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Abstract

We present COIL (Counterfactual Object Interaction Learn-
ing), a novel way of learning skills of object interactions on
entity-centric environments. The goal is to learn primitive be-
haviors that can induce interactions without external reward
or any supervision. Existing skill discovery methods are lim-
ited to locomotion, simple navigation tasks, or single-object
manipulation tasks, mostly not inducing interaction between
objects. Unlike a monolithic representation usually used in
prior skill learning methods, we propose to use a structured
goal representation that can query and scope which objects
to interact with, which can serve as a basis for solving more
complex downstream tasks. We design a novel counterfactual
intrinsic reward through the use of either a forward model or
successor features that can learn an interaction skill between
a pair of objects given as a goal. Through experiments on
continuous control environments such as Magnetic Block and
2.5-D Stacking Box, we demonstrate that an agent can learn
object interaction behaviors (e.g., attaching or stacking one
block to another) without any external rewards or domain-
specific knowledge.

Introduction

Reinforcement learning (RL) has achieved remarkable
progress at many application domains such as playing games
(Mnih et al. 2013; Vinyals et al. 2019), and robotics con-
trol (Andrychowicz et al. 2020), etc. Very often RL agents
are trained to specific tasks, with access to task-specific ex-
trinsic rewards. A major drawback of task-specific train-
ing is that a proper reward function needs to be given, de-
signed, and tuned so as to achieve desired behaviors, which
can be often time-consuming and limits scalability in prac-
tice. It is important to be able to solve the task with a very
sparse reward signal upon completion/failure of the task, or
even without any external task rewards. Unsupervised RL
such as task-agnostic exploration or pre-training of skills,
aiming at learning interesting or useful behaviors without
the use of task rewards or offline data, can provide better
initialization or useful macro-actions (skills or options) for
building a hierarchical agent to solve more complex and
difficult tasks (Eysenbach et al. 2018; Zhang, Yu, and Xu
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2021). Unsupervised learning often enables faster learning
and achieves better generalization performance when mul-
tiple tasks are given after the skill acquiral or pre-training
phase.

Despite a number of successes in unsupervised skill dis-
covery (Eysenbach et al. 2018; Sharma et al. 2019; Park
et al. 2022) or task-agnostic exploration based on state-
entropy maximization or diversity (Pathak et al. 2017; Burda
et al. 2019), relatively only a few attempts have been made
on environments and tasks with multiple entities (e.g. ob-
jects in robotics manipulation). In the context of robotics
manipulation or (discrete) entity-centric environments other
than locomotion or maze navigation environments, explo-
ration can be quite challenging because of this nature of
multiple entities. One limitation of novelty-seeking explo-
ration methods in the reward-free context is that exploration
would easily converge to a low-hanging fruit behavior where
exploration mostly focuses on one particular entity. For in-
stance, in robotics manipulation environments, diversifica-
tion or novelty seeking of the entire state can be easily dom-
inated by that of the embodied agent itself (i.e., propriocep-
tive states) or some easy-to-control objects only, as observed
and reported in (Zhao et al. 2021; Gu et al. 2021; Park et al.
2022). More interesting primitive behaviors would be inter-
actions between many objects, for more realistic and chal-
lenging multi-object tasks such as block stacking (Lee et al.
2021; Sancaktar, Blaes, and Martius 2022) or furniture as-
sembly (Lee et al. 2019; Ghasemipour et al. 2022). Notably,
some recent works including (Sancaktar, Blaes, and Martius
2022; Cho, Kim, and Kim 2022) present reward-free explo-
ration and skill learning in multi-object manipulation tasks.

In this work, we focus on learning a set of primitive skills
that enable interaction between different objects in a task-
agnostic, unsupervised fashion. Roughly speaking, interac-
tion between two objects can be described as an action or
event that occurs when two objects have a (mutual) effect
on each other. Our work leverages an inductive bias that an
interaction between objects learned in a task-agnostic man-
ner can be a useful event and hence a useful primitive be-
havior for solving downstream tasks. Such object-object in-
teractions (as well as agent-object interactions) are usually
sparse and difficult to reach with naive exploration, but at
the same time can be useful bottleneck states an agent would
want to explore and visit often to achieve bigger tasks. In
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the kitchen, for instance, an interaction between a knife and
various ingredients by slicing them with a knife can be one
of the basic steps necessary for cooking; when assembling
smaller building blocks to build a complex object like fur-
niture, car, or electronic device, connecting matching pieces
to form a composite body would be another type of indis-
pensable interaction. As such, it will be important to learn
skills or primitive behaviors that would induce object-object
interactions, in the promise that a hierarchical control that
acts upon the interaction skills (Zhang, Yu, and Xu 2021)
or chaining of skills in sequence (Slivinski, Konidaris, and
Marshall 2020) should solve complex tasks much faster than
flat RL agents.

We study how to learn object interaction skills in a very
challenging, online, reward-free setting while minimizing
the use of domain and task-specific knowledge or task-
agnostic offline data, which can be difficult to obtain. More
specifically, we learn a goal-conditioned policy where a goal
denotes an interaction of which objects is to be made. To en-
able this by learning a reward function (Zheng et al. 2020),
we design a novel intrinsic reward that is computed by
counterfactual reasoning on the dynamics model (forward
model and successor features) (forward model and succes-
sor features), which we call Counterfactual Object Interac-
tion Learning (COIL).

The concept of counterfactual reasoning, i.e., “what if...?”
— predicting or inferring the outcome if something had hap-
pened differently (Mesnard et al. 2020; Gajcin and Dus-
paric 2022) — naturally aligns with an intuitive interpre-
tation of interaction: interaction is when an object’s future
state would have been different if it were not for the pres-
ence of the other object. In the experiments, we show that
the intrinsic reward derived by counterfactual reasoning on
object states can efficiently induce the interaction of objects
and enable an RL agent to learn such interaction behaviors
without extrinsic rewards.

Our contribution can be summarized as follows:

We study a setting of representing goals in terms of enti-
ties and objects to interact with, in the context of unsuper-
vised skill-based and goal-conditioned RL.

We present a novel intrinsic reward algorithm COIL
(Counterfactual Object Interaction Learning) in a reward-
free unsupervised exploration setting, which uses counter-
factual reasoning on forward model or successor features.
We show COIL can learn skills that make the goal objects
interact with each other.

We show that such an entity-centric interaction skill is
generalizable to unseen, more object settings.

Approach
Preliminaries and Notations

Throughout the paper, we consider the task as an MDP
M = (S, A,P,R,v), where S is a state space, A is an
action space, P is a transition probability, R is a (extrin-
sic) task reward function, and 0 < ~ < 1 is a discount
factor. Our goal is task-agnostic, unsupervised skill learn-
ing with no extrinsic rewards. We assume that the state
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space S can be explicitly factorized as the Cartesian product
(Sobject)N X Sagent Where N is the number of objects, Sopject 15
the object state space, and S,gen; is the agent state space. We
also assume the joint object space is permutation-invariant,
i.e., {o1,--- ,on} is aset (Where 0; € Sgpject). Such a struc-
tural representation is common in robotics control (Keramati
et al. 2018; Zhao et al. 2021; Sancaktar, Blaes, and Martius
2022) and is a mild assumption. However, our method is not
necessarily limited to state-based control only, as one could
combine with existing entity-centric representation learning
methods from pixel observations (Watters et al. 2017; Gr-
eff et al. 2019; Xu et al. 2019; Veerapaneni et al. 2020; Lo-
catello et al. 2020).

Goal representation. Skills are usually modeled in the
form of goal-conditioned policies, 7(als, g), where g € G
represents a goal. Common choices for goal g include full
state observation, a handcrafted goal with domain knowl-
edge, or latent variables. Our particular choice is a pair of
objects, namely A and B (among the IV objects). A seman-
tic meaning for this goal representation would be that two
objects A and B should have an interaction (or some mu-
tual effects) as a consequence of agent’s actions. In our set-
tings, for the sake of simplicity, we assume the reference
to objects are simply categorical indices (or pointers), i.e.,
A,B € [N] = {0,1,--- , N — 1}, respectively. However,
more in general (e.g., for image observations), the goal rep-
resentation for target objects can be replaced with a contin-
uous vector to represent a reference to an arbitrary object in
the current state, e.g., g = (0, 08) where 04, 0” ¢ Sobject>
which we leave as a future work.

Learning Interaction Skills with Counterfactual
Forward Model

How can we learn interaction skills for two given objects,
and how can we learn a reward function that would incen-
tivize interactions between two objects? Our goal is to si-
multaneously learn such a reward function and object-object
interaction skills in a reward-free setting.

Our main idea is to use a counterfactual reasoning; i.e.,
predict what would have happened instead if other objects
involved in an interaction were not there or were in a differ-
ent state. We argue that this form of inductive bias can pro-
vide us with a useful learning signal for interaction learning
without relying on an external task reward.

Given a trajectory of observations as object states, we
want to identify whether an interaction between two objects
happened or not. Roughly speaking, we can say a (physical)
interaction occurs between two objects A and B if and only
if there exists a counterfactual state for B that would change
the future state of A (and vice versa). (Case I) When an
interaction between A and B happened, these two objects
would have affected each other’s state. In other words, the
future state of an object would have been different without
a specific configuration of the other object, provided that an
interaction happened. (Case II) On the contrary, when there
was no interaction between them, the future state of an ob-
ject would remain almost the same or not dramatically dif-
ferent regardless of the counterpart object. A motivating ex-
ample is depicted in Figure 1.
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Figure 1: A high-level overview of COIL. (i) Suppose an interaction was made, then a counterfactual intervention on object
B (e.g., putting it aside or change the object state randomly) would have made the future state of object A different. (ii) If no
interaction was made, object A would remain in the same state regardless of the counterfactual intervention. (iii) We measure
the discrepancy of object A with and without the counterfactual intervention, which becomes the intrinsic reward for interaction.

We can formalize this idea as follows. Consider a MDP
transition observed by an agent, (s, at, S¢+1) where s; =
{of, 0P, -} and s;11 = {of1,0P 1, } (without the
loss of generality) for a pair of objects A and B given as
a goal g. We would want to tell whether an interaction was
made in this transition.

(Case T) Suppose an interaction between object A and
B happened, where A got affected by B in the interaction
(without the loss of generality). Then, if we made an coun-
terfactual intervention on the object B, i.e., changing the

object state 0P randomly with of to obtain an intervened

state 5; = {of,0F -}, the same action a; applied on 5;

would have resulted in a different (counterfactual) next state

ofl | of object A than its (factual) next state o7 ;. In other
words, the discrepancy between the factual next state 024+1

and the counterfactual next state o}, ; will be high.

(Case II) On the other hand, when there was no interac-
tion happened between the two in this transition, we can
expect that of‘ﬂ would remain the same regardless of the

intervention o on B, i.e., it would be that 0;4+1 = ofﬂ.
To put together, the difference between otA_H and 024+1 (e.g.,

lof1 — o' 1]|*) can quantize the degree of an interaction
between objects A and B.

However, the counterfactual next state s,y is not observ-
able by an agent. So we can instead predict the object A’s
next state by learning a forward dynamics model:

—

024+1 = fforward(0?70tBaata3t \ {02470153})

ey

This gives us a counterfactual interaction reward function:

computationally, we first make a random intervention o on

object B, and plug it to the forward model to predict the

next state o7, ; of object A. Intervention on the object B can
be implemented in many ways, such as random perturbation
of the state vector by adding Gaussian noises, but an easy
yet effective way to yield in-distribution randomization is to
randomly sample an object state from the replay buffer.
Finally, we define the counterfactual interaction reward

TCOlLForward (5¢, @t St41) = [|ofy1 — 071 [|?, which can be
maximized by any underlying RL method (e.g., SAC or
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DQN) with a simultaneous learning of the forward model
and the goal-conditioned policy 7. We call this resulting al-
gorithm COIL (Counterfactual Object Interaction Learning)
and specifically this variant of using forward model COIL-
Forward.

Learning Interaction Skills with Counterfactual
Successor Features

In this section, we will present an improvement to COIL-
Forward, called COIL-SF. One downside of the COIL-
Forward is that it assumes the counterfactual intervention
would have an immediate, easily distinguishable change
within a single-step transition. In many realistic environ-
ments, the effect and consequence of interaction is delayed
to be discernible enough; the change actually exists in the
true world state but an observer would not be able to recog-
nize the subtle difference until a few time step has elapsed.
Therefore, it is practically important to take long-term fu-
tures into consideration so as to correctly evaluate the con-
sequence of counterfactual interventions.

One natural way to deal with this problem would be to
learn a multi-step, recurrent forward dynamics model (Oh
etal. 2015). However, learning such a forward model can be
challenging due to high uncertainty and the quick accumu-
lation of prediction errors over a long horizon (Moerland,
Broekens, and Jonker 2020; Lutter et al. 2021). Instead of
learning a multi-step forward model, we propose to use the
successor features (SF) (Dayan 1993; Barreto et al. 2016) to
incorporate long-term futures that can still derive a reward
signal for interaction learning.

A successor feature U™ (s, a) of a state s with respect to
a policy 7 is an expected discounted sum of the feature of
future states to be visited when starting from the state s and
the action a, and following the policy 7 thereafter:

o0

U (s,a) =E, Z'ytfb(st)

t=0

2

S0 = S,ap9 = a

where ®(s;) is called the cumulant, which is the feature of
future states to accumulate. Successor features can be seen
as an instance of generalized value functions (GVF) (Sut-
ton et al. 2011) that predicts the future and summarize what
will happen in the future for a state s in some specific form,
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which can be easier than directly predicting the next states
accurately. Successor features can be learned using simple
TD learning methods like Q-learning (Dayan 1993).

To derive a reward function that tells whether an interac-
tion is made or not, let’s again consider two objects A and B
given as a goal g, and focus on the future of object A when
a counterfactual intervention is made on the object B. For
this, we consider an entity-centric successor feature with an
object cumulant function ¢ : Sopject —+ R< for the target
object o in the state observation s :

\I/TA(S, a) = \I}Z({OAvoBv T }7 a)
=E, [Z ' o(o?)
t=0

for a query state s = {0?, 0P, --- }. The SF U7 (s,a) € R?
summarizes the future state of object A with respect to the
policy 7. In general, one could learn the object representa-
tion ¢(-) with some auxiliary objectives (e.g., in pixel-based
control), use some prior domain knowledge, or use a fixed
random function as in (Zhang et al. 2019), but in a state-
based control one can simply set ¢(0!) = o without an
extra need to learn the cumulant feature function.

The reward function can be derived as in COIL-Forward:
let’s suppose we make a counterfactual intervention on ob-

3

S0 = S,ap0 = a] @

ject B at timestep t to get the intervened object state oB

from op. Denoting 5 = {0#, 0B, -- -}, the reward function
for interaction can be written as

&)

We call this variant of using successor features for learn-
ing interactions COIL-SF. This reward also can be ex-
plained as follows: (Case II) When there was no interaction
happened between objects A and B, the entity-centric suc-
cessor features W7 will be the same regardless of the in-
tervention, in which case rcop.sg would be 0. Note that,
in practice, rewards for non-interaction transitions might be
slightly bigger than 0 due to the epistemic uncertainty of the
model. (Case I) On the other hand, if the future state of the
object A would have changed much due to the intervention
on object B, the SF values ¥7 (s, a) and U7 (5, a) will be
different, in which rcom s will evaluate to a higher scalar
value. In the Experiments section, we present an analysis of
the learned reward function for different types of transitions
(e.g., a high reward is indeed given when interaction hap-
pens). Learning of COIL-SF also involves a simultaneous
optimization of SF and policy;

reomse(s, a, ') = W7 (s, a) — U (5, a)||*.

Related Work

Object-Oriented RL.  Object-oriented RL (Diuk, Cohen,
and Littman 2008) aims at improving data efficiency and
generalization by leveraging representation of multiple ob-
jects and their relations. C-SWM (Kipf, van der Pol, and
Welling 2019) proposes a GNN-based network to learn the
world model of the object-based task using contrastive learn-
ing. Compared to models based on pixel reconstruction, C-
SWM provides a rich representation of objects. CEE-US
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(Sancaktar, Blaes, and Martius 2022) utilizes the epistemic
uncertainty of structured world model (Kipf, van der Pol,
and Welling 2019) as an intrinsic reward and uses it to gather
data for the world model training. The world model is then
used for planning to solve downstream tasks. The behavior
that emerges during world model training is mostly object
manipulation rather than interactions between objects and
their algorithm can learn object-object interaction only when
an extrinsic reward is provided.

Exploration Cho, Kim, and Kim (2022) proposed a
mutual-information (MI) based exploration algorithm to in-
duce interactions between the agent and an object, which
combines the MUSIC objective (Zhao et al. 2021), i.e., MI
between agent and object, and the diversity term similar to
DADS (Sharma et al. 2019) for the object’s future state.
Seitzer, Scholkopf, and Martius (2021) used object-centric
causal action-influence as an intrinsic reward. However, in-
teractions between different objects are not considered, and
the skills are limited to simple control of a single target ob-
ject specified by the task. Very recently, Sancaktar, Blaes,
and Martius (2022) proposed curiosity-based exploration al-
gorithm that learns a GNN-based world model, with the in-
trinsic reward being the epistemic uncertainty through en-
semble disagreement (Pathak, Gandhi, and Gupta 2019).
This work is the closest to our work, but despite GNN’s abil-
ity to generalize to multiple objects during planning, their
monolithic skill representation is limited to be useful for hi-
erarchical learning or planning.

Several papers have proposed exploration methods using
successor features (SF). Zhang et al. (2019) use the differ-
ence of SF between consecutive states as an intrinsic reward
to efficiently explore bottleneck states. Machado, Bellemare,
and Bowling (2020) propose an inverse of the L.1-norm of
the SF as a variant of count-based exploration. Hoang et al.
(2021) utilize SF to define the distance function between
states and learn a goal-conditioned policy to drive explo-
ration. However, to the best of our knowledge, SF has not
been used in object-centric environments and has not been
combined with counterfactual reasoning.

Counterfactual Reasoning in RL. Buesing et al. (2018)
use a structural causal model in POMDP, which generates
counterfactual trajectories for background planning, leading
to a better sample efficiency and smaller bias of the predic-
tion in guided policy search. Sharma and Kroemer (2020)
utilize an inductive bias that, in similar scenes, if similar ac-
tion has been taken it would give similar results. They uti-
lize contrastive learning in object-centric tasks to acquire an
object relation model, which is subsequently utilized in real-
world precondition learning tasks. Counterfactual Credit As-
signment (Mesnard et al. 2020) utilizes counterfactual rea-
soning on action to achieve unbiased, low variance credit
assignment. Most approaches do counterfactual inference on
the agent’s action, i.e., concerns what would have happened
if the agent made a different decision (i.e., action or goal);
our approach differs in the sense that our counterfactual in-
tervention is made on the object states instead of the agent’s
action.
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Experiments
Environments

In the experiments, we test our proposed approach on
multi-object continuous control environments: a toy envi-
ronment (StackingBox) and more challenging environment
(Magnetic Blocks).

Stacking Box. Stacking Box is a 2.5-D continuous
control environment in which a cursor agent and multiple
box-shaped objects of the same size are randomly spread
throughout a fixed arena. The agent can move in any direc-
tion within the xy plane and can grab an object that overlaps
with the agent. If the agent moves towards an object while
holding another object, the object being held and moved will
be placed on top of any other existing object. We assume that
the height of each object is quantized to integer values (such
as 0,1,2,...). The process of stacking one object onto an-
other occurs instantly in a single MDP transition.

Magnetic Blocks. Magnetic Blocks is a continuous con-
trol environment in which an embodied cursor agent can
interact with square-shaped block objects. The agent has a
continuous action space that includes movement (transla-
tion), rotation, and grabbing through control of the joint’s
torque. The agent can move freely within the arena and can
grab an adjacent object by slightly lifting up and moving
around the object, or rotating it along with the agent. When
the agent moves a held object close enough to another object
such that the two objects become parallel, they will be con-
nected by magnetic force. If the edges are not parallel, one
object will push the other. A distinctive interaction in this en-
vironment is observed when two objects become connected
through magnetic forces and then move together.

Implementation Details

The full network architecture for the policy and the model is
shown in Figure 2. Taking the factorized state representation
into consideration, we use a network with scaled dot-product
attention architecture (Vaswani et al. 2017) to transform ob-
ject states into desired outputs (actor, critic, and forward/-
successor models). We note that the shared parameters for
key and value matrices on the N — 2 objects other than the
goal objects allows the network to be permutation-invariant
over their ordering, and that such an architecture allows gen-
eralization to a different number of objects.

COIL alternatingly updates the policy (actor and critic)
and the model (forward model or successor features); for
RL algorithm, we use SAC (Haarnoja et al. 2018) although
COIL can be combined with any RL algorithms.

Performance of Learning Object Interaction Skills:
Quantitative Results

We first study how well the proposed approach (COIL) can
learn object interaction skills in a reward-free setting, with a
comparison to strong exploration methods. At the beginning
of every episode, a goal g = (A, B) is chosen randomly to
specify which objects should interact.

Baselines. (1) Sparse-GT: A SAC agent trained to max-
imize the sparse ground-truth interaction reward, where the
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Policy/Critic & Successor Feature Output

Figure 2: A network architecture used in the experiments.

per-step reward is 1 if a correct interaction between the tar-
get objects is made (e.g., stacking or magnetic connection)
or 0 otherwise, which is the same as the success metric.
(2) Forward-Curiosity: this maximizes the prediction er-
ror of the forward model for object A as an intrinsic re-
ward: ||og4+1 — frorwara (8¢, a¢, g¢)||?. (3) SID (Zhang et al.
2019): this maximizes the “successor feature control” re-
ward: || (o) — ¥(07")||%. (4) RND (Burda et al. 2019):
this maximizes the prediction error of a randomly initialized
network’s feature representation of the target object’s state
as an intrinsic reward: || frandom (07'1) — (0} 1)[|%.

For object-centric tasks, interactions can lead to signifi-
cant changes in the object’s state, making it desirable to em-
ploy curiosity-based exploration methods as baselines. RND
is a state-of-the-art exploration method that seeks novel
states, and Forward-Curiosity and SID are curiosity-based
exploration techniques that use the Forward Model and Suc-
cessor Feature, respectively.

Quantitative Results. The success rate of the algorithms
is displayed in Figure 3, based on the evaluation episodes.
Successful outcome is defined as the stacking of one object
on the other in Stacking Box and the connection of the two
selected goal blocks in Magnetic Blocks.

Stacking Box. COIL agents converge to a success rate of
approximately 1.0, while curiosity-based exploration meth-
ods show limitations with upper bounds in their perfor-
mance. One thing to note is that COIL-Forward outperforms
COIL-SF in Stacking Box with 4 objects. In the Stack-
ing Box environment, interactions occur instantaneously,
enabling the 1-step forward model of COIL-Forward cap-
ture the occurrence of the interaction. This is supported by
an analysis of the error of the dynamics model. (see Ap-
pendix). Transitions involving interactions exhibit a signif-
icantly higher ratio of the counterfactual prediction error
(i.e., the prediction error when counterfactual intervention
is made) to epistemic uncertainty, compared to transitions
without events. On the other hand, Forward-Curiosity, SID,
and RND are limited to manipulating individual objects
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Figure 3: Progress of the success rate on the Stacking Box and the Magnetic Blocks environment. Runs are averaged over 5
random seeds. See “Quantitative Results.” in the Experiments section for analyses and interpretation of the result.

without learning interaction stably (see Appendix).

Magnetic Blocks. COIL-SF is the only algorithm that
successfully learns interaction skills between objects. De-
spite leveraging domain knowledge regarding the occur-
rence of interactions, Sparse-GT fails to learn even the ba-
sic task of grabbing an object. (see Appendix). Forward-
Curiosity, SID, and RND can learn how to grab an object
but interaction between the objects barely happen. This sug-
gests that learning to induce interactions between objects in
Magnetic Blocks is a challenging exploration problem, un-
like the Stacking Box environment.

We find COIL-Forward is not effective enough to learn in-
teractions in Magnetic Blocks, which accords with the mo-
tivation discussed above. In this environment, interactions
make only a subtle difference in the object’s state during
a single-step transition and can be better discerned only in
longer-term future; we verify this by analyzing the dynam-
ics model errors (see Appendix) . When interactions oc-
cur, the counterfacutal prediction error is not significantly
higher than the epistemic uncertainty in the forward model
(in COIL-Forward). However, the counterfactual prediction
error of the successor feature (in COIL-SF), is significantly
higher than the epistemic uncertainty despite the counter-
factual intervention, so the interaction reward could lead to
learning interactions.

Qualitative Results

In Stacking Box, a typical interaction behavior for g
(A, B) that COIL learns is to stack object A on object B.
Note that A should be on top of B (i.e., bigger z coordi-
nate) to say interaction happened. If the B were on top of A,
changing or perturbing the state of B would not affect the
A’s state. An interesting finding was that the agent repeat-
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edly stacked and unstacked the boxes, resulting in multiple
interactions within a single episode.

In Magnetic Blocks, the interaction behavior is to grab
object A and connect it to object B by making some
movements and rotations as needed. Note that the agent
needs to rotate objects accurately to connect the blocks,
which makes the environment require some good explo-
ration strategies to successfully learn object-object interac-
tions. We present snapshots of COIL-SF’s typical behaviors
in Magnetic Blocks in Appendix. Typically, the agent grabs
the object A and approaches the object B to make these two
objects connected to each other, and pushing them further to
move the compound around.

Analysis of COIL-SF Reward

To analyze what reward function COIL-SF has learned, we
labeled each state with the following 7 categories on the
Magnetic Blocks environment with 4 objects.

Grab-A: the agent is grabbing the object A.

Grab-B: the agent is grabbing the object B.

Connect-AB: the objects A and B correctly connected.
Note that when A and B are connected, the object A will
be highly likely to be be affected by the object B, i.e.,
interaction occurs.

Connect-AB-Only: a subset of Connect-AB states, ex-
cluding states where objects other than A and B are con-
nected as well.

Connect-AX: the object A is connected to a wrong object
(X), i.e., anything but to B. This is a falsy interaction that
does not conform to the goal given to the agent.
Connect-BX: the object B is connected to a wrong object
(X), i.e., anything but to A. This is also a falsy interaction
that does not conform to the goal given to the agent.
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Figure 4: Progress of the success rate when fine-tuning from a COIL-SF agent pre-trained on the 4 objects (object size 100%)
setting in Magnetic Blocks environment. Runs are averaged over 3 random seeds.

State Labels | Average Reward | Relative Ratio
No-Event 0.7 0.040
Grab-A 14.21 0.803
Grab-B 10.7 0.604
Connect-AB 17.3 0.977
Connect-AB-Only 17.7 1.0
Connect-AX 0.51 0.029
Connect-BX 1.8 0.101

Table 1: Average COIL-SF reward given to the 7 types of
states on the Magnetic Blocks environment. COIL-SF gives
the highest reward to Connect-AB-Only.

* No-Event: all other states not included in the above 6 cat-
egories (e.g., the agent wanders around and does nothing)

Table 1 shows an average reward given to states with
each label, for a successful instance of COIL-SF. Among
the 7 labels, Connect-AB-Only receives the highest rewards.
Connect-AB receives a slightly lower reward than Connect-
AB-Only. Considering that Connect-AX or Connect-BX re-
ceive small rewards, we assume that a small portion of
Connect-AB states are the states where objects other than
A and B are also connected, and those states have small re-
wards. Grab-A and Grab-B receive high rewards compared
to Connect-AX, Connect-BX, or No-Event. This may be due
to Grab-A having an intersection with Connect-AB-Only,
which is a set of states where objects A and B are connected
and the agent is grabbing the object A.

Generalization to More/Unseen objects

We evaluate the object interaction skills learned by COIL-
SF, testing whether they can be applied to environments with
more and unseen objects. First, the policy and successor fea-
ture networks are pre-trained on Magnetic Blocks with 4
objects for 10 million steps and perform fine-tuning for 1
million additional steps. For each setup, the performance of
COIL-SF fine-tuned from pre-trained networks is compared
to that of COIL-SF trained from scratch for (10+1) million
steps, ensuring a fair comparison. We tested the generaliza-
tion ability on 4 different setups with varying object sizes
and numbers: (a) 4 objects, 33% object size, (b) 4 objects,
66% object size, (¢) 6 objects, 100% object size, and (d) 6
objects, 66% object size.
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Unseen objects: (a), (b) To test the generalization ability
of COIL-SF on unseen objects, we varied the scale (size) of
the objects by 33% or 66%. The Figure 4 (a-b) show the per-
formance of COIL-SF fine-tuned on pre-trained networks.
When tested on the 66% scale, COIL-SF gets a high suc-
cess rate even without any training. When tested on the 33%
scale, the initial performance of COIL-SF is poor, but the
performance improves rapidly within 1 million steps of fur-
ther training while learning COIL-SF from the scratch fails.

More and Unseen objects: (c), (d) To test the general-
ization ability of COIL-SF on a different number of objects,
we conducted experiments with more objects and vary-
ing scales (66%, 100%). The Figure 4 (c-d) show the per-
formance of COIL-SF. Surprisingly COIL-SF fined-tuned
on pre-trained networks performs better even in more and
unseen objects settings indicating that skills learned from
COIL-SF can be used as task-agnostic skills.

Overall, the successful learning of task-agnostic skills
with COIL-SF has implications for future research, as these
skills could potentially be incorporated into hierarchical re-
inforcement learning for more complex tasks.

Conclusion

In this paper, we introduce COIL (Counterfactual Object
Interaction Learning), a novel approach to learning object-
object interaction skills using intrinsic rewards, and the con-
cept of counterfactual dynamics. Our results demonstrate
that COIL can effectively learn to interact with objects in
challenging continuous, object-centric environments outper-
forming all the baselines including Sparse-GT, which in-
corporates task-specific knowledge. We also showed a gen-
eralization ability of interaction skills learned by COIL.
Given the complexity and diversity of real-world tasks
such as furniture assembly or complex robotics object ma-
nipulation, we believe that unsupervised learning of object-
object interactions is important, and COIL presents a sig-
nificant step towards this challenging goal. We note that
COIL has some limitations that the method currently re-
lies on a factorized state representation, and do not con-
sider diverse modes of interaction skills. Considering that
the real-world tasks contain multiple modes of interaction
and complex state representation, combining diverse skill
learning (Eysenbach et al. 2018; Sharma et al. 2019; Park
et al. 2022) and object-centric representation learning meth-
ods (Locatello et al. 2020) will be an interesting future work.
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