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Abstract

There has been a great deal of recent interest in binarized neu-
ral networks, especially because of their explainability. At the
same time, automatic differentiation algorithms such as back-
propagation fail for binarized neural networks, which limits
their applicability. We show that binarized neural networks
admit a tame representation by reformulating the problem of
training binarized neural networks as a subadditive dual of a
mixed-integer program, which we show to have nice proper-
ties. This makes it possible to use the framework of Bolte et
al. for implicit differentiation, which offers the possibility for
practical implementation of backpropagation in the context
of binarized neural networks.

This approach could also be used for a broader class of
mixed-integer programs, beyond the training of binarized
neural networks, as encountered in symbolic approaches to
Al and beyond.

Introduction

There has been a great deal of recent interest in binarized
neural networks (BNNs) (Hubara et al. 2016; Courbariaux
et al. 2016; Yuan and Agaian 2021), due to their impres-
sive statistical performance (Rastegari et al. 2016, e.g.), the
ease of distributing the computation (Hubara et al. 2016,
e.g.), and especially their explainability. This latter property,
which is rather rarely encountered in other types of neural
networks, stems precisely from the binary representation of
the outputs of activation functions of the network, which
can be seen as logical rules. This explainability is increas-
ingly mandated by regulation of artificial intelligence, in-
cluding the General Data Protection Regulation and the Al
Act in the European Union, and the Blueprint for an Al Bill
of Rights pioneered by the Office of Science and Technol-
ogy Policy of the White House. The training of BNNs typ-
ically utilizes the Straight-Through-Estimator (STE) (Cour-
bariaux, Bengio, and David 2015; Courbariaux et al. 2016;
Rastegari et al. 2016; Zhou et al. 2016; Lin, Zhao, and Pan
2017; Bulat and Tzimiropoulos 2017; Cai et al. 2017; Xi-
ang, Qian, and Yu 2017), where the weight updates in back-
propagation unfortunately (Alizadeh et al. 2018) do not cor-
respond to subgradients of the forward paths. This can lead
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to poor stationary points (Yin et al. 2018), and thus poor ex-
planations.

Here, we draw a new relationship between binarized neu-
ral networks and so-called tame geometry (van den Dries
1998) to address this challenge. We introduce a certain re-
formulation of the training of BNN, which allows us to make
use of the results of implicit differentiation and non-smooth
optimization when training the BNNs (Davis et al. 2020;
Bolte and Pauwels 2021; Bolte et al. 2021, 2022) and, even-
tually, to obtain weight updates in the back-propagation that
do correspond to subgradients of the forward paths in com-
mon software frameworks built around automated differen-
tiation, such as TensorFlow or PyTorch.

This builds on a long history of work on tame topology
and o-minimal structures (Grothendieck 1997; van den Dries
1998; Kurdyka 1998; Kurdyka, Mostowski, and Parusin-
ski 2000; Fornasiero and Servi 2008; Fornasiero 2010;
Kawakami et al. 2012; Fornasiero 2013; Fujita 2023, e.g.),
long studied in topology, logic, and functional analysis.

Our reformulation proceeds as follows: In theory, the
training of BNNs can be cast as a mixed-integer program
(MIP). We formulate its sub-additive dual, wherein we lever-
age the insight that conic MIPs admit a strong dual in terms
of non-decreasing subadditive functions. We show that this
dual problem is tame, or definable in an o-minimal struc-
ture. This, in turn, makes it possible for the use of powerful
methods from non-smooth optimization when training the
BNN, such as a certain generalized derivative of (Bolte and
Pauwels 2021) that comes equipped with a chain rule. Thus,
one can use backpropagation, as usual in training of neural
networks.

In the process, we establish a broader class of nice MIPs
that admit such a tame reformulation. A MIP is nice if its
feasible set is compact, and the graph of the objective func-
tion has only a finite number of non-differentiable points.
This class could be of independent interest, as it may contain
a number of other problems, such as learning causal graphs
(Chen, Dash, and Gao 2021), optimal decision trees (Ne-
mecek, Pevny, and Marecek 2023; Nemecek et al. 2023),
or certain problems in symbolic regression (Austel et al.
2020; Kim, Leyffer, and Balaprakash 2023). We hope that
this could bring closer symbolic approaches, which can of-
ten be cast as MIPs, and approaches based on neural net-
works and backpropagation.
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Figure 1: A BNN with |L| = 4 layers, L = (2,3,3,2).
The input vector © = (71, r2) take values in R?, while the
activation functions, o, in the following layers compress this
to lie in the set {0, 1}, for £ > 0.

Background

Let us start by introducing the relevant background mate-
rial. We begin by introducing the relevant notions of BNNs,
MIPs, and their subadditive dual. We discuss how the BNN
can be recast as a MIP, and thus, by strong duality, how train-
ing the BNN relates to a maximization problem over a set of
subadditive functions. Our main goal is to link the BNN with
tame geometry, and therefore we discuss the relevant back-
ground on o-minimal structures. Finally, we discuss results
on implicit differentiation for tame functions, which offers a
practical way of training the BNN once we have established
its tameness.

Binarized Neural Networks There is some ambiguity in
the literature as to what constitutes a binarized neural net-
work (BNN). We will follow (Bah and Kurtz 2020) and refer
to a BNN as a neural network where the activation functions
take values in the binary set {0, 1}. A BNN is characterized
by a vector L = (Lo, ..., Ly) with |L| = n layers where

each layer contains Ly € N5 neurons xz(-z)

allow the input layer 331(-0) to take any real values, IZ(-O) e R,

while due to binarized activations, the following layers will
(7>0) ¢ {0,1}. The neuron ;vgé) in the layer ¢ is con-
(e+1)
J

coefficient matrix w(®) € RE¢*Le1 Consider an input vec-

tor ¢ = (xgo), . x(LO)

BNN is given as

, see Fig. 1. We

have z;
nected with the neuron z in the layer £+ 1 via a weight
). The preactivation function of the

(e+1

= Y (e )
i€Lg 11
where o (*)(z) is the activation function at layer ¢ with
xz ifl=0,
o (@) =41 if¢>0and (@) >N, @
0 otherwise,

where \; € R is a learnable parameter. Note again that the
activation functions of all the neurons in the network of our
BNN are constrained in the set {0, 1} except for the input
layer neurons. This set can be mapped to {—1,1} by a re-

definition 5\ = 254 — 1.
The BNN can be viewed as a weight assighment w
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Figure 2: An illustrative example of a mixed-integer set as
subset of Z x R. This is given as the feasible set of the MIP
(3.

{w®, ... w} for a function
Fu 1 RE = {0,135 3)
2 g, @)
where § = ax(EN) is the vector of output layer neu-

rons. BNNs are trained by finding an optimal weight as-
signment W that fits and generalizes a training set S =
{(z1,91)s---, (®m,y,,)}. The traditional approaches of
backpropagation and gradient descent methods in usual deep
learning architectures cannot be used directly for training
BNNs. For optimizers to work as in standard neural net-
work architectures, real-valued weights are required, so, in
practice, when binarized weights and/or activation functions
are utilized, one still uses real-valued weights for the op-
timization step. Another problem is related to the use of
deterministic functions (2) or stochastic functions (Hubara
et al. 2016) for binarization, which “flattens the gradient”
during backpropagation. A common solution to these prob-
lems is to use the Saturated STE (Straight Through Estima-
tor) (Bengio, Léonard, and Courville 2013) (see also (Yin
et al. 2018)). Other possible solutions include the Expec-
tation BackPropagation (EBP) algorithm (Soudry, Hubara,
and Meir 2014) which is a popular approach to training mul-
tilayer neural networks with discretized weights, and Quan-
tized BackPropagation (QBP) (Hubara, Hoffer, and Soudry
2018). Ref. (Alizadeh et al. 2018) presents a comprehensive
practical survey on the training approaches for BNNGs. In this
article, we suggest that BNNs can be efficiently trained us-
ing nonsmooth implicit differentiation (Bolte et al. 2021).

Mixed-Integer Programming A mixed-integer linear
program (MILP) is an optimization problem of the form

max cx + hy
st. Az +Gy>b
®)
x € ZZO
[ES Rzo.

As illustrated in Figure 2, the feasible set is a subset of the
intersection of a polyhedron with the integral grid.

Recasting a BNN as a MIP The interactions and relations
between BNNs and MILPs have been studied in recent lit-
erature. For example, in Ref. (Icarte et al. 2019) BNNs with
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weights restricted to {—1, 1} are trained by a hybrid method
based on constraint programming and mixed-integer pro-
gramming. Generally, BNNs with activation functions tak-
ing values in a binary set and with arbitrary weights can
be reformulated as a MIP (Bah and Kurtz 2020). However,
the precise form of the corresponding MIP depends on the
nature of the loss function. Generally, a loss function for a
BNN with 7 layers is amap .# : {0,1} x RE» — R, which
allows the BNN to be represented as

min Y 7 (i, i)

i=1
s.t. ' = al (w(L)a(L_l) ( aW (w(l)xl) ))
w® e REexLen gy,
M ER, VY,
7€4{0,1}™.
The loss function .Z can be chosen in different ways; for

example the 0-1 loss function £ (9, y) = I;;,,,, where [ is the

indicator function, or the square loss .Z(§,y) = ||§ — yl|>.
The following result will then be essential for us (Bah and
Kurtz 2020, Thm. 2):

Theorem 1 (MILP formulation) (BNN-MINLP) is equiv-
alent to the following mixed-integer linear program:

min Zﬁ (y,u(L))
i=1
st wWMat < Mlu(l) + X\
wMazt > M, (u(l) - 1) + A1

di—1
S s < Mu® 1 x, k€ L\ 1}
=1

(BNN-MINLP)

(BNN-MILP)

di—1
=1

A <l o) > )
Vk e [L\{1},1 € [dk-1],J € [dk]

sl(f) < w® + (1 — u;k)) ,

)

ly
Vk € [LIN{1},1 € [de—1],j € [di]
k k k
sty = wij) = (1 —u )) )
VE € [LI\{1},1 € [de-1],] € [di]
Wk e [—1,1]%>d=1 v ¢ [I]
A € [-1,1] VEk €[]
ut* € {0,1}%  VEk € [L],i € [m]
si? e [=1,1)% Vi € [m], k € [L\{1},1 € [dr_1],
where x = (9, 4 = zO), for0 < £ < L, My :=

(nr + 1), ||z|| < r a Euclidean norm bound, n the di-
mension of x, and My := (d¢— + 1). The new variables
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s& ¢ [—1,1] have been added to linearize the products

ij
wOzU=Y that would otherwise appear. Finally, we have
rescaled the weights w and parameters X to lie in [—1,1],
without loss of generality. See also Lemma 1 in (Bah and

Kurtz 2020).

This gives the first step in our aim to link the theory of
tame geometry, or o-minimality, to BNNs. The next step is
to look at the dual problem of this MILP.

Subadditive dual In the context of MIPs, the notion of
duality is much more involved than in convex optimiza-
tion (Glizelsoy, Ralphs, and Cochran 2010). Only recently
(Kocuk and Moran 2019; Moran R, Dey, and Vielma 2012),
it is emerging that subadditive duals (Jeroslow 1978; John-
son 1980, 1974, 1979; Guzelsoy and Ralphs 2007; Wolsey
and Nemhauser 1999) can be used to establish strong du-
ality for MIPs. To introduce the subadditive dual, we use
the modern language of (Moran R, Dey, and Vielma 2012;
Kocuk and Moran 2019):

Definition 1 (Regular cone) A cone K C R™ is called reg-
ular if it is closed, convex, pointed and full-dimensional.

If x —y € K, we write = y and similarily, if € int(K)
we write x > 0.

Definition 2 (Subadditive and non-decreasing functions)
A function f : R™ — R is called:

* subadditive if f(x+y) < f(x)+ f(y) forall x,y € R™;

* non-decreasing with respect to a regular cone K C R™
ifrzxy = f(x) = f(y).

The set of subadditive functions that are non-decreasing with

respect to a regular cone K C R™ is denoted Fx and for

f € Fr we further define f(z) := limsups_, o+ f(gz).Note

that this is the upper x-directional derivative of f at zero.

Let us start by stating the relation between subadditive
functions and MIPs. To this end, we consider a generic conic
MIP,

2* =inf Tz + dTy,
st. Ax + Gy =k b,
reZ™,
y € R™2.
Note that problem (6) is a generalization of the primal form

of a MILP, as in Thm. 1, which is recovered by setting K =
R’". We define the subadditive dual problem of (6) as

(6)

p" =sup f(b),
st. f(AT) = —f(=A) =¢;, j=1,...,n1,
F(GF) = =F(=G*) = dy,
f(0) =0,
[ € Fk,

where A7 and G7 denotes the j’th column of the matrices
A and G, respectively, and c;, dj, are the components of the
corresponding vectors from the primal MIP.

In general, the subadditive dual (7) is a weak dual to the
primal conic MIP (6), where any dual feasible solution pro-
vides a lower bound for the optimal value of the primal
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(Zalinescu 2011; Ben-Tal and Nemirovski 2001; Moran R,
Dey, and Vielma 2012). Under the assumptions of feasibil-
ity, strong duality holds:

Theorem 2 (Thm. 3 of (Kocuk and Moran 2019)) If the
primal conic MIP (6) and the subadditive dual (7) are both
feasible, then (7) is a strong dual of (6). Furthermore, if the
primal problem is feasible, then the subadditive dual is feasi-

ble if and only if the conic dual of the continuous relaxation
of (6) is feasible.

That is: Theorem 2 provides a sufficient condition for the
subadditive dual to be equivalent to (6). A sufficient con-
dition for the dual feasibility is that the conic MIP has a
bounded feasible region.

Properties of subadditive functions To show our main
result, Theorem 4, we will need to introduce some structural
properties of subadditive functions. These are discussed in
detail in (Rosenbaum 1950; Matkowski and Swiatkowski
1993; Bingham and Ostaszewski 2008). For example, if f, g
are two non-decreasing subadditive functions on R™, then
the following hold:

¢ f + g is subadditive;

* the composition g o f is subadditive;

« if further f is non-negative and g positive on the positive
quadrant R then f(x)g(x) is subadditive on R}".

Let us note that, when we set K = R’ in (7) we have
that f(x) is non-negative on R due to the combination of
being non-decreasing, subadditive and having the condition
f(0)=0.

Following (Bingham and Ostaszewski 2008), we define
properties NT (as in “no trumps”) and WNT (for “weak
no trumps”), see also Def. 1 and 2 of (Bingham and Os-
taszewski 2008):

Definition 3 (NT) For a family (Ax)ren of subsets of R™
we say that NT(Ay) holds, if for every bounded/convergent
sequence {a;} in R™ some Ay, contains a translate of a sub-
sequence of {a;}.

Definition 4 (WNT) Ler f : R" — R. We call f a WNT-
function, or f € WNT, if NT({F’}jen-) holds, where
FI={x eR" : |f(z)] <j}.

We have the following theorem by Csiszar and Erdos
(Csiszar and Erdos 1964), nicely explained in (Bingham and
Ostaszewski 2009):

Theorem 3 (NT theorem, (Csiszar and Erdos 1964))
If T is an interval and T = UjeN* T; with each Tj
measurable/Baire, then NT({T}, : k € N*}) holds.

Here, Baire refers to the functions having “the Baire prop-
erty”, or the set being open modulo some meager set. Note
that this is not necessarily related to being definably Baire as
in Def. 7.

The following properties are shown in (Bingham and Os-
taszewski 2008):

¢ If f is subadditive and locally bounded above at a point,
then it is locally bounded at every point.

e If f € WNT is subadditive, then it is locally bounded.
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o If f € WNT is subadditive and inf, f(¢tz)/t is finite
for all x, then f is Lipschitz.

Tame topology The subject of tame topology goes back to
Grothendieck and his famous “Esquisse d’un programme”
(Grothendieck 1997). Grothendieck claimed that modern
topology was riddled with false problems, which he ascribed
to the fact that much of modern progress had been made
by analysts. What he proposed was the invention of a ge-
ometers version of topology, lacking these artificial prob-
lems from the onset. Subsequently, tame topology has been
linked to model-theoretic notions of o-minimal structures,
which promise to be good candidates for Grothendieck’s
dream. o-minimal structures are a generalisation of the
(semi-)algebraic sets, or the sets of polynomial equations
(and inequalities). As such, they provide us with a large class
of sets and functions that are in general non-smooth and non-
convex, while capturing most (if not all) of the popular set-
tings used in modern neural networks and machine learning
(Davis et al. 2020).

An o-minimal structure over R is a collection of subsets
of R™ that satisfies certain finiteness properties, such as clo-
sure under boolean operations, closure under projections and
fibrations. Formally,

Definition 5 (o-minimal structure) An o-minimal struc-
ture on R is a sequence S = (Sy)men such that for each
m > 1:

1) S, is a boolean algebra of subsets of R™;
2) if A€ S, then R x Aand A X R belongs to Spyy1;

3) S, contains all diagonals, for example {(x1, ..., xy) €

R™ : 21 =xm} € Sy
4) if A € Spy1, then(A) € Sp;

5) the sets in Sy are exactly the finite unions of intervals and
points.

Typically, we refer to a set included in an o-minimal
structure as being definable in that structure, and simi-
larly, a function, f : R™ — R", is called definable in
an o-minimal structure whenever its corresponding graph,
L(f) = {(z,y)| f(x) = y} C R™*", is definable. A set,
or function, is called tame to indicate that it is definable
in some o-minimal structure, without specific reference to
which structure.

The moderate sounding definition of o-minimal structures
turns out to include many non-trivial examples. First of all,
by construction, semialgebraic sets form an o-minimal struc-
ture, denoted Rgemialg.. If this was the only example of an
o-minimal structure, it would not have been a very interest-
ing construction. The research in o-minimal structures really
took off in the middle of the nineties, after Wilkie (Wilkie
1996) proved that we can add the graph of the real exponen-
tial function, x +— €%, t0 Ryemialg, t0 again find an o-minimal
structure, denoted Rey,. As a result, the sigmoid function,
which is a prevalent activation function in numerous neural
networks, can be considered tame. Another important struc-
ture is found by including the set of restricted real-analytic
functions, where the domain of an analytic function is re-
stricted to lie in a finite subset of the original domain in
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a particular way. This gives rise to an o-minimal structure
denoted R,, (van den Dries and Miller 1994). A classical
example of this would be the function sin(z), where we re-
strict « to lie in a finite interval € [0,] C R for some
a < oo. Note that without this restriction on the argument,
sin(z) is not tame. Furthermore, we can construct a very im-
portant o-minimal structure by combining Rey, with Ry, .
This gives the structure denoted Ry, exp. (van den Dries and
Miller 1994). It is important to note that the fact that Ruy_exp.
is an o-minimal structure is a non-trivial result. In general, it
does not hold that the combination of two o-minimal struc-
tures gives another o-minimal structure.

We thus see that o-minimal structures capture a very large
class of, generally, non-smooth non-convex functions. More
importantly, they include all classes of functions widely used
in modern machine learning applications. The great benefit
of this class is that they are still nice enough such that we can
have some control over their behaviour and prove conver-
gence to optimal points (Bolte, Daniilidis, and Lewis 2009;
Davis et al. 2020; Bolte and Pauwels 2021; Aravanis et al.
2022; Josz 2023).

Perhaps the most fundamental results regarding o-
minimal structures are the monotonicity and cell decompo-
sition theorems. The former states that any tame function
of one variable can be divided into a finife union of open
intervals, and points, such that it is continuous and either
constant or strictly monotone on each interval. The cell de-
composition theorem generalizes this to higher dimensions
by introducing the concept of a cell, which is the analogue
of the interval or point in one dimension. The theorem then
states that any tame function or set can be decomposed into
a finite union of definable cells. A related notion is that of a
stratification of a set. Generally, a stratification is a way of
partitioning a set into a collection of submanifolds called
strata. There exist many different types of stratifications,
characterized by how the different strata are joined together.
Two important such conditions are given by the Whitney and
Verdier stratifications. Both of these are applicable to tame
sets (Loi 1996; L& Loi 1998). These results are at the core of
many of the strong results on tame functions in non-smooth
optimization.

Locally o-minimal structures There exists a few variants
of weakenings of the o-minimal structures. One such ex-
ample is what is called a locally o-minimal structure (For-
nasiero and Servi 2008; Fornasiero 2010; Kawakami et al.
2012; Fornasiero 2013; Fujita 2023).

Definition 6 (Locally o-minimal structure) A definably
complete structure K extending an ordered field is locally
o-minimal if, for every definable function f : K — K, the
sign of f is eventually constant.

Here, definably complete means that every definable subset
of K has a supremum in KU {£o00} and X C K is nowhere
dense if Int(X) is empty. Every o-minimal expansion of an
ordered field is a definably complete structure (but the con-
verse is not true). Note also that every o-minimal structure
is locally o-minimal (Fornasiero 2010). Locally o-minimal

structures satisfy a property called definably Baire:
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Definition 7 (Definably Baire, from (Fornasiero 2013))

A definably complete structure K expanding an ordered
field is definably Baire if K is not the union of a definable
increasing family of nowhere dense subsets.

Finally, when we work with structures expanding
(R,+,-,<) we have that local o-minimality implies o-
minimality (Kawakami et al. 2012), while the same is gener-
ically not true when we do not have multiplication.

Non-smooth differentiation Bolte et al., (Bolte and
Pauwels 2021), introduced a generalized derivative, called
a conservative set-valued field, for non-smooth functions.
The main idea behind this construction is that the conserva-
tive fields come equipped with a chain rule. Namely, given
a locally Lipschitz function f : R™ — R, we say that
D : R™ == R™ is a conservative field for f if and only
if the function t — f(x(t)) satisfies

®)

for any absolutely continuous curve x : [0,1] — R™ and
for almost all ¢ € [0, 1]. Having a chain rule is key for appli-
cations to backpropagation algorithms and automatic differ-
entiation in machine learning.

Automatic differentiation for non-smooth elementary
functions is subtle and even the well-known Clarke gener-
alized gradient is known to introduce complications in this
setting. Having a derivative flexible enough to include auto-
matic differentiation was therefore indeed the main motiva-
tion behind the work of Bolte et al. In many ways, we can
see the conservative fields as a generalization of the Clarke
derivatives.

The conservative fields provide a flexible calculus for
non-smooth differentiation that is applicable to many ma-
chine learning situations. In (Bolte et al. 2021), a non-
smooth implicit differentiation using the conservative Jaco-
bians is developed. This can be seen as a form of automatic
subdifferentiation (backpropagation). The automatic subdif-
ferentiation is an automated application of the chain rule,
made available through the use of the conservative fields. It
amounts to calculating the conservative Jacobians of the un-
derlying functions. This “conservative subgradient descent”
is given by picking an initial value for the parameters, cap-
tured by a vector vy followed by performing the following
update in steps

d .
&f(x(t)) = <’U,I(t)>, Vv € D(I(t))a

Vg+1 = Vg + Ok Ik,
ar € J(vr),

with (o )ren a sequences of step-sizes and J(vy) the con-
servative Jacobian (Bolte et al. 2021).

This gives a formal mathematical model for propagating
derivatives which can be applied to guarantee local conver-
gence of mini-batch stochastic gradient descent with back-
propagation for a large number of machine learning prob-
lems. In particular, and of great importance for us, these re-
sults hold for locally Lipschitz tame functions.

Next, we will show that the subadditive dual of the MIP
formulation of the BNN (BNN-MINLP) is locally Lipschitz
and tame. This will allow us to use the machinery of (Bolte

9
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and Pauwels 2021; Bolte et al. 2021) discussed above when
training the BNN.

Main Result

We will now present the main result of the paper. To do so,
we will restrict to a certain subset of conic MIPs, which we
call nice:

Definition 8 Ler us consider a conic MIP (6). Under the fol-
lowing conditions:

(A) the conic MIP is feasible,

(B) the conic dual of the continuous relaxation of (6) is fea-
sible,

(C) the graph of the objective function has a finite number of
non-differentiable points,

we call the conic MIP nice.
For example:
Proposition 1 The conic MIP of Theorem 1 is nice.

Proof. The feasible set is a product of {0, 1}£»™ and the
set S. For any value in {0, 1}%»™, we obtain a finite value
within S. The feasible set is then compact. Theorem 5 of
(Kocuk and Moran 2019) then tells us that condition (B) of
Definition 8 is satisfied. The objective function is a finite
sum of loss functions for the original BNN, and as such it
has a finite number of non-differentiable points, satisfying
condition (C). m

Theorem 4 For a nice conic MIP (6), there exists an equiv-
alent reformulation that is definable in an o-minimal struc-
ture.

Proof. Let us consider the subadditive dual (7) of the nice
conic MIP (6). When the conic dual of the continuous re-
laxation is feasible, this dual is equivalent by Theorem 2.
Furthermore, this dual is locally o-minimal by considering
the No-Trumps theorem (Theorem 3) together with the fact
that f(x) is non-decreasing and subadditive. By (Kawakami
et al. 2012, Remark 22), a compact subset of a locally o-
minimal structure is o-minimal. When we consider that the
continuous relaxation of the mixed-integer set is bounded
(cf. Property (B) of Definition 8 together with Thm. 5 of
(Kocuk and Morén 2019)), we thus obtain o-minimality. m

Corollary 1 Training BNNs allows for implicit differentia-
tion and chain rule.

Proof. This follows from Proposition 1 and Theorem 4 to-
gether with the work of (Bolte and Pauwels 2021; Bolte et al.
2021) discussed above, when one realizes that the subaddi-
tive dual is locally Lipschitz. Lipschitzianity is from (Bing-
ham and Ostaszewski 2008): If f € WNT is subadditive and
inf;<o f(tx)/t is finite for all z, then f is Lipschitz. m

This corollary thus provides us with a practical way of
training the BNNs, by utilizing the results of (Bolte and
Pauwels 2021; Bolte et al. 2021) to optimize over the subad-
ditive dual of the corresponding MILP.

Let us finally note that, in general, non-decreasing subad-
ditive functions are not tame. A counterexample is given by
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Figure 3: A graphical representation of the three final layers
of the BNN we use as an example. See (10) for the corre-
sponding MILP.

the Cantor staircase function (Dobo$ 1996). This means that
in general, the subadditive dual of a conic MIP need not fall
under the tame setting and some additional property (“con-
straint qualification”) is necesseary for our main result.

An Example

To make the above discussion more clear, we present a sim-
ple example outlining how the training of a BNN could make
use of the implicit differentiation (Bolte et al. 2021). To this
end, we consider three final layers of a BNN inspired by
Example 1 of (Guzelsoy and Ralphs 2007), illustrated in
Fig. 3, where there are a number of binary weights given
by the final layer of (BNN-MILP), uv\”), i = 1,...,n,
to be learned. Here, of course ull) = Yy = zln) =
aB) (wBaE=D( g (wMz)...)). We split this vector
into two, by introducing an m € N such that 1 < m < n.
The pen-ultimate two layers yield a bi-variate continuous-
valued output layer (Y7, Y2). Instead of the usual empirical
risk, we consider an objective function involving weighted
difference from values of the dependent variable in the train-
ing data (assumed to be zero), as well as one of the weights
in the pen-ultimate layer, for the sake of a more interesting
illustration:

in 2(Y; — Yy — lx
min (Y1 —0)+ (Y2 —0) + 5 X1,

S.t.Xl—%X2+Y1—}/é:b7

x=3o

= (10)
X, = Z ul(_L)’

i=m-+1

W e {0,1}, X1, X, €24, Y1, Y, € R,

We note that our theory does cover the case of the usual
empirical risk with square-loss function, but the illustra-
tions would be more involved due to the non-linearity in the
square loss.

Following the definition (7), the subadditive dual of (10)
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is:
b
o f(b)

w2
-
~
—
i
NN NG N

([

=
0

(11

=
=

ININCIN TN
— N QO N

s
—
I
—_
|
e

f(0) =
The subadditive dual problem is obviously an infinite-
dimensional optimization problem over the whole space of
subadditive functions g, . However, as shown in (Schrijver
et al. 1980), the subadditive dual functions of MILPs are
Chvatal functions, i.e., piecewise-linear. We can thus utilize
this knowledge to finitely parametrize the space of relevant
subadditive functions by the number of segments, slopes,
and breakpoints of piecewise-linear subadditive functions.
When we consider nice MILPs as in (8), we thus obtain a
finite-dimensional problem. It is furthermore evident that we
can approximate this problem by truncating in the number of
segments of the piecewise-linear subadditive functions.
For the above example, we start with approximating f by
a piecewise-linear function having two segments. By visual
inspection of the behaviour of the value function f(b) (in
solid lines) near the origin in Fig. 4, we see that we can ap-

proximate f(b) by

based on the directional derivatives. This crude approxima-
tion is shown in Fig. 4 as dashed lines. A conservative field
for this function is given by

fwy=1{

—b

b>0,

b0, (12)

)

2. b0,
-1, b<0.

It is now clear that we can use the conservative fields of
(Bolte and Pauwels 2021; Bolte et al. 2021) to train over
this approximation of the piecewise-linear subadditive dual
of the primal problem (10).

More generally, we can introduce slope variables s; and
s2, as well as a breaking point p, to parametrize the two-
segment approximation:

and thus find the best two-segment approximation of the
piecewise-linear subadditive dual of the primal problem
(10), which in this case coincides with (12) above. Next, we
can increase the precision of the approximation by introduc-
ing more and more segments of this approximating function,
and optimize over the slopes and break points of the seg-
ments, and possibly also the number of segments. Follow-
ing (Bertsimas and Dunn 2017), we have studied (Nemecek
et al. 2023) formulations based on the optimal regression
trees for piecewise regression.

Slb,
SQb7

b>p,
b<p,

f(b): (14)
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2.01

1.51
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Figure 4: The value function, f(b), of t~he example (11) to-
gether with the simple approximation, f(b), given by (12).

Conclusions and Limitations

We have introduced a link between binarized neural net-
works, and more broadly, nice conic MIPs, and tame ge-
ometry. This makes it possible to reuse pre-existing theory
and practical implementations of automatic differentiation.
Breaking new ground, we leave many questions open. The
foremost question is related to the efficiency of algorithms
for constructing the subadditive dual. Although Guzelsoy
and Ralphs (Guzelsoy and Ralphs 2007, Section 4, Con-
structing Dual Functions) survey seven very different algo-
rithms, their computational complexity and relative merits
are not well understood. For any of those, an efficient imple-
mentation (in the sense of output-sensitive algorithm) would
provide a solid foundation for further empirical experiments.
Given the immense number of problems in symbolic Al,
which can be cast as MIPs, and the excellent scalability of
existing frameworks based on automatic differentiation, the
importance of these questions cannot be understated.
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