A Unified View on Forgetting and Strong Equivalence Notions in Answer Set Programming

Zeynep G. Saribatur, Stefan Woltran
Institute of Logic and Computation, TU Wien, Austria
{zeynep.saribatur, stefan.woltran}@tuwien.ac.at

Abstract
Answer Set Programming (ASP) is a prominent rule-based language for knowledge representation and reasoning with roots in logic programming and non-monotonic reasoning. The aim to capture the essence of removing (ir)relevant details in ASP programs led to the investigation of different notions, from strong persistence (SP) forgetting, to faithful abstractions, and, recently, strong simplifications, where the latter two can be seen as relaxed and strengthened notions of forgetting, respectively. Although it was observed that these notions are related, especially given that they have characterizations through the semantics for strong equivalence, it remained unclear whether they can be brought together. In this work, we bridge this gap by introducing a novel relativized equivalence notion, which is a relaxation of the recent simplification notion, that is able to capture all related notions from the literature. We provide necessary and sufficient conditions for relativized simplifiability, which shows that the challenging part is for when the context programs do not contain all the atoms to remove. We then introduce an operator that combines projection and a relaxation of (SP)-forgetting to obtain the relativized simplifications. We furthermore present complexity results that complete the overall picture.

Introduction
Forgetting or discarding information that are not deemed necessary is crucial in human reasoning, as it allows to focus on the important details and to abstract over the rest. Such active or intentional forgetting is argued to enhance decision-making through flexibility under changing conditions and the ability to generalize (Richards and Frankland 2017). Over the years, the desire to abstract over details led to different theories (e.g., (Giunchiglia and Walsh 1992)) and applications of abstraction in various areas of AI, among many are planning (Knoblock 1994), constraint satisfaction (Bistarelli, Codognet, and Rossi 2002), and model checking (Clarke, Grumberg, and Long 1994). Getting rid of (ir)relevant details through forgetting continues to motivate works in different subfields of AI (Beierle and Timm 2019), such as knowledge representation and reasoning (KR) (Eiter and Kern-Isberner 2018) and symbolic machine learning (Siebers and Schmid 2019). Recent examples of forgetting within KR appear in action theories (Luo et al. 2020), explanations for planning (Vasileiou and Yeoh 2022) and argumentation (Berthold, Rapberger, and Ulbricht 2023; Baumann and Berthold 2022).

The theoretical underpinnings of forgetting has been investigated for classical logic and logic programming for over decades. Answer Set Programming (ASP), is a well-established logic programming language, characterized by non-monotonic declarative semantics. Its non-monotonic nature resulted in various forgetting operators satisfying different desirable properties (see recent survey (Gonçalves, Knorr, and Leite 2023)). The property strong persistence (SP) (Knorr and Alferes 2014) is considered to best capture the essence of forgetting in the context of ASP. The aim is to preserve all existing relations between the remaining atoms, by requiring that there be a correspondence between the answer sets of a program before and after forgetting a set of atoms, which is preserved in the presence of additional rules. This correspondence is formally defined as

\[\text{AS}(P \cup R)_{\overline{A}} = \text{AS}(f(P, A) \cup R) \]

(1)

for all programs \(R \) over the universe \(U \) without containing atoms from \(A \), where \(f(P, A) \) is the resulting program of applying an operator \(f \) on \(P \) to forget about the set \(A \) of atoms, \(\text{AS}(\cdot) \) denotes the collection of answer sets of a program, and \(\text{AS}(\cdot)_{\overline{A}} \) is their projection onto the remaining atoms.

When nothing is forgotten, (SP) matches the notion of strong equivalence (SE) (Lifschitz, Pearce, and Valverde 2001) among programs, denoted as \(\text{AS}(P \cup R) = \text{AS}(Q \cup R) \) for all programs \(R \). Gonçalves et al. (2020) showed that (SP)-forgetting can only be done when the SE-models of the program adhere to certain conditions, which is motivated by relativized strong equivalence (Woltran 2004; Eiter, Tompits, and Woltran 2005), a relaxation of strong equivalence where the context programs can exclude some atoms.

The motivation to obtain ASP programs with a reduced signature also led to notion of abstraction by omission (Saribatur and Eiter 2018) by means of over-approximation, i.e., any answer set in program \(P \) can be mapped to some answer set in the abstracted program \(Q \), which is denoted by \(\text{AS}(P)_{\overline{A}} \subseteq \text{AS}(Q) \), and also has been referred as weakened Consequence (wC) within forgetting (Gonçalves, Knorr, and Leite 2016a). Saribatur and Eiter (2018) introduce a syntactic operator that obtains abstracted programs, and an auto-
mated abstraction and refinement methodology, that starts
with a coarse abstraction and refines it upon encountering
spurious answer sets (which do not have correspondence in
P) until a fine-grained abstraction is achieved.

A desired abstraction property was considered to be faith-
fulness where Q does not contain a spurious answer set, i.e.,
\[AS(P) |_\mathfrak{P} = AS(Q), \]
matching an instance of Consequence Persistence (CP)-
forgetting (Wang, Wang, and Zhang 2013). The notion how-
ever does not truly preserve the semantics w.r.t. projection.
The recent equivalence notion, called strong simplification
(Saribatur and Woltran 2023), defined as
\[AS(P \cup R) |_\mathfrak{P} = AS(Q \cup R |_\mathfrak{P}) \]
for all programs R, allows to capture the atoms that can be
disregarded from the original program and also the context
program, so that the simplified program can reason over the
original program is preserved w.r.t. projection.

It is known that strong simplifications imply (SP)-
forgetting (Saribatur and Woltran 2023) and the relation
between omission abstraction and forgetting has also been
studied (Saribatur and Eiter 2020). The characterizations for
all of the mentioned notions have been established through
the SE-models of programs, which characterizes strong equiva-
ience. However until now it remained unclear how these
notions come together.

In this paper we bridge this gap through a relaxation of the
recent simplification notion, where on the context programs
we allow for excluding some dedicated atoms: for sets \(A \), \(B \)
of atoms, we define the notion of strong A-simplification
relative to B where (3) holds for all programs R over B.
All of the above mentioned notions such as (relativized)
strong equivalence, strong persistence, faithful abstractions
and strong simplifications, then become special cases of this
novel relativized equivalence notion, of which a summary
can be seen in Table 1. Furthermore we show the conditions
for relativized simplifiability and observe that the challeng-
ing part is for when the context programs do not contain all
the atoms to remove/forget. We then show how the desired
simplifications can be obtained by an operator that combines
projection and a relaxation of (SP)-forgetting.

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>Strong A-simplification relative to B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>equivalence</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(\mathcal{U})</td>
<td>relativized Strong Equivalence (Turner 2001)</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(B)</td>
<td>relativized Strong Equivalence (Woltran 2004)</td>
</tr>
<tr>
<td>(A)</td>
<td>(\mathcal{U})</td>
<td>Strong Simplification (Saribatur and Woltran 2023)</td>
</tr>
<tr>
<td>(A)</td>
<td>(A)</td>
<td>Strong Persistence (Knorr and Alferes 2014)</td>
</tr>
<tr>
<td>(A)</td>
<td>(C \subseteq A), relativized Strong Persistence (this paper)</td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>(\emptyset)</td>
<td>Faithful Abstraction (Saribatur and Eiter 2018)</td>
</tr>
</tbody>
</table>

Table 1: Overview of the full spectrum of the relativated
strong simplification notion introduced in this paper.

Our main contributions are thus as follows (i) We pro-
nounce the novel concept of relativized strong simplifica-
tion between programs, provide the necessary and sufficient
conditions for testing relativated strong simplifiability, give
semantical characterizations of relativated strong simplifica-
tions and discuss the full spectrum of this notion; (ii) we
introduce a novel forgetting operator which is a combina-
tion of projection and a relaxation of SP-forgetting, which
we introduce as relativated SP-forgetting; (iii) we conclude
with complexity results.

Background

Answer Set Programming An (extended) logic program
(ELP) is a finite set of (extended) rules of form
\[A_1 \land \cdots \land A_i \leftarrow A_{i+1}, \ldots, A_m, \text{not } A_{m+1}, \ldots, \text{not } A_n, \text{not } A_{n+1}, \ldots, \text{not } A_k \]
where \(A_i \) (\(1 \leq i \leq k \), \(0 \leq l \leq m \leq n \leq k \)) are
atoms from a first-order language, and not is default nega-
tion. We also write a rule r as \(H(r) \leftarrow B^+(r) \) or \(H(r) \leftarrow
B^{-}(r) \), not \(B^+(r) \), not \(B^{-}(r) \). We call \(H(r) = \{ A_1, \ldots, A_i \} \) the head of \(r \), \(B^+(r) = \{ A_{i+1}, \ldots, A_m \} \) the
positive body, \(B^{-}(r) = \{ A_{m+1}, \ldots, A_n \} \) the negative
body and \(B^{-}(r) = \{ A_{n+1}, \ldots, A_k \} \) the double-negated body
of \(r \). If \(H(r) = \emptyset \), then \(r \) is a constraint. A rule \(r \) is disjunc-
tive if \(k = n \); if, in addition, \(l \leq 1 \) then \(r \) is normal; \(r \) is posi-
tive if \(k = m \) and it is a (non-disjunctive) fact if \(B^+(r) = \emptyset \)
and \(l \leq 1 \); for \(H(r) = \emptyset \), we occasionally write \(\bot \).

In what follows, we focus on propositional programs
over a set of atoms from universe \(\mathcal{U} \). Programs with vari-
bles reduce to their ground versions as usual. Unless stated
otherwise the term program refers to a (propositional) ELP.

Let \(I \subseteq \mathcal{U} \) be an interpretation. The GL-reduct of a pro-
gram \(P \) w.r.t. \(I \) is given by \(P^I = \{ H(r) \leftarrow B^+(r) \mid r \in
P, B^-(r) \cap I = \emptyset, B^-(r) \subseteq I \} \). An interpretation \(I \) is
a model of a program \(P \) (in symbols \(I \models P \)) if, for each
\(r \in P, (H(r) \cup B^-(r)) \cap I \neq \emptyset \) or \(B^+(r) \cup B^-(r) \not\subseteq I \;
I \) is an answer set, if it is a minimal model of \(P^I \). We denote
the set of all answer sets by \(AS(P) \). Two programs \(P_1, P_2 \)
are equivalent if \(AS(P_1) = AS(P_2) \) and strongly equivalent
(\(SE \)), denoted by \(P_1 \equiv P_2 \), if \(AS(P_1 \cup R) = AS(P_2 \cup R) \)
for every \(R \subseteq \mathcal{U} \).

An SE-interpretation is a pair \(\langle X, Y \rangle \) such that \(X \subseteq Y \subseteq
\mathcal{U} \); it is total if \(X = Y \) and non-total otherwise. An SE-
interpretation \(\langle X, Y \rangle \) is an \(SE \)-model of a program \(P \) if \(Y \models
P \) and \(X \models P^\mathcal{Y} \). The set of all \(SE \)-models of \(P \) is denoted
by \(SE(P) \). Note that a set \(Y \) of atoms is an answer set of
\(P \) if \(\langle Y, Y \rangle \in SE(P) \) and no non-total \(\langle X, Y \rangle \in SE(P) \)
exists. Two programs \(P_1 \) and \(P_2 \) are strongly equivalent \(\iff
SE(P_1) = SE(P_2) \) (Turner 2001).

Lastly, for a set \(S \subseteq \mathcal{U} \) of atoms, \(S |_A \) denotes the pro-
tection to the atoms in \(A \) and \(\overline{S} \) is a shorthand for \(\mathcal{U} \setminus S \).
We also use the notion on pairs, i.e., \(\langle X, Y \rangle |_A = \langle X |_A, Y |_A \rangle \) and
on sets of objects, i.e., \(S |_A = \{ S |_A \mid S \in S \} \).

We next summarize the notions needed for our purposes.

Relativized Equivalence Woltran (2004) relaxed the no-
tion of strong equivalence to have the added programs, \(R \), in

1\(R |_\mathfrak{P} \) projects the positive body of the rules in \(R \) onto \(\mathfrak{P} \) and
removes the rules with a negative body or head containing an atom
from \(A \).
a specific language $B \subseteq \mathcal{U}$. Its semantical characterization requires a generalization of SE-models as follows.

Definition 1. A pair of interpretations $\langle X, Y \rangle$ is a (relativized) B-SE-interpretation iff either $X = Y$ or $X \subset (Y \cap B)$. The former are called total and the latter non-total B-SE-interpretations. Moreover, a B-SE-interpretation $\langle X, Y \rangle$ is a (relativized) B-SE-model of a program P iff:

(i) $Y \models P$;
(ii) for all $Y' \subset Y$ with $(Y' \cap B) = (Y \cap B)$, $Y' \not\models P'$; and
(iii) $X \subseteq Y$ implies existence of a $X' \subseteq Y$ with $X' \cap B = X$, such that $X' \models P'$ holds.

The set of B-SE-models of P is given by $SE^B(P)$.

Two programs P_1 and P_2 are strongly equivalent relative to B iff $SE^B(P_1) = SE^B(P_2)$.

Forgetting We refer to (Eiter and Kern-Ibener 2018; Gonçalves, Knorr, and Leite 2023) for recent surveys on forgetting, and briefly define (SP)-forgetting. For a class F of forgetting operators and a class C of programs

(SP) F satisfies **Strong Persistence** if, for each $f \in F$, $P \in C$ and $A \subseteq \mathcal{U}$, we have $AS(f(P, A) \cup R) = AS(P \cup R)_{\overline{A}}$ for all programs $R \in C$ over A.

Here $f(P, A)$ denotes the result of forgetting about A from P. Strong persistence is also considered for a particular forgetting instance (P, A), for $P \in C$ and $A \subseteq \mathcal{U}$, denoted by (SP)$_{P, A}$, Gonçalves, Knorr, and Leite (2016b) introduce a criterion Ω to characterize the instances for which an operator achieving (SP)$_{P, A}$ is impossible, which has relations with (A)-SE-models as shown below.

Definition 2. Let P be a program over \mathcal{U} and $A \subseteq \mathcal{U}$. An instance (P, A) satisfies criterion Ω if there exists $Y \subseteq \mathcal{U} \setminus A$ such that the set of sets

$$\mathcal{R}^Y_{P, A} = \{ X \setminus A \mid \langle X, Y \cup A' \rangle \in SE^{\Omega}(P) \}$$

is non-empty and has no least element.

It is not possible to forget about A from P while satisfying strong persistence exactly when (P, A) satisfies criterion Ω.

Gonçalves, Knorr, and Leite (2016b) also show that the resulting program obtained from forgetting A from program P by applying an operator f from the class F_{SP} of (SP)-forgetting operators has the SE-models over A as $SE(f(P, A)) = \{ (X, Y) \mid Y \subseteq \mathcal{U} \setminus A \land X \in \bigcap \mathcal{R}^Y_{P, A} \}$.

Abstraction and Simplification The general notion of abstraction as an over-approximation is defined as follows.

Definition 3 (Saribatur and Eiter 2018). For programs P (over \mathcal{U}) and Q (over \mathcal{U}') with $|\mathcal{U}| \geq |\mathcal{U}'|$, and a mapping $m: \mathcal{U} \rightarrow \mathcal{U}' \cup \{ \top \}$, Q is an abstraction of P w.r.t. m, if $m(AS(P)) \subseteq AS(Q)$.

For an omission abstraction mapping that omits a set A of atoms from \mathcal{U}, it becomes $AS(P)_{\overline{A}} \subseteq AS(Q)$. An abstraction Q is called **faithful** if $AS(P)_{\overline{A}} = AS(Q)$.

Saribatur and Woltran (2023) generalized this notion for disjunctive logic programs (DLP) to consider newly added rules or facts that also get abstracted. For that they consider context programs R over \mathcal{U} to be A-separated, which means they are of form $R = R_1 \cup R_2$ for programs R_1 and R_2 that are defined over $\mathcal{U} \setminus A$ and A, respectively.

Definition 4 (Saribatur and Woltran 2023). Given $A \subseteq \mathcal{U}$ and a program P (over \mathcal{U}), a program Q (over $\mathcal{U} \setminus A$) is a strong A-simplification of P if for any program R over \mathcal{U} that is A-separated, we have

$$AS(P \cup R)_{\overline{A}} = AS(Q \cup R_{\overline{A}})$$

We say that P is strong A-simplifiable if there is a program Q such that (4) holds.

It was shown that the SE-models of P need to satisfy the below conditions, where A is semantically behaving as facts, in order to ensure the existence of such a simplification.

Theorem 1 (Saribatur and Woltran 2023). There exists a strong A-simplification of P iff P satisfies the following conditions:

(i) $\forall Y \subseteq \mathcal{U} \setminus A \exists X \subseteq \mathcal{U} \setminus A$ such that (5) holds.

(ii) For any $\langle X, Y \rangle \in SE(P)$, $X_{\overline{A}} = Y_{\overline{A}}$ implies $Y = X$.

(iii) For any $\langle X, Y \rangle \in SE(P)$ implies $\langle X(Y \cap A), Y \rangle \in SE(P)$.

The simplifications are shown to have SE-models equaling $SE(P)_{\overline{A}}$.

Theorem 2 (Saribatur and Woltran 2023). Let P be a strong A-simplifiable program. Then $P_{\overline{A}}$ is a strong A-simplification of P.

Here $P_{\overline{A}}$ refers to removing the atoms in A from the positive bodies of rules, and omitting the rule all together if an atom from A appears in the negative body or the head.

We will later show that such a projection can still be partially applicable in the relaxation of the simplification notion, while an additional operator more close to forgetting will be needed as well.

Relaxing Strong Simplifications

A natural relaxation for strong simplification is to allow excluding some atoms from the added programs. Thus we propose the following notion.

Definition 5 (Saribatur and Eiter 2018). For programs P (over \mathcal{U}) and Q (over \mathcal{U}') with $|\mathcal{U}| \geq |\mathcal{U}'|$, and a mapping $m: \mathcal{U} \rightarrow \mathcal{U}' \cup \{ \top \}$, Q is an abstraction of P w.r.t. m, if $m(AS(P)) \subseteq AS(Q)$.

For an omission abstraction mapping that omits a set A of atoms from \mathcal{U}, it becomes $AS(P)_{\overline{A}} \subseteq AS(Q)$. An abstraction Q is called **faithful** if $AS(P)_{\overline{A}} = AS(Q)$.

We say that P is B-relativized (strong) A-simplifiable if there is a program Q such that (5) holds.

This relaxed notion of strong simplifiability allows to identify programs which are originally not strong simplifiable, but are relativized strong simplifiable when some atoms are not taken into account in the context programs. Below are examples of such programs.
Example 1. Let program P_1 consist of rules
\[
\begin{align*}
 a &\leftarrow b, c. & c &\leftarrow d. & b.
\end{align*}
\]
and program P_2 consist of rules
\[
\begin{align*}
 a &\not\leftarrow b. & b &\not\leftarrow a. & c.
\end{align*}
\]
P_1 and P_2 are not strong $\{b, c\}$-simplifiable (though the programs $P_1 \cup \{c\}$ and $P_2 \cup \{b\}$ are).

However P_1 is strong $\{b, c\}$-simplifiable relative to $\{a, b, d\}$, since the program $Q_1 = \{a \leftarrow d\}$ is such a simplification, and P_2 is strong $\{b, c\}$-simplifiable relative to $\{a, c\}$, since the program $Q_2 = \{a \not\leftarrow a\}$ is such a simplification.

Note that in Definition 5 there are no restrictions on how B and A might relate. Thus there can be cases where not all atoms in the set A appear in R. We will see that such cases are the cause for the notion of relativized (strong) simplifications being more challenging than strong simplifications.

The context programs that do not contain any atoms from A would be trivially A-separated, thus the relativized simplification notion gets reduced to (SP)-forgetting.

Proposition 3. A forgetting operator f satisfies (SP)$_{(P, A)}$ iff $f(P, A)$ is an A-simplification of P relative to \overline{A}.

Similar to strong simplifications, not every program might have a relativized simplification. By investigating the undesired case that prevents a program from being relativized simplifiable, which is similar to Proposition 2 from (Saribatur and Woltran 2023), thus omitted for brevity, we obtain our first result which adjusts the conditions in Theorem 1 to the relativized case considering the B-SE models.\footnote{For proofs of theorems marked by * see the extended version at http://arxiv.org/abs/2312.07993.}

Proposition 4 (*). Let P be a program and A, B be sets of atoms. If there exists an A-simplification of P relative to B then P satisfies following

\[\Delta^r_{x_i}: \langle Y, Y \rangle \in SE^B(P) \text{ implies } A \cap B \subseteq Y.\]

\[\Delta^r_{x_i}: \text{For any } \langle X, Y \rangle \in SE(P) \text{ with } \langle Y, Y \rangle \in SE^B(P), X|_{\overline{A}} = Y|_{\overline{A}} \text{ implies } X = Y.\]

\[\Delta^r_{x_i}: \langle X, Y \rangle \in SE^B(P) \text{ implies } \langle X \cup (Y \cap (A \cap B)), Y \rangle \in SE^B(P).\]

One can see that the restrictive conditions that were required from the SE-models in Theorem 1 are relaxed to only hold for the B-SE-models, since those are the ones of importance for the answer sets of $P \cup R$ for R over B.

We shortly say that P satisfies Δ^r if it satisfies the conditions $\Delta^r_{x_i}$ for $1 \leq i \leq 3$. The following example illustrates checking the Δ^r conditions.

Example 2 (Ex. 1 ctd). The SE-models of P_1 are
\[
\begin{align*}
\langle bca, bca \rangle &\quad \langle ba, ba \rangle &\quad \langle b, b \rangle \\
\langle b, b \rangle &\quad \langle ba, bca \rangle &\quad \langle ba, ba \rangle \\
\langle ba, bca \rangle &\quad \langle b, b \rangle &\quad \langle b, ba \rangle \\
\langle b, ba \rangle &\quad \langle b, b \rangle &\quad \langle b, bca \rangle \\
\end{align*}
\]
For $B = \{a, b, d\}$, $SE^B(P_1) = \{\langle bca, bca \rangle, \langle ba, ba \rangle, \langle b, b \rangle, \langle ba, bca \rangle, \langle b, ba \rangle, \langle b, b \rangle\}$. Now for $A = \{b, c\}$, we can easily see that $\Delta^r_{x_1}$ and $\Delta^r_{x_2}$ are satisfied since each B-SE-model contains $A \cap B = \{b\}$, and $\Delta^r_{x_2}$ is trivially satisfied since there is no relevant model.

Observe that, for $B = \mathcal{U}$, the conditions $\Delta^r_{x_i}$ become the same with the conditions Δ^r_i of strong simplification, for $1 \leq i \leq 3$. On the other hand, if B is such that $A \cap B = \emptyset$, i.e., $B \subseteq \overline{A}$, the conditions become immaterial.

Proposition 5. Any program P satisfies Δ^r, for any A, B with $B \subseteq \overline{A}$.

Proof (Sketch). $\Delta^r_{x_1}$ and $\Delta^r_{x_3}$ trivially holds as $A \cap B = \emptyset$. For some $\langle X, Y \rangle \in SE(P)$ to violate $\Delta^r_{x_2}$, X and Y need to differ on the atoms from A, while $X \cap \overline{A} = Y \cap \overline{A}$ holds which contradicts $\langle Y, Y \rangle \in SE^B(P)$. \hfill \square

Unsurprisingly, the Δ^r conditions are not sufficient for B-relativized A-simplifiability in general. This can easily be seen for the case when the context programs do not contain atoms to remove, making use of Proposition 3 and the knowledge that not every program has a set of atoms which can be forgotten by satisfying (SP).

Example 3. Let program P_3 consist of rules
\[
\begin{align*}
 a &\leftarrow p. & b &\leftarrow q. & p \not\leftarrow q. & q \not\leftarrow p.
\end{align*}
\]
For $A = \{p, q\}$ and $B = \{a, b\}$, P_3 satisfies Δ^r (Proposition 5), but is not B-relativized A-simplifiable, since no forgetting operator satisfies (SP)$_{(P_3, A)}$ (Gonçalves, Knorr, and Leite 2016b).

Note that, when $A \subseteq B$, due to the definition of B-SE-models, in order to satisfy $\Delta^r_{x_1}$, there cannot be non-total $\langle X, Y \rangle \in SE^B(P)$ with $X \subseteq Y \cap B$. In addition to $\Delta^r_{x_1}$ and $\Delta^r_{x_2}$, these become quite restrictive conditions on the A-SE-models of P. In fact, as we shall see later, the Δ^r condition turns out to be sufficient for relativized simplifiability when $A \subseteq B$. Though first we need to understand the semantical characterization of such simplifications.

From B-SE-Models to A-B-SE-Models

We investigate the semantical characterization of relativized simplifications of a program. For that we first introduce the following notion of A-B-SE-models, which project those B-SE-models of importance w.r.t. A.

Definition 6. Given program P over \mathcal{U} and $A, B \subseteq \mathcal{U}$, the A-B-SE-models of P are given by the set
\[
SE^B_A(P) = \{\langle X|_A, Y|_A \rangle \mid \langle Y, Y \rangle \in SE^B(P)\} \cup \{\langle X|_A, Y|_A \rangle \mid \langle X, Y \rangle \in SE^B(P), X \subseteq Y, \langle X', Y' \rangle \in SE^B(P) \text{ with } Y'|_A = Y|_A, \langle X', Y' \rangle \in SE^B(P) \text{ with } X'|_A = X|_A\}.
\]

The set of A-B-SE-models collects the projection of all total B-SE-models $\langle Y, Y \rangle$ and all non-total B-SE-models $\langle X, Y \rangle$ for which a respective non-total B-SE-model $\langle X', Y' \rangle$ can be found that agree on the projection, among all total B-SE-models $\langle Y', Y' \rangle$ that agree on the projection with $\langle Y, Y \rangle$.
Example 4 (Ex. 1 ctd). For \(A = \{b, c\} \) and \(B = \{a, b, d\} \), none of the \(B \)-SE-models agree on the projection onto \(\overline{A} = \{a, d\} \). So \(SE_A(B) \) simply collects the projection of those models and their non-total models. Thus \(SE_A(B)(P) = \{ \langle \{ad, ad\}, \{a, a\}, \emptyset, \emptyset \rangle \} \). Now assume that another program \(P_1 \) has the \(SE(B) \)-models \(SE(B)(P_1) = SE(B)(P_1) \setminus \langle \{ba, bca\} \rangle \). Then \(\langle \{ba, bca\} \rangle \) is added to \(SE(B)(P_1) \) in addition to \(SE(B)(P) \). Since \(\langle \{ba, bca\} \rangle \) is not a \(\langle \{a, a\}, \emptyset, \emptyset \rangle \) case. Thus \(SE_A(B)(P_1) = SE_A(B)(P_1) \setminus \langle \{a, a\}, \emptyset, \emptyset \rangle \).

For relating to the relativized SE-models of the simplifications in our next result, let us introduce a notation for the set of \(B \)-SE-models of a program over \(A_1 \) relativized to \(A_2 \).

Definition 7. Let \(P \) be a program. The relativization of \(SE \)-models of \(P \) over \(A_1 \) to the set \(A_2 \) of atoms is denoted by \(SE_{A_1, A_2}(P) \) = \(\{\langle X, Y \rangle | \langle X, Y \rangle \in SE_{A_2}(P), Y \subseteq A_1 \} \).

Interestingly, the relativized \(SE \)-models of any \(A \)-simplification for a program \(P \), relative to \(B \), if exists, need to adhere with the \(A-B \)-SE-models of \(P \).

Proposition 6 (*). If \(Q \) is an \(A \)-simplification for \(P \), then it satisfies \(SE_A(B)(P) = SE_{A_1, A_2}(A)(Q) \).

Example 5 (Ex. 1 ctd). Equation (6) holds for \(P_1 \) and \(Q_1 \).

Now we can show the sufficiency of \(\Delta^* \) for when \(A \subseteq B \).

Theorem 7. Given program \(P \) over \(U \) and \(A \subseteq B \), \(A \subseteq B \) such that \(A \subseteq B \). \(P \) satisfies \(\Delta^* \) iff there exists an \(\Delta \)-simplification of \(P \) relative to \(B \).

Proof (Sketch). When \(A \subseteq B \), due to \(\Delta^* \) \(\forall \), there cannot be different total \(B \)-SE-models agreeing on the projection, thus \(SE_A(B)(P) \) amounts to \(SE_{A, B}(P) \setminus \{\} \). Due to Proposition 4, what remains is to show that a program with \(\{B \setminus A\} \)-SE-models matching \(SE_{A, B}(P) \) is a relativized simplification of \(P \), which follows a very simple proof to that of Theorem 1. \(\Box \)

This result shows that the challenge of relativized simplifiability is in fact due to having atoms to be removed that do not appear in the context programs. Then the \(B \)-SE-models might differ in terms of the atoms from \(A \setminus B \) which cannot be distinguished in the projection, making the \(\Delta^* \) condition no longer sufficient. Thus in order to characterize relativized simplifiability in general, an additionaly property is needed.

Characterizing Relativized Simplifiability

We introduce the following criterion that will help us in obtaining the sufficient conditions.

Definition 8. Let \(P \) be a program over \(U \) and \(A, B \subseteq U \). \(P \) satisfies criterion \(\Omega_{A,B} \) if there exists \(Y \subseteq U \setminus A \) such that the set of sets \(\Omega_{A,B}(P,Y) = \{\langle X, Y \cup A \rangle | \langle X, Y \cup A \rangle \in SE_B(P) \} \) is non-empty and has no least element.
For $B = \emptyset$, the \emptyset-SE models only contain the total models of the answer sets, which captures the notion of faithful omission abstraction. Moreover Δ' is trivially satisfied and $\Omega_{A,\emptyset}$ is not satisfied for any A.

Proposition 14. Q is an A-simplification of P relative to \emptyset iff Q is a faithful abstraction of P for omission of A. Every program is \emptyset-relativized A-simplifiable, for any A.

When we additionally set A to \emptyset, then we reach equivalence of two programs.

Setting $A = U$ results in omitting all the atoms from the program. Thus as potential relativized simplifications over \emptyset we have either $Q = \emptyset$ or $Q' = \{ \bot \leftarrow . \}$. From above we know that every program is \emptyset-relativized U-simplifiable. So a satisfiable program has Q as its relativized simplification, while an unsatisfiable program has Q'. Though for $B \neq \emptyset$, relativized simplifiability might not always hold.

When the context programs are set to be over the remaining atoms, i.e., $B = \overline{A}$, we reach (SP)-forgetting. In the next section we introduce a relativization of (SP)-forgetting to consider the case of $B \subseteq \overline{A}$, which will be needed in defining operators that obtain the relativized simplifications.

Combination of Projection and Forgetting

In this section we introduce an operator that can achieve relativized simplifications. As we know, whenever a relativized simplification exists, it satisfies the equation (6). Following the notation from forgetting operators, we introduce a class of operators that achieves these simplifications. For this, instead of a forgetting instance (P, A) we consider relativized forgetting instance (P, A, B).

Definition 9. Let F_{SS} be the class of forgetting operators defined by the following set: \(\{ f \mid SE_{P, A} f (P, A, B) = \{ \langle X, Y \rangle \mid Y \subseteq U \setminus A \land X \in \bigcap R_{P, A, B} \} \} \).

Proposition 9 and Corollary 12 lead to the following.

Corollary 15. For $f \in F_{SS}$, (P, A, B) is a B-relativized A-simplification of P iff P is B-relativized A-simplifiable.

Note that above class of operators is similar to F_{SP}, where instead of $R_{P, A, B}$ we focus on $R_{P, A}$, and instead of giving the characterization over the SE-models of the resulting program, we consider its B-SE models.

Clearly when $B = \overline{A}$, since $R_{P, A, \overline{A}} = R_{P, A}$, the resulting program after applying an operator in F_{SS} is strongly equivalent to the result of an (SP)-forgetting operator.

Proposition 16. Let P be a program, $A \subseteq U$, $f_{SP} \in F_{SP}$, $f_{SS} \in F_{SS}$. Then $f_{SS}(P, A) = f_{SS}(P, A, \overline{A})$.

Thus any operator in F_{SS} can be applied as an (SP)-forgetting operator. As we shall show next, the forgetting operators in F_{SS} can also be used to achieve a relaxed notion of (SP)-forgetting.

Relativized Strong Persistence

We introduce a relaxed (SP)-forgetting notion, where non-forgotten atoms can be excluded from the context program.

Definition 10. A forgetting operator f satisfies relativized strong persistence for a relativized forgetting instance (P, A, S), $S \subseteq \overline{A}$, denoted by $(rSP)_{P, A, S}$, if for all programs R over S, $AS(f(P, A, S) \cup R) = AS(P(\cup R)_{P, A, S})$.

Above definition naturally leads to the following.

Proposition 17. If a forgetting operator f satisfies $(rSP)_{P, A, S}$ then it satisfies $(rSP)_{P, A, S}$, for any $S \subseteq \overline{A}$.

In fact, every operator in F_{SS} satisfies $(rSP)_{P, A, S}$, when possible, which we get by Proposition 5 and Corollary 15.

Theorem 18. Every $f \in F_{SS}$ satisfies $(rSP)_{P, A, S}$, $S \subseteq \overline{A}$, for every relativized forgetting instance (P, A, S), where P does not satisfy $\Omega_{A, S}$.

An Operator That Projects and Forgets

We begin with showing that as long as the Δ' conditions are satisfied for those of A which appear in B it is possible to project them away3 from P while preserving the semantics.

We observe that the relativized SE-models of the resulting program after the projecting away atoms occurring in $A \setminus B$ equals the B-SE-models of P projected onto the remaining atoms. This then also equals its $(A \cap B)$-B-SE-models.

Proposition 19 (\textbullet). Let P satisfy Δ' for $A, B \subseteq U$, and $A' = A \cap B$. Then it holds that $SE_{P, B \setminus A, A'}(P_{A'}) = SE^{B}_{P}(P)_{A'} = SE^{B}_{P}(P)$.

This observation leads to the following result.

Corollary 20. Let P satisfy Δ' for $A, B \subseteq U$, and $A' = A \cap B$. $P_{A'}$ is an A'-simplification of P relative to B.

This result shows that whenever P satisfies Δ', even if $\Omega_{A, B}$ criterion is satisfied, preventing B-relativized A-simplifyability, it is still possible to project away atoms in $B \cap A$ to reach a program with a reduced signature.

Interestingly, if a program is B-relativized A-simplifiable, obtaining the desired simplification is possible by first syntactically projecting away those atoms in $B \cap A$ and then applying an operator from F_{SS} for (rSP)-forgetting that forgets those atoms remaining outside of the context programs.

Theorem 21. Let P be B-relativized A-simplifiable, and $f \in F_{SS}$. Then $f(P_{A \setminus B}) \setminus A \setminus B$, $B \setminus A$ is a B-relativized A-simplification of P.

Proof (Sketch). By Proposition 19, the $(B \setminus A)$-SE-models of $P' = P_{A \setminus B}$ amount to $SE^{B}_{P}(P)_{A \setminus B}$. Thus for any $Y \subseteq \bigcap R_{P, A, B}$, $Y \cap \bigcap R_{P, A, B}$, which means that if f achieves a B-relativized A-simplification of P with $f(P, A, B)$, then it can achieve such a simplification with $f(P_{A \setminus B}, \setminus A \setminus B, B \setminus A)$ as well.

We see that the challenging part of obtaining a relativized simplification when there are atoms to remove that do not appear in the context programs brings us closer to (SP)-forgetting. In order to obtain a fully syntactic operator, an interesting follow-up work would be to see whether the existing syntactic (SP)-forgetting operators (Berthold et al. 2019; Berthold 2022) can be adjusted to consider (rSP).

3When projecting from ELPs, the atoms in A are removed from the double negated body of the rules as well.
Computational Complexity

We provide the complexity of deciding simplifiability through checking the \(\Delta' \) and \(\Omega_{A,B} \) conditions, and simplification testing. We assume familiarity with basic concepts of complexity theory. For comprehensive details we refer to (Papadimitriou 2003; Arora and Barak 2009).

We begin with checking the \(\Delta' \) conditions.

Proposition 22. Let \(P \) be a program over \(U \) and \(A, B \subseteq U \). Deciding whether \(P \) satisfies \(\Delta' \) is in \(\Pi^P_2 \).

Violation of any \(\Delta'_{s_i} \) can be checked in \(\Sigma^P_2 \) since \(B \)-SE-model checking is in \(D^P \) (Eiter, Fink, and Woltran 2007).

Next we move on to checking the \(\Omega_{A,B} \) criterion. For this we follow the results from (Gonçalves et al. 2020), with the condition that the given program satisfies \(\Delta' \). Remember that for the case of (SP)-forgetting, \(\Delta' \) is trivially satisfied. For the below two results, we make use of \(\Delta'_{s_i} \) and \(\Delta'_{s_i} \), which gives us that whenever \((Y, Y) \in SE^B(P) \) some \((X, Y) \in SE^B(P) \) exists iff \((X \cup (A \cap B), Y) \in SE^B(P) \).

Proposition 23. Given program \(P \) satisfying \(\Delta' \) for \(A, B \subseteq U \), (i) given \(SE \)-interpretation \((X, Y) \) with \(Y \subseteq U \setminus A \), deciding whether \(X \in \bigcap \mathcal{R}^{Y}_{(P, A, B)} \) is in \(\Pi^P_2 \); (ii) deciding whether \(P \) satisfies criterion \(\Omega_{A,B} \) is \(\Sigma^P_2 \)-complete.

Proof (Sketch). For the complementary problem, it suffices to guess an \(A' \supseteq A \cap B \), and check that \(\big(U \setminus A' \big) \cap Y \subseteq \frac{SE^B(P)}{U \setminus A'} \) and \((X \cup (A \cap B), Y \cup A') \notin \frac{SE^B(P)}{(U \setminus A') \setminus A} \) (the former ensures also that \(\mathcal{R}^{Y}_{(P, A, B)} \neq \emptyset \)) (i) then follows by \(B \)-SE-model checking being in \(D^P \). For (ii), we just need to additionally guess \(Y \) and check that \(\mathcal{R}^{Y}_{(P, A, B)} \) is non-empty (see above) and has no least element. For the latter, we additionally guess \(X \) and use (i) together with Proposition 9. \(\Sigma^P_2 \)-hardness follows from the special case \(B = \overline{A} \), cf. Thm 16, (Gonçalves et al. 2020), where \(\Delta' \) is trivially satisfied.

Recall Corollary 12. The results in Proposition 22 and Proposition 23 are then used to determine the complexity of deciding relativized simplifiability.

Theorem 24. Let \(P \) be a program over \(U \), and \(A, B \subseteq U \). Deciding whether \(P \) is \(A \)-relativizable to \(B \) is in \(\Pi^P_3 \).

By making use of the characterizing equality (6), Propositions 9 and 23, we finally provide the complexity result for relativized simplification testing.

Theorem 25. Given program \(P \) which is \(B \)-relativized \(A \)-simplifiable, and program \(Q \), checking whether \(Q \) is a \(B \)-relativized \(A \)-simplification of \(P \) is \(\Pi^P_3 \)-complete.

Proof (Sketch). Making use of the equality (6), we show the complementary problem to be in \(\Sigma^P_3 \), by guessing an \(SE \)-interpretation \((X, Y) \) and checking the containment in \(SE^B(P) \) or in \(SE^A(P) \) but not both. By Proposition 9, deciding \((X, Y) \in SE^B(P) \) amounts to checking that \(Y \subseteq U \setminus A \) and \(X \in \bigcap \mathcal{R}^{Y}_{(P, A, B)} \). By Proposition 23 the latter is in \(\Pi^P_2 \), and \(B \)-SE-model checking is in \(D^P \).

For hardness, we use the case \(B = \emptyset \), where the problem reduces to decide \(AS(P)|_{\overline{A}} = AS(Q) \) for a program \(P \) being \(\emptyset \)-relativized \(A \)-simplifiable. To this end, we extend the hardness-construction from (Eiter and Gottlob 1995) and reduce from \((3, \forall) \)-QSAT. Let \(\Phi = \forall U \exists V \forall W \phi \) with \(\phi = \bigvee_{i=1}^{n} (l_{i,1} \land l_{i,2} \land l_{i,3}) \). We use copies of atoms, e.g., \(U = \{ \overline{u} \mid u \in U \} \). We construct \(P \) as follows:

\[
\begin{align*}
P = \{ x \lor \overline{x} \mid x \in U \cup V \cup W \} & \cup \{ w < s, \overline{w} < s, s < w, \overline{w} \mid w \in W \} \cup \{ s < \overline{i}_{1}, \overline{i}_{2}, \overline{i}_{3} \mid 1 \leq i \leq n \} \cup \{ \perp < \text{not } s \} \end{align*}
\]

where \(\overline{i}_{1} \) is given by \(\overline{a} \) if \(i_{1} \) is \(-a\) and by \(\overline{i}_{2} = i_{2} \) if \(i_{2} \) is a positive literal. Note that \(P \) is \(\emptyset \)-relativized \(A \)-simplifiable no matter how \(\Phi \) looks like. Moreover, we set

\[
Q = \{ u \lor \overline{u} \mid u \in U \}
\]

and \(A = V \cup \overline{V} \cup U \cup \overline{U} \cup \{ s \} \). It can be checked that \(AS(P)|_{\overline{A}} = AS(Q) \) holds iff \(\Phi \) is true.

Table 2 presents the full complexity landscape, using results from (Eiter and Gottlob 1995; Eiter, Fink, and Woltran 2007) for (relativized) (strong) equivalence and (Saribatur and Woltran 2023) for strong simplifications. Saribatur and Eiter (2018) provides the \(\Pi^P_2 \)-completeness of \(B = \emptyset \) for normal programs, which here we lifted to ELPs.

Conclusion

We introduced a novel relativized equivalence notion, which is a relaxation of the recent strong simplification notion (Saribatur and Woltran 2023), that provides a unified view over all related notions of forgetting and strong equivalence in the literature. We provided the necessary and sufficient conditions to ensure such relativized simplifiability. We observed that the challenge is when the context programs do not contain all the atoms to remove, that requires a criterion on the program that focuses on its relativized SE-models, which also captures the case of (SP)-forgetting.

We furthermore introduced an operator that can obtain relativized simplifications, when possible. We showed that at least for those atoms to be removed that appear in the context programs, it is possible to simply project them away, while for those that are outside of the context programs a relaxed version of an (SP)-forgetting operator will need to be applied. We provided complexity results that fill the gap in the landscape of the introduced notion.

Investigating the relativized simplification notion for the uniform case to bring together uniform persistence forgetting (Gonçalves et al. 2019), (relativized) uniform equivalence and uniform simplifications (Saribatur and Woltran 2023) would be an interesting extension of this work.
Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) projects T-1315, P32830, and by the Vienna Science and Technology Fund (WWTF) under grant ICT19-065. We thank the anonymous reviewers for their valuable feedback.

References

Turner, H. 2001. Strong equivalence for logic programs and
default theories (made easy). In Logic Programming and
Nonmonotonic Reasoning: 6th International Conference, LP-
NMR 2001 Vienna, Austria, September 17–19, 2001 Pro-
cedings 6, 81–92. Springer.

Vasileiou, S. L.; and Yeoh, W. 2022. On Generating Ab-
stract Explanations via Knowledge Forgetting. In ICAPS
2022 Workshop on Explainable AI Planning.

Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
Answer Set Programs Revisited. In IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013, 1162–1168.
IJCAI/AAAI.

of Equivalence in Answer Set Programming. In Alferes,
J. J.; and Leite, J. A., eds., Logics in Artificial Intelligence,
9th European Conference, JELIA 2004, Lisbon, Portugal,
September 27-30, 2004, Proceedings, volume 3229 of Lec-
ture Notes in Computer Science, 161–173. Springer.