these problems.

Image Encoder The image encoder is a convolution neu-
ral network consisting of approximately 0.65M parameters,
which is significantly smaller in size compared to state-of-
the-art methods in urban AD (see Table 2). We leverage im-
age augmentations to regularize the value function and to
increase the generalization (Yarats et al. 2021). Specifically,
we apply color jittering, Gaussian blur, and random crop. At
the end of each convolution encoder, we append an Adaptive
Local Signal Mixing (A-LIX) layer (Cetin et al. 2022) to
mitigate the catastrophic self-overfitting phenomenon. For
the convolutional layers, we employed the Delta-Orthogonal
initialization technique (Xiao et al. 2018), and for the linear
layers, we employed the Orthogonal initialization technique
(Saxe, McClelland, and Ganguli 2013).

The image encoder, fi, can be formalized as it =
fi(aug(

[
{IIIt−k}1k=0

]
)) , where aug corresponds to the im-

age augmentation applied, and it corresponds to the la-
tent representation of the stack of two consecutive images([
{IIIt−k}1k=0

])
.

Waypoint Encoder To encode the waypoints we use Way-
Conv1D (Coelho, Oliveira, and Santos 2023). This method
leverages the 2D geometrical structure of the waypoints by
applying 1D convolutions with a 2×2 kernel over the 2D
coordinates of the next N waypoints. The process can be
described as wt = fw(WWW t), where fw corresponds to the
WayConv1D, and wt corresponds to the latent representa-
tion of the waypoints (WWW t).

Vehicle Measurements Encoder We apply directly an
MLP to the vehicle measurements: vt = fv(

[
{VVV t−k}1k=0

]
),

where fv is the MLP, and vt corresponds to the latent repre-
sentation of the concatenation of the vehicle measurements
across two steps

([
{VVV t−k}1k=0

])
.

The latent representation of all the inputs (ht) is then ob-
tained by concatenating the latent representation of each in-
put: ht = [it wt vt]. Throughout the document, to sim-
plify the notation, we will refer to all encoders fi, fw, and
fv as fi,w,v:
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privileged information

Sample

Maximize the log
likelihood of       

Q-value

forward

Figure 1: RLfOLD leverages online demonstrations through an expert policy (π∗) with access to privileged information. The
encoder (fi,j,w) converts the observation (o) into a latent representation (h), which serves as input for a modified SAC. The
policy (π) outputs the mean (µ) and two standard deviations: σIL and σRL. σIL is used to maximize the log-likelihood of the
expert action (a∗), while σRL is employed to explore the environment.

ht = fi,w,v (ot) . (1)

3.3 Soft Actor-Critic With Imitation Learning
We use the SAC algorithm with a one-step return as the base
algorithm. SAC is a model-free off-policy actor-critic algo-
rithm that learns two Q-functions Qθ1 , Qθ2 , a stochastic pol-
icy πϕ, and a temperature α to find an optimal policy by opti-
mizing a γ-discounted maximum-entropy objective (Ziebart
et al. 2008; Kostrikov, Yarats, and Fergus 2020). The ac-
tor policy πϕ(ãt | ht) is a parametric tanh-Gaussian that
given ht, samples ãt = tanh (µ(ht) + σRL(ht)ϵ), where
ϵ ∼ N (0, 1), and µ and σRL are the parametric mean and
standard deviation. For the target speed, we apply a post-
processing transformation to scale the tanh output to the
desired range.

In contrast to the original SAC algorithm, our adapted
actor policy produces three values: µ, σRL, and σIL. This
modification proved to be more adequate, as it enables us
to utilize distinct standard deviations for the various losses
functions (more details provided below).

The double Q-networks are learned by optimizing a one-
step of the soft Bellman residual:

Lθk,i,w,v = E ot,at,ot+1∼D
ãt+1∼πϕ(·|ht+1)

[
(Qθk (ht, at)− y)

2
]
,

∀k ∈ {1, 2}.
(2)

with the TD target y defined as:

y = rt + γ

(
min
k=1,2

Qθ̄k (ht+1, ãt+1)−

α log πϕ (ãt+1 | ht+1)

)
,

(3)

where γ is the discount factor, and Qθ̄1 and Qθ̄2 denote the
target parameters of Qθ1 and Qθ2 , respectively. The policy
is updated to maximize the expected future return plus the
expected future entropy:

Lϕ = −E ot∼D
ãt∼πϕ(·|ht

)

[
min
k=1,2

Qθk (ht, ãt)−

α log π (ãt | ht)

]
.

(4)

Finally, the parameter α is automatically tuned over the
training according to (Haarnoja et al. 2018).

To incorporate IL, we utilize the same batch of transitions
used by RL and create a Gaussian distribution (pϕ) using
the parameters generated by π, namely µ and σIL. Subse-
quently, this distribution is employed to maximize the log-
likelihood of the action produced by the online expert (a∗):

Lϕ,i,w,v = −Eot,a
∗
t∼D

[
log pϕ (a

∗
t | ht)

]
. (5)

By using different standard deviations, the algorithm can
adapt to the varying levels of uncertainty in RL and IL. It
allows the RL component to explore the state-action space
more broadly (with a larger standard deviation), while the
IL component can focus on imitating the expert’s behavior
more closely (with a smaller standard deviation). This adapt-
ability to uncertainty can lead to a better balance between
exploration and exploitation, and thus a seamless integration
of RL and IL.

As illustrated in Figure 1, each loss updates specific pa-
rameters, and this document follows a nomenclature that as-
sociates the indexes of the loss function with the correspond-
ing updated parameters.
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3.4 Online Expert
The online expert has access to privileged information from
the simulator, enabling it to generate expert actions. These
actions serve two distinct purposes: assisting the exploration
process and contributing to Equation 5. The online expert
can take the form of a neural network or a set of heuris-
tics. For this study, we have chosen to implement the online
expert as a set of simple heuristics, with future plans to tran-
sition to a neural network-based approach.

As previously mentioned, the action is parameterized us-
ing target speed and steering. Inspired by (Toromanoff,
Wirbel, and Moutarde 2019), the target speed is dynami-
cally computed based on the agent’s surroundings. As the
distance to the front vehicle decreases, the target speed lin-
early reduces to 0, and conversely, as the distance increases,
the target speed increases accordingly. The same principle
applies when approaching obstacles, pedestrians, or traffic
lights. For all other situations, the target speed remains set
at a constant maximum speed. Regarding the steering, we
conducted experiments using different heuristics that con-
sidered the agent’s position and orientation relative to the
waypoints. However, given the limited complexity of the on-
line expert, we found that utilizing the steering from the RL
policy (π) produced superior results. Consequently, in this
work, we solely rely on the expert action to determine the
target speed.

The efficacy of RLfOLD is substantially influenced by the
quality of the online expert. The expert’s input is crucial,
providing accurate ground truth actions for IL and assisting
in decision-making when the policy’s uncertainty is high.
While our dual standard deviation approach is designed to
leverage this expert guidance effectively, it is important to
acknowledge that the overall performance may vary with the
expert’s proficiency.

3.5 Expert-Guided Exploration Based on
Uncertainty

In RLfD algorithms, the expert actions are only used in
the loss functions to update the model parameters. How-
ever, by leveraging the online nature of the expert, we ex-
tended the usage of the expert actions to the exploration.
The idea is to use the σRL as the uncertainty of the decision
taken by the current policy (π). This uncertainty quantifies
the confidence level of the policy, allowing us to gauge its
competence in exploring the environment effectively. When
the policy’s uncertainty falls below a predefined threshold
(u), the agent executes the action recommended by the pol-
icy, fostering efficient exploitation of its learned knowledge.
On the other hand, if the policy’s uncertainty exceeds the
threshold, the agent seeks the guidance of the online ex-
pert to make informed decisions in uncertain situations. This
decision-making process can be described as follows:

a =

{
ã if σRL < u

a∗ otherwise
. (6)

This method establishes a dynamic learning relationship
between the agent and the online expert. Similar to a student
seeking guidance from a teacher, the agent autonomously

explores when confident, and seeks assistance from the ex-
pert when uncertain. This adaptive approach promotes effi-
cient learning, safer exploration, and the potential for rapid
skill acquisition in complex environments.

For a more comprehensive understanding of our learning
framework, we provide the pseudocode implementation in
Algorithm 1.

Algorithm 1: Reinforcement Learning from Online Demon-
strations (RLfOLD)
Input: initial encoder parameters fi,w,v , Q-function param-
eters Qθ1 , Qθ2 , policy parameters πϕ, entropy parameter α,
empty replay buffer D

1: Qθ̄k ← Qθk , for k = 1,2
2: repeat
3: Get observation ot
4: Compute expert action a∗t using π∗

5: Encode ot into ht using Equation 1
6: Sample policy action ãt ∼ πϕ (· | ht)
7: Execute at according to Equation 6
8: Get next observation ot+1 and reward rt
9: Store transition (ot, at, a

∗
t , rt, ot+1) in D

10: if ot+1 is terminal then
11: Reset environment state
12: end if
13: if time to update then
14: Randomly sample a batch of transitions, B ={

(ot, at, a
∗
t, rt, ot+1)

}
from D

15: Update Qθ1 , Qθ2 and fi,w,v using Equation 2
16: Update πϕ using Equation 4
17: Update πϕ, and fi,w,v using Equation 5
18: Update α according to (Haarnoja et al. 2018)
19: Update Qθ̄k with

Qθ̄k ← (1− ρ)Qθ̄k + ρQθk , for k = 1,2
20: end if
21: until convergence

4 Experiments
4.1 Setup
Benchmark The algorithms are evaluated on the NoCrash
benchmark. This benchmark examines the ability to gener-
alize from Town 1, characterized by one-lane roads and T-
junctions with traffic lights, to Town 2, a scaled-down ver-
sion of Town 1 with different textures. The training pro-
cess involves four distinct weather types, while the test-
ing phase employs two different weather types. Within this
benchmark, three levels of traffic density (empty, regular,
and dense) are considered based on the number of vehicles
and pedestrians present. The evaluation results are presented
in terms of the success rate, representing the percentage of
completed routes without any collisions. Additionally, for
the ablation study, we also provide information regarding
the percentage of route completion, collisions with vehicles,
pedestrians, and layout, as well as the number of blockages
per kilometer.
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Training Details All algorithms are trained on the same
hardware, specifically a single NVIDIA RTX 2080 Ti. The
training process spans 106 environment timesteps, with eval-
uations conducted every 20k environment timesteps. Dur-
ing each evaluation, episode returns are averaged over 10
episodes. Each experiment was conducted with three differ-
ent seeds to account for the high variability in RL training.
We use the reward function defined in (Zhang et al. 2021).
The Deep Learning library used was PyTorch (Paszke et al.
2019). Table 1 contains the main hyperparameters used by
RLfOLD.

Parameter Value

Replay Buffer capacity 100000
Batch size 128
Action repeat 2
Discount factor (γ) 0.85
Optimizer Adam
Learning rate 10−3

Target Q-network update rate (ρ) 0.01
dim(i) 256
dim(w) 32
dim(v) 16
SAC networks size 1024
Init entropy parameter (α) 0.2
Uncertainty threshold (u) 0.8

Table 1: List of the hyperparameters used by RLfOLD.

State-of-the-Art Algorithms We compare RLfOLD with
the state-of-the-art methods that reported their results on the
NoCrash benchmark. The comparison includes algorithms
of the three types (RL, IL, and RLfD):

• RL: IAs (Toromanoff, Wirbel, and Moutarde 2019),
CADRE (Zhao et al. 2022);

• IL: CILRS (Codevilla et al. 2019), LBC (Chen et al.
2020);

• RLfD: GRIAD (Chekroun et al. 2021), WOR (Chen,
Koltun, and Krähenbühl 2021);

4.2 Comparative Analysis
The number of parameters of a model is considered an
essential metric to gauge computational requirements and
memory consumption. However, obtaining this value can be
challenging as it is often not reported in many studies. To
address this, we use the size of the image encoder as a repre-
sentative proxy (see Table 2). Since state-of-the-art methods
typically employ very large image encoders, this component
accounts for a substantial portion of the model’s parame-
ters. As reported in Table 2, RLfOLD utilized a significantly
smaller encoder when compared to the state-of-the-art meth-
ods: approximately 3% of the average encoder size found in
those methods. Table 2 also reports the number of cameras
used, where all methods used only one camera, with the ex-
ception of GRIAD and WOR, which used three cameras.

# of parameters # of cameras

IAs ∼30M 1
CADRE ∼25M 1
CILRS ∼22M 1
LBC ∼22M 1

GRIAD ∼14M 3
WOR ∼22M 3

RLfOLD ∼0.65M 1

Table 2: Comparison of the number of parameters in image
encoders and the number of cameras used by the state-of-
the-art methods.

Table 3 shows the comparative results in terms of the suc-
cess rate on the NoCrash benchmark. The success rate values
for the methods IAs, LBC, and WOR were obtained from
(Chen, Koltun, and Krähenbühl 2021), the values of CADRE
were taken from (Zhao et al. 2022), the values of CILRS
were taken from (Zhao et al. 2021), and finally, the values
of GRIAD were taken from (Chekroun et al. 2021). The
proposed method outperforms all single-camera approaches
across various tasks, showcasing its superior performance
despite employing a significantly smaller encoder. Among
the single-camera methods, CADRE emerges as the clos-
est competitor, albeit with a notable 9% performance loss of
the average score compared to RLfOLD. Even when com-
pared against three-camera methods, all of which are RLfD
algorithms, RLfOLD demonstrates its superiority in perfor-
mance. With an average score exceeding GRIAD by 6%
and WOR by 2%, RLfOLD outperforms its multi-camera
counterparts. RLfOLD secures the top rank in more tasks
than any other method, outperforming all competitors in
seven distinct tasks. These results underscore the effective-
ness and efficiency of RLfOLD, solidifying its position as
the top-performing approach in the evaluation, even when
employing a significantly smaller encoder and a single cam-
era setup.

4.3 Ablation Study
To gain deeper insights into the strengths of RLfOLD, we
conducted an ablation study examining its main compo-
nents. Firstly, we established a RL baseline version with-
out demonstrations (referred to as RL baseline). Next, we
evaluated the significance of the two standard deviations
by testing a variant of RLfOLD that generates only one
standard deviation (σRL) and employs Mean Squared Er-
ror (MSE) loss for the IL training (RLfOLD w/o two SDs).
Furthermore, to assess the impact of expert-guided explo-
ration based on uncertainty, we experimented with two ver-
sions of RLfOLD: one that excludes expert guidance dur-
ing exploration (RLfOLD w/o uncertainty (p=0.0)) and an-
other that incorporates expert guidance with a fixed prob-
ability of 0.3 for each action taken (RLfOLD w/o uncer-
tainty (p=0.3)). The results of the ablation study, as shown
in Table 4, provide insights into the role of different compo-
nents within RLfOLD. The RL baseline, which lacks the in-
tegration of demonstrations, achieved a success rate of 52%,
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RL IL RLfD

Task Town Weather IAs CADRE CILRS LBC GRIAD* WOR* RLfOLD

Empty
train train

85 95 97 89 98 98 100
Regular 85 92 83 87 98 100 94
Dense 63 82 42 75 94 96 90
Empty

test train
77 92 66 86 94 94 100

Regular 66 78 49 79 93 89 92
Dense 33 61 23 53 78 74 80
Empty

train test
- 94 96 60 83 90 96

Regular - 86 77 60 87 90 84
Dense - 76 39 54 83 84 74
Empty

test test
- 78 66 36 69 78 100

Regular - 72 56 36 63 82 86
Dense - 52 24 12 52 66 66

Average - - 68 80 60 60 83 87 89
* Used 3 cameras as input.

Table 3: Comparison of the success rate (%) on NoCrash benchmark using the state-of-the-art methods. The method IAs was
not evaluated under testing weather conditions.

Success
rate

Route
completion

Collision
pedestrian

Collision
vehicle

Collision
layout

Agent
blocked

%, ↑ %,↑ #/Km, ↓ #/Km, ↓ #/Km, ↓ #/Km, ↓
RL baseline 52±4 98±3 1.03±0.34 1.40±0.11 0.26±0.05 0.36±0.13
RLfOLD w/o two SDs 64±10 90±6 0.33±0.13 0.53±0.09 0.15±0.09 4.45±1.43
RLfOLD w/o uncertainty (p=0.0) 72±2 96±3 0.14±0.04 0.48±0.03 0.12±0.03 3.99±0.47
RLfOLD w/o uncertainty (p=0.3) 80±3 91±1 0.30±0.04 0.45±0.06 0.00±0.00 2.76±0.91
RLfOLD 86±4 99±2 0.09±0.03 0.32±0.04 0.09±0.03 0.15±0.08

Table 4: Ablation study evaluating the success rate and infraction analysis on the regular task under testing conditions (town
and weather). Mean and standard deviation over 3 seeds.

which stands for a marginal loss of 34% considering the
original version of RLfOLD. This difference clearly indi-
cates the challenges of learning complex driving tasks using
RL from scratch. The variant RLfOLD w/o two SDs demon-
strates the importance of the two standard deviations. This
variant achieved a success rate of 64%, which is significantly
inferior to the one achieved using the two standard devia-
tions - 86%. Furthermore, the integration of expert-guided
exploration based on uncertainty proves to be highly bene-
ficial. When we exclude expert guidance during exploration
(RLfOLD w/o uncertainty (p=0.0)), the success rate drops to
72%. This indicates that the online expert provides valuable
insights to guide the agent’s exploration. Moreover, incor-
porating the online expert with a fixed probability for each
action (RLfOLD w/o uncertainty (p=0.3)) achieves a suc-
cess rate of 80%, which is 8% better than not using the on-
line expert, but is 6% worse than using the expert-guided
exploration based on uncertainty. In conclusion, the ablation
study demonstrates the crucial role of each component in
RLfOLD, emphasizing the significance of leveraging online
demonstrations, the separate standard deviations output, and
the expert-guided exploration based on uncertainty.

5 Conclusion

In this paper, we have presented RLfOLD, a novel and effec-
tive RLfD algorithm. Our method introduces a seamless in-
tegration of IL and RL by leveraging online demonstrations
to bridge the distribution gap between the demonstration and
the training environment. Unlike conventional policy net-
works used in actor-critic algorithms, RLfOLD adopts a pol-
icy network that outputs two standard deviations: one for ex-
ploration and another for IL training. Additionally, we uti-
lize the online expert to guide the exploration process, in-
corporating an uncertainty-based technique. The results ob-
tained on the NoCrash benchmark underscore the superior
effectiveness and efficiency of RLfOLD. Notably, even with
a significantly smaller encoder and a single-camera setup,
RLfOLD surpasses all tested state-of-the-art methods. The
ability to achieve such results with limited resources makes
RLfOLD a highly promising solution for real-world applica-
tions. In the future, we aim to enhance the complexity of the
online expert by transitioning from a rule-based approach to
a more advanced neural network-based approach and to test
this algorithm in other applications.
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and Koltun, V. 2017. End-to-End Driving Via Conditional
Imitation Learning. 2018 IEEE International Conference on
Robotics and Automation (ICRA), 1–9.
Codevilla, F.; Santana, E.; López, A. M.; and Gaidon, A.
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