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Abstract

Variational Autoencoder based Bayesian Optimization (VAE-
BO) has demonstrated its excellent performance in ad-
dressing high-dimensional structured optimization problems.
However, current mainstream methods overlook the potential
of utilizing a pool of unlabeled data to construct the latent
space, while only concentrating on designing sophisticated
models to leverage the labeled data. Despite their effective
usage of labeled data, these methods often require extra net-
work structures, additional procedure, resulting in computa-
tional inefficiency. To address this issue, we propose a novel
method to effectively utilize unlabeled data with the guidance
of labeled data. Specifically, we tailor the pseudo-labeling
technique from semi-supervised learning to explicitly reveal
the relative magnitudes of optimization objective values hid-
den within the unlabeled data. Based on this technique, we
assign appropriate training weights to unlabeled data to en-
hance the construction of a discriminative latent space. Fur-
thermore, we treat the VAE encoder and the Gaussian Process
(GP) in Bayesian optimization as a unified deep kernel learn-
ing process, allowing the direct utilization of labeled data,
which we term as Gaussian Process guidance. This directly
and effectively integrates the goal of improving GP accuracy
into the VAE training, thereby guiding the construction of the
latent space. The extensive experiments demonstrate that our
proposed method outperforms existing VAE-BO algorithms
in various optimization scenarios. Our code will be published
at https://github.com/TaicaiChen/PG-LBO.

Introduction
Bayesian optimization has found widespread applications in
various optimization problems and machine learning tasks,
enabling the discovery of optimal solutions for complex
functions (Snoek, Larochelle, and Adams 2012). Traditional
BO methods based on the Gaussian process have demon-
strated their remarkable performance in practical applica-
tions. However, with the increase in problem dimensions,
these conventional methods face significant challenges. The
computational cost of searching in high-dimensional spaces
grows exponentially, leading to a drastic decrease in the effi-
ciency of traditional BO algorithms (Kandasamy, Schneider,
and Póczos 2015). Recently, Variational Autoencoder (VAE)
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provides a powerful method to map high-dimensional struc-
tured data into low-dimensional continuous latent spaces,
enabling efficient and effective optimization of the objective
function. Consequently, VAE-BO possesses unique advan-
tages in tackling high-dimensional structured optimization
problems. Currently, the VAE-BO based methods have been
widely applied in various fields, including molecular synthe-
sis (Stanton et al. 2022; Maus et al. 2023), neural architec-
ture search (Ru et al. 2021; Biswas et al. 2023) and anomaly
detection (Zhang, Wei, and Wang 2023). The research focus
of VAE-BO lies in effectively utilizing both labeled and un-
labeled data to learn a discriminative latent space. Neverthe-
less, some existing VAE-BO methods still exhibit limitations
in the utilization of labeled data and unlabeled data.

Firstly, while existing VAE-BO algorithms make use of
labeled data, unfortunately, their utilization of unlabeled
data is still straightforward, whereas the efficacy of unla-
beled data has not been fully exploited. For example, the
pioneering work of (Gómez-Bombarelli et al. 2018) was
the first to introduce VAE into the BO domain. However,
in their method, the VAE was trained in an unsupervised
manner, resulting in a non-discriminative latent space that
was ill-suited to BO processes. Subsequent VAE-BO re-
search has largely focused on better utilizing labeled data
with black-box function values to learn a discriminative la-
tent space. For instance, (Eissman et al. 2018) introduced
additional network structures that allow for the joint utiliza-
tion of labeled and unlabeled data in the pre-training of the
VAE. While LBO (Tripp, Daxberger, and Hernández-Lobato
2020) employed unlabeled data for the initial pre-training of
the VAE and subsequently leveraged labeled data through
data weighting and periodic retraining of the VAE. In addi-
tion, T-LBO (Grosnit et al. 2021) extended LBO by incor-
porating deep metric learning to utilize labeled data, and the
training of the VAE was divided into two stages: pre-training
on unlabeled data and fine-tuning on labeled data. These
works proposed various ways to leverage labeled data, while
the utilization of unlabeled data has only been explored in
the pre-training stage of the VAE, and its potential has not
been fully exploited. We notice that unlabeled data also con-
tain valuable discriminative information regarding optimiza-
tion target values. Exploiting this information can help train
more discriminative models and learn a better latent space.

Furthermore, we have observed that existing methods face
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challenges of complexity or inefficiency when it comes to
utilizing labeled data. (Eissman et al. 2018) required to intro-
duce additional network structures which predicted black-
box function values through the encoded latent representa-
tions, making the method somewhat complex. And T-LBO
introduced significant computational overhead due to deep
metric learning, and the overall method was computationally
demanding. LBO utilized the relative magnitudes of labeled
data labels through data weighting, rather than directly using
the actual values, potentially not fully harnessing the poten-
tial of labeled data. Hence, how to effectively utilize labeled
data in a simple yet efficient manner is worth investigating.

Be aware of these two issues, we wonder if we have an
effective and efficient way to fully capitalize the potential of
both labeled and unlabeled data. To this end, we present a
novel semi-supervised learning method that utilizes pseudo-
labels to explicitly reveal the relative magnitudes of opti-
mization target scores in unlabeled data. Subsequently, we
assign appropriate training weights to unlabeled data based
on these pseudo-labels. By assigning more weights to the
points with higher optimization target scores, this guides
VAE to focus more on high-scoring points. This contributes
to the construction of a more discriminative latent space.
Furthermore, we propose a more streamlined method for ex-
ploiting labeled data. Specifically, we unify the VAE encoder
and the GP in BO as a cohesive deep kernel learning process,
effectively integrating the goal of improving GP accuracy di-
rectly into the VAE training. This integration allows the GP
to guide the training of the VAE and consequently influence
the construction of the latent space. The main contributions
of our work can be summarized as follows:

• We assess the limitations of current VAE-BO approaches
in terms of data utilization and delve into the untapped
potential of unlabeled data in enhancing the creation of a
distinct latent space.

• For the comprehensive usage of unlabeled data, we pro-
pose to utilize pseudo-labels to intergrate the implicit dis-
criminative information within unlabeled data, thereby
facilitating the construction of the latent space.

• To efficiently exploit the labeled data, we introduce a
straightforward method through GP guidance by inte-
grating the VAE encoder and GP to leverage labeled data,
modeled as a classical deep kernel learning paradigm.

Related Work
Bayesian optimization suffered from the curse of dimension-
ality, which referred to the exponential increase in computa-
tional complexity as the dimension of the problem increased.
Although various methods had been proposed to extend
Bayesian optimization to high-dimensional spaces, the fo-
cus in this paper was on the VAE-based method, also known
as Latent Space Optimization (LSO) (Tripp, Daxberger, and
Hernández-Lobato 2020). The VAE was used to map the
high-dimensional structured spaceX to a lower-dimensional
continuous latent space Z . In the latent space Z , Bayesian
optimization was performed to find the optimal solution
z⋆ ∈ Z , which was subsequently mapped back to X to ob-
tain the final solution x⋆. A key challenge of VAE-BO lays

in effectively leveraging labeled and unlabeled data.
The VAE-BO was first applied to chemical design

(Gómez-Bombarelli et al. 2018) and found application
in various domains including automatic machine learning
(Zhang et al. 2019; Biswas et al. 2023), chemical molecule
synthesis (Korovina et al. 2020; Maus et al. 2023) and
anomaly detection (Zhang, Wei, and Wang 2023). In those
works, the VAE models were mostly trained on unlabeled
data, and their parameters remained fixed during the BO pro-
cess. This conventional paradigm led to a non-discriminative
potential space ill-suited for BO and vulnerable to the “dead
zone” issue. To address these issues, LBO suggested inte-
grating LSO with weighted retraining of the VAE model,
leveraging the black-box function values of labeled data. As-
signing weights to data points according to the magnitude
of the black-box function scores compelled the generative
model to prioritize modeling the feasible region with high-
scoring points. Furthermore, periodic VAE model retraining
during Bayesian optimization iterations facilitated the incor-
poration of new point information. For guiding the creation
of a distinctive VAE-BO latent space, T-LBO extended LBO
by incorporating deep metric learning to better exploit la-
beled data. In addition, T-LBO adopted a pre-training and
fine-tuning framework, using unlabeled data for pre-training
the VAE model and then supervised fine-tuning with labeled
data. This training framework effectively combined labeled
and unlabeled data. Recent work, TSBO (Yin, Wang, and
Li 2023), drew inspiration from Meta Pseudo Labels (Pham
et al. 2021) in semi-supervised learning, introduced an addi-
tional teacher-student model structure to assign pseudo-label
to the unlabeled data, which were then utilized for training
the surrogate model and the VAE.

Certain VAE-BO research redirected its attention to ar-
eas beyond data utilization. For example, LOL-BO (Maus
et al. 2022) concentrated on optimizing strategies within
VAE-BO, introducing trust region optimization strategies
that aided in searching for optimal points during the BO
process. On the other hand, (Verma, Chakraborty, and Grif-
fiths 2022) utilized Gaussian Process marginal likelihood
objectives to learn invariant enhancements for determining
BO query points. (Guo et al. 2022) involved using multiple
VAEs to mitigate the challenges posed by confirming VAE
latent space dimensions.

Our method emphasized the utilization of data in VAE-
BO, specifically focusing on the utilization of unlabeled
data. Compared with previous methods, we used pseudo-
labels to exploit the implicit discriminative information in
unlabeled data to help construct the VAE latent space, in-
stead of simply using unlabeled data for VAE pre-training.
TSBO also employed pseudo-labeling, but our method dif-
fered in pseudo-label’s application. TSBO directly utilized
pseudo-labels to characterize black-box function values.
While considering the potential cognitive errors introduced
by pseudo-labels, we used pseudo-labels to reveal the mag-
nitude relationship information between the black-box func-
tion values corresponding to unlabeled data and utilized this
information using data weighting. Meanwhile, TSBO fo-
cused on using unlabeled data to help train the surrogate
models, while we focused on using unlabeled data to aid in
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constructing the latent space of VAE.

Methodology
Preliminaries: Bayesian Optimization
Bayesian optimization addresses the global optimization
problem of finding

x⋆ = argmax
x∈X

f(x), (1)

where f(·) : X → R is an expensive black-box function
defined on a high-dimensional structured input space X . BO
leverages two core components: a surrogate model to model
the objective function and an acquisition function to deter-
mine the next query point for evaluation. Gaussian Process
Regression (GP) is commonly used as the surrogate model,
which models the posterior distribution fΦ(x;DL) based on
the available data set DL = {(xi, yi)|i = 1, · · · , N}, where
Φ represents the hyperparameters of the GP and yi = f(xi).

The posterior distribution is given as follows:

fΦ(x;Dl) ∼ N (µ(x), σ2(x)), (2)

where

µ(x) = m(x) + k(x,X)⊤(K + σ2
0IN )−1(y −m(x)),

(3)

σ2(x) = k(x, x)− k(x,X)⊤(K + σ2
0IN )−1k(x,X), (4)

where m(·) and k(·, ·) are the prior mean and kernel
function, IN denotes the N -dimensional identity matrix,
k(x,X) = [k(x, x1), k(x, x2), · · · , k(x, xN )], and the el-
ements of matrix K are defined as Kij = k(xi, xj). GP is
a non-parametric model, and its hyperparameters Φ mainly
include the prior mean function, kernel function scale, and
noise variance, which are typically optimized by minimizing
the negative log marginal likelihood on the available data set.

The acquisition function is designed to balance the poste-
rior mean and variance predicted by the GP model to deter-
mine the next query point. Popular acquisition functions in-
clude Expected Improvement (EI), Probability Improvement
(PI), and Upper Confidence Bound (UCB), among others.

Overview of the PG-LBO
Weighted retraining module. Weighted retraining, pro-
posed by LBO, employs data weighting to enhance the
modeling of high-scoring points in the VAE training ob-
jective, allocating a larger proportion of the feasible re-
gion and effectively utilizing all known data points in or-
der to learn informative representations and avoid overfit-
ting. Let qencϕ be the pre-trained VAE encoder, gdecθ be the
decoder. The initial available labeled data set is denoted as
DL = {(xi, f(xi))|i = 1, 2, · · · , N}.

The widely used weighting method is based on a rank-
based weighting function:

w(x;DL, k) ∝
1

kN + rankf,DL
(x)

, (5)

rankf,DL
(x) = |{xi : f(xi) > f(x), xi ∈ DL}|. (6)

Weighted retraining module

BO iteration

EI

Black-box
function

Black-
box
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Figure 1: A overview of the PG-LBO.

This function assigns weights approximately proportional to
the inverse rank (starting from zero) of each data point. A
tunable hyperparameter k controls the degree of weighting,
where k = ∞ corresponds to uniform weighting (wi =

1
N

for all i), and k = 0 assigns all weight to the single point
with the highest objective function value. The VAE is trained
on the weighted data set, and training loss can be seen as the
weighted average over the data points:

LL(θ, ϕ) = w(xi)[Eqϕ(zi|xi)[log gθ(xi|zi)]
− KL(qϕ(zi|xi)||p(z))], (7)

where w(xi) represents the data weight calculated according
to the weighting function.

In addition to data weighting, periodic retraining of the
VAE is also necessary to propagate the newly generated
points by the BO process. Specifically, assuming that re-
training is performed every r BO iterations, before each re-
training, the labeled data set is updated as follows: D(k)

L =

D
(k−1)
L ∪ {(x⋆

i , f(x
⋆
i ))}i=0,...,q , and where D

(0)
L = DL.

New points are added to the labeled data set and then the
updated data set is used to retrain the VAE.

Pseudo-label training module. Existing VAE-BO meth-
ods primarily focus on utilizing the black-box function la-
bels of labeled data to guide the construction of the latent
space, while overlooking the potential role of implicit dis-
criminative information regarding optimization target val-
ues in unlabeled data. In response, we introduce pseudo-
label training, a novel approach leveraging pseudo-labels to
uncover latent discriminative information within unlabeled
data. This knowledge is effectively employed via weighted
retraining to guide latent space construction. The training
objective of VAE-BO can be seen as training a Gaussian
process latent variable model (Siivola et al. 2021), resem-
bling a deep regression task. However, unlike extensively
studied classification tasks in semi-supervised learning that
have explored settings such as mismatch (Duan et al. 2023),
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open-set (Li et al. 2023; Yang et al. 2022) and barely-
supervised learning (Gui et al. 2022), the exploration of
semi-supervised methodologies for deep regression tasks is
relatively limited. Regression tasks directly use real-valued
targets as pseudo-labels, being sensitive to prediction qual-
ity. However, Weighted retraining mitigates this sensitivity
by indirectly incorporating relative objective function rank-
ing through data weighting, avoiding direct utilization of
actual values. This method reduces training sensitivity to
black-box function values, enabling the effective use of un-
labeled data via pseudo-labels.

Specifically, we sample unlabeled data points in the la-
tent space Z to obtain a set of points {ẑj}j=0,...,NP

, then
assign pseudo-labels to these unlabeled data points to reflect
the relative magnitudes of the black-box function values, re-
sulting in a pseudo-labeled data set DP = {x̂j , s(x̂j)|j =
0, · · · , NP }, where x̂j = gθ(ẑj). We then use the pseudo-
labels to weigh the data during training. By introducing an
additional pseudo-label loss LP during training, it becomes
integrated into the weighted retraining process of VAE:

LP (θ, ϕ) = ŵ(x̂j)[Eqϕ(ẑj |x̂j)[log gθ(x̂j |ẑj)]
− KL(qϕ(ẑj |x̂j)||p(z))], (8)

ŵ(x̂;DP , k) ∝
1

kNP + ranks,DP
(x̂)

, (9)

ranks,DP
(x̂) = |{x̂j : s(x̂j) > s(x̂), x̂j ∈ DP }|, (10)

where s(x̂) represents the pseudo-label of the unlabeled data
sample x̂, which only needs to reflect the relative mag-
nitudes of the black-box function values among unlabeled
data, rather than accurately reflecting the actual values. For
simplicity, we directly use the posterior mean provided by
the GP model as the pseudo-label, i.e., s(x̂j) = µfΦ(ẑj),
where x̂j = gθ(ẑj).

GP guidance module. The core purpose of utilizing la-
beled data is to construct a more discriminative latent space
tailored for the Bayesian optimization process. Drawing in-
spiration from the principles of deep kernel learning, we
present a more direct approach called GP guidance to har-
ness the black-box function values of labeled data. We treat
the VAE encoder and the GP model as integral components
of a unified deep kernel learning process. This technique in-
troduces a loss term that aims to minimize the mean squared
error between the GP model’s predictions and the actual
black-box function values of labeled data. This loss term is
seamlessly integrated into the VAE’s training objective, driv-
ing the VAE to generate latent representations that closely
align with the GP model’s expectations. Notably, the GP
model offers a predictive posterior distribution that gauges
the uncertainty of predictions. To enhance stability, we reg-
ularize the posterior by incorporating an unsupervised loss
term designed to minimize the prediction variance for unla-
beled data points (Jean, Xie, and Ermon 2018). The ultimate
formulation of this loss term can be expressed as follows:

LG(ϕ) = w(xi)Eqϕ(zi|xi)[(f(xi)− µfΦ(zi))
2]

+ ŵ(x̂j)Eqϕ(ẑj |x̂j)[σ
2
fΦ(ẑj)]. (11)

Since the GP model is a non-parametric model and lacks
learnable parameters like neural networks, it primarily re-
lies on the hyperparameters Φ to fit the training data. There-
fore, during VAE training, we keep the GP model fixed and
only use it for guidance. After VAE training, we re-encode
the labeled data using VAE to obtain new data latent rep-
resentations, then fit the GP model on these new representa-
tions, and update the hyperparameters of the GP model. This
way, the VAE and the GP model are continually optimized
through this approximate alternating update process.

Data sampling and pseudo-label selection. Unlabeled
data is acquired through sampling. Weighted retraining en-
courages the VAE to use larger feasible regions for modeling
high-scoring points. However, if the sampled unlabeled data
mainly comprises low-scoring points, it might not contribute
effectively to the model and could even worsen its perfor-
mance. Hence, the data sampling strategy must be carefully
designed to prioritize higher-scoring points. In this study,
we utilize two straightforward sampling approaches: noisy
sampling and heuristic sampling. Noisy sampling introduces
Gaussian noise to existing labeled data, effectively sampling
around high-scoring points. Heuristic sampling treats sam-
pling as an optimization task, utilizing a simple heuristic
optimization algorithm to iteratively maximize data point
pseudo-labels. These approaches enhance the overall quality
of sampled points. A detailed introduction of the sampling
methods are in Appendix A.

While data weighting effectively mitigates potential im-
pacts from discrepancies between pseudo-labels and true la-
bels, pseudo-labels carrying significant errors can still intro-
duce cognitive bias into the model. Therefore, we filter the
sampled data during the sampling process to improve the ac-
curacy of the pseudo-label data as much as possible. BO can
be viewed as an optimization for regression tasks. Different
from classification tasks where straightforward thresholding
can sift confident class predictions, regression tasks employ
real-valued targets as pseudo-labels, rendering the sole re-
liance on model outputs for confidence assessment challeng-
ing. Inspired by the work of (Rizve et al. 2021), we use
uncertainty to select robust pseudo-label data. This choice
presents distinct benefits when coupled with GP models,
as GP models can jointly express both mean and variance.
The variance conveniently doubles as a measure of predic-
tion uncertainty, negating the need for extra computation.
We provide a more detailed discussion on the threshold se-
lection in Appendix B. Drawing inspiration from the work
of FreeMatch (Wang et al. 2023) in semi-supervised learn-
ing, we set the uncertainty threshold τt for filtering as the
model’s average prediction variance on unlabeled data and
estimate the uncertainty threshold as the exponential mov-
ing average (EMA) of threshold values at each training step:

τt =

{
1

N ′
P

∑N ′
P

j=1 σ
2
fΦ
(z′j), if t = 0,

λτt−1 + (1− λ) 1
NP

∑NP

j=1 σ
2
fΦ
(zj), otherwise,

(12)

where λ ∈ (0, 1) is the momentum decay for EMA. When
t = 0, we pre-sample a subset of points {z′j}j=1,...,N ′

P
,

where N ′
P = NP /10, to determine the initial threshold.
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Algorithm 1: Pseudo code of PG-LBO
Input: Data DL, query budget M , object function

f(x), VAE encoder/decoder qϕ(x)/gθ(z),
retrain frequency r, weight function w(x)

1 for 1, · · · ,M/r do
2 W ← {w(xi)}xi∈DL

;
3 Ŵ ← {w(x̂j)}x̂j∈DP

;
4 Weight DL byW , weight DP by Ŵ ;
5 Solve ϕ⋆, θ⋆ ← argminϕ,θL(ϕ, θ) on DL, DP ;
6 {zi ← qϕ(xi)}xi∈DL

;
7 DZ ← {(zi, f(xi))}xi∈DL

;
8 for 1, · · · , r do
9 Fit GP on DZ to obtain fΦ(z;DZ) ;

10 Optimize EI to obtain new latent point z̃ ;
11 x̃← gθ(z̃) ;
12 DL ← DL ∪ {x̃, f(x̃)} ;
13 DZ ← DZ ∪ {z̃, f(x̃)} ;
14 end
15 Sample latent data point ẑ ;
16 Filter ẑ by thresholds τ ;
17 x̂← gθ(ẑ) ;
18 DP ← {x̂, µfΦ(ẑ)} ;
19 Update τ ;
20 end
21 x⋆ ← argmaxx∈DL

f(x) ;
22 return x⋆

Training loss. By combining the aforementioned com-
ponents, we have developed a novel high-dimensional
Bayesian optimization algorithm, named PG-LBO. Figure
1 provides an overview of the PG-LBO. The training loss of
the algorithm can be represented as follows:

L = LL + λPLP + λGLG, (13)

where λP and λG represent the weights for the Pseudo-label
training loss and the GP guidance loss, respectively. Algo-
rithm 1 presents the pseudo-code for PG-LBO.

Experiments
In this section, we apply PG-LBO to three high-dimensional
structured optimization tasks and compare it with several
VAE-BO algorithms. For each task, we first pre-train the
VAE using unlabeled data, and all algorithms start with the
same pre-trained VAE as the backbone network.

High-Dimensional BO Tasks and Baselines
Topology shape fitting task: The goal of the task is to
generate a 40×40 binary image x, and maximize the cosine
similarity cos(x,x′) = x · x′⊤/ ∥x∥ ∥x′∥ between x and a
predefined target image x′. The task involves using 10000
topology images from the dataset (Sosnovik and Oseledets
2019) and a VAE with the latent space dimension of 20.

Expression reconstruction task: The expression recon-
struction task aims to generate single-variable expressions
x(v) and minimize the distance to the target equation

x′(v) = 1/3 + v ∗ sin(v ∗ v). The objective function is a
distance metric f(x) = max{−7,−

∫ 10

−10
log(1 + (x(v) −

x′(v))2dv}. Task access to 40,000 data points and use the
grammar VAE from (Kusner, Paige, and Hernández-Lobato
2017) with the latent space dimension of 25.

Chemical design task: The task uses the ZINC250K
dataset (Sterling and Irwin 2015) to synthesize chemical
molecules with the objective of maximizing the penalized
water-octanol distribution coefficient (PlogP) of molecules.
A Junction Tree Variational Autoencoder (JT-VAE) (Jin,
Barzilay, and Jaakkola 2018) with a latent space dimension
of 56 encodes and generates efficient molecules.

Baselines: We compare our proposed method with four
VAE-BO baselines: LSBO, LBO, T-LBO and LOL-BO.
LSBO (Gómez-Bombarelli et al. 2018) performs BO in the
latent space with a fixed pre-trained VAE. LBO trains VAE
on the labeled data through data weighting and periodically
fine-tuning VAE. T-LBO introduces deep metric learning to
LBO by additionally minimizing the triplet loss of the la-
beled data. LOL-BO introduces the trust region optimization
strategies that aided in searching for optimal points during
the BO process. We follow the setups in the existing litera-
ture and utilize the same GP surrogate and acquisition func-
tion across all baselines. The surrogate is a sparse GP (Tit-
sias 2009) with the radial basis function (RBF) kernel. The
acquisition is the EI function.

Experimental Setup and Results
Experimental setup: PG-LBO builds upon the foun-
dation of LBO and uses the same VAE updating strat-
egy and data weighting scheme during the BO process.
In the training of pseudo-label data, the size of the
pseudo-label dataset is maintained at half of the labeled
dataset size, i.e., NP = NL/2. As the BO iterations
progress, the accuracy of pseudo-labels improves. There-
fore, we linearly increase the weight of the pseudo-label
loss during VAE retraining rounds. For topology shape fit-
ting task, λP = LinearIncrease(0.5, 0.75). For expres-
sion reconstruction task and chemical design task, λP =
LinearIncrease(0.1, 0.75). Regarding the GP guidance loss
weight, we consider the varying difficulty levels of differ-
ent tasks, and accordingly, the loss weight varies. For topol-
ogy shape fitting task and chemical design task, the weight
λG = 1, while for expression reconstruction task, λG = 0.1.
The momentum decay of the pseudo-label selection thresh-
old, λ = 0.9. The data sampling method employs noisy sam-
pling, with Gaussian noise N (0, 0.1).

Results: As shown in Figure 2, PG-LBO consistently out-
performs all baselines by the end of optimization. Table
1 shows more details. We notice that the improvement of
PG-LBO over LBO is not substantial in the topology task.
This might be attributed to the fact that LBO already per-
forms well in this task, and due to the inherent difficulty of
the problem, achieving significant enhancements becomes
challenging. In expression task and molecule task, PG-LBO
shows a notable improvement over LBO. The experimen-
tal results of T-LBO are obtained by replicating the code
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Figure 2: Comparison between PG-LBO and other VAE-BO methods in three tasks, plot the mean and the standard deviation of
the best value over 5 seed over 500 evaluations. For topology task, the y-axis represents the cosine similarity between generated
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Method
Task Topology (↑) Expression (↓) Molecule (↑)

LSBO 0.852±0.003 0.474±0.157 5.45±0.252
LBO 0.855±0.007 0.314±0.144 7.01±0.517

T-LBO 0.830±0.007 0.464±0.238 13.44±1.711
LOL-BO 0.859±0.008 0.311 ±0.111 27.53±2.393

PG-TLBO (ours) 0.833±0.006 0.175±0.144 21.53±1.650
PG-LBO (ours) 0.866±0.007 0.227±0.186 31.77±0.329

Table 1: Mean and standard deviation of best values found
by baselines and PG-LBO. For Topology task, values rep-
resent cosine similarity, for Expression task, values repre-
sent distance, and for Molecule task, values represent PlogP
score. ↑ indicates higher is better, ↓ indicates lower is better.

and parameters provided in T-LBO paper. However, the re-
sults in all three tasks significantly deviate from those re-
ported in T-LBO paper. To address this, we conducted ad-
ditional experiments by applying our proposed method to T-
LBO, named PG-TLBO. Notably, the performance of model
is improved after incorporating our method. In expression
task, PG-TLBO (0.175±0.1443) even outperforms PG-LBO
(0.227±0.1864), demonstrating the effectiveness of our pro-
posed method. We also conducted comparative experiments
on a smaller scale labeled dataset, our method consistently
maintained superior performance over all baseline methods.
The detailed discussion and comparison are in Appendix C.

Ablation Studies
Unless otherwise specified, we conduct ablation studies on
the topology shape fitting task. In the paper, we primarily
present ablation experiments on the modules and key de-
signs of the proposed methods. Ablation experiments for the
hyperparameters are deferred to Appendix D.

Individual effectiveness of Pseudo-labeled training and
GP guidance. To investigate the impact of the two main
components of our method, pseudo-label training and GP

guidance, on model performance, we conduct ablation ex-
periments and attempt to visualize the VAE latent space. Ex-
perimental setup: We compare three scenarios: using only
pseudo-label training, using only GP guidance, and combin-
ing both techniques, denoted as P-LBO, G-LBO, and PG-
LBO respectively. Other settings remain consistent. Result:
As shown in Figure 3a, Pseudo-label training (P-LBO) and
GP guidance (G-LBO) both contribute to performance im-
provements in the model, and for the topology task, Pseudo-
label training provides more significant improvement to the
model’s performance. This might be attributed to the fact
that for topology tasks, the GP model has already fitted quite
well, thus the improvement from GP guidance is limited. We
conduct a visual analysis to further investigate the impact of
pseudo-label training and GP guidance on the VAE latent
space. We randomly sample 10,000 points from the trained
VAE latent space and compute their corresponding true la-
bel values. We then perform PCA dimensionality reduction
for visualization. The results are shown in Figure 4, the two
axes are the principal components selected from the PCA
analysis. The color bar represents the values of the selected
property (cosine similarity). LSBO represents an unsuper-
vised trained VAE. We can observe that the distribution of
points in the latent space of P-LBO, G-LBO, and PG-LBO
exhibits greater discriminative characteristics.

The impact of data sampling on model performance.
The quality of sampling unlabeled data significantly im-
pacts the model’s performance. We conduct ablation experi-
ments to compare different sampling methods. Experimen-
tal setup: We compare three sampling methods: random
sampling, heuristic sampling, and noisy sampling, denoted
as PG-LBO (Random), PG-LBO (CMAES), and PG-LBO
(Noise) respectively. In the Methodology section, we pro-
vide a detailed description of the implementation process
for heuristic sampling and noisy sampling. We employ the
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithm for heuristic sampling as the optimization al-
gorithm. We select 100 high-scoring points from the exist-
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(b) Impact of sampling method.
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(c) Impact of pseudo-label selection.

Figure 3: Ablation studies result, plot the mean and the standard deviation of the best value over 5 seed over 500 evaluations.
The y-axis represents the cosine similarity.
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Figure 4: Two-dimensional PCA analysis on the VAE latent
space for the topology shape fitting task.

ing labeled dataset as the initial means for the CMA-ES al-
gorithm. The initial standard deviation is set to 0.25, and
we perform 100 iterations, using the points generated in
each iteration as sampling points. For noisy sampling, we
sample noise from a Gaussian distribution N (0, 0.1). Simi-
lar to heuristic sampling, we select 100 high-scoring points
from the existing labeled dataset as seed points, add random
Gaussian noise to these seed points, and use the newly ob-
tained points as sampling points. Aside from the sampling
method, other parameter settings remain consistent. Result:
As shown in Figure 3b, the performance of random sampling
is the worst, even lower than the baseline (LBO). This indi-
cates that the effectiveness of the pseudo-label training is
highly dependent on the quality of the unlabeled data points
sampled. If the sampled points are of poor quality, pseudo-
label training might even degrade the performance com-
pared to the baseline. Heuristic sampling and noisy sampling
exhibit comparable performance. However, since heuristic

sampling involves executing an additional optimization al-
gorithm, it introduces additional computational overhead.
As a result, we ultimately choose simple and effective noisy
sampling as the primary sampling method.

The role of pseudo-label selection. To improve the qual-
ity of pseudo-labels, we select pseudo-label data based on a
dynamic threshold derived from uncertainty. We perform ab-
lation experiments to investigate the impact of pseudo-label
thresholds on model performance. Experimental setup:
We compare three scenarios: using a fixed threshold, us-
ing a dynamic threshold, and using no threshold, de-
noted as PG-LBO (w/fix-threshold), PG-LBO (w/dynamic-
threshold), and PG-LBO (wo/threshold) respectively. The
fixed threshold is set to 0.0015, and the momentum decay λ
for the dynamic threshold scheme is set to 0.9. Other experi-
mental settings remain consistent. Results: As shown in Fig-
ure 3c, after threshold filtering, there is an improvement in
model performance, indicating that enhancing the accuracy
of pseudo-labels contributes to better model performance.
The dynamic threshold filtering scheme performs better than
the fixed threshold scheme, suggesting that dynamically ad-
justing the threshold based on the model’s learning state is
beneficial. Moreover, the fixed threshold scheme requires
task-specific prior knowledge to determine the threshold,
whereas the dynamic threshold scheme does not.

Conclusion
In this paper, we propose a novel method to enhance the con-
struction of the VAE latent space by leveraging unlabeled
data through pseudo-labeling techniques in semi-supervised
learning. Furthermore, drawing inspiration from deep ker-
nel learning, we directly incorporate the goal of improving
GP prediction accuracy into the training of the VAE, pro-
viding a new way of exploiting labeled data. By combining
our method with the weighted retraining proposed by LBO,
we obtain a novel high-dimensional BO algorithm named
PG-LBO. Extensive experiments on multiple task datasets
demonstrate the effectiveness of our method in enhancing
the performance of existing VAE-BO methods.
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