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Abstract

GralL and its variants have shown their promising capacities
for inductive relation reasoning on knowledge graphs. How-
ever, the uni-directional message-passing mechanism hin-
ders such models from exploiting hidden mutual relations
between entities in directed graphs. Besides, the enclosing
subgraph extraction in most GrallL-based models restricts
the model from extracting enough discriminative informa-
tion for reasoning. Consequently, the expressive ability of
these models is limited. To address the problems, we pro-
pose a novel GralL-based framework, termed MINES, by
introducing a Message Intercommunication mechanism on
the Neighbor-Enhanced Subgraph. Concretely, the message
intercommunication mechanism is designed to capture the
omitted hidden mutual information. It introduces bi-directed
information interactions between connected entities by in-
serting an undirected/bi-directed GCN layer between uni-
directed RGCN layers. Moreover, inspired by the success of
involving more neighbors in other graph-based tasks, we ex-
tend the neighborhood area beyond the enclosing subgraph to
enhance the information collection for inductive relation rea-
soning. Extensive experiments prove the promising capacity
of the proposed MINES from various aspects, especially for
the superiority, effectiveness, and transfer ability.

Introduction

Knowledge graphs (KGs) organize human knowledge in the
form of the relational fact triplet. Each triplet consists of a
head entity, a tail entity, and a relational edge between them.
Recently, many applications have been developed based on
KGs, such as information retrieval (Chen et al. 2022e; Li
et al. 2023), recommendation systems (Wei et al. 2023;
Zhang et al. 2022), integration with LLMs (Pan et al. 2023;
Luo et al. 2023b), etc. However, most KGs suffer from in-
completeness issues. As an essential way to address the
problem, relation reasoning, i.e., relation prediction, can be
generally divided into two categories (Chen et al. 2023a),
including transductive relation reasoning and inductive re-
lation reasoning (See Fig. 1). In fact, the inductive scenario
is more common in the real world, e.g., new users (i.e., en-
tities) are added in e-commerce KGs over continuous time
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Figure 1: Illustration of transductive and inductive relation
reasoning. In the transductive scenario, entities in test graphs
are all seen in the model during training. While as for the
inductive scenario, unseen entities may exist in test graphs.

(Chen et al. 2022d, 2023b; Zhang et al. 2023b,a). Therefore,
more attention has recently been drawn to inductive models,
which can infer missing links between brand-new entities,
and our research also falls into this category.

Rule-based and GNN-based methods (Xia et al. 2022)
are two typical inductive relation reasoning methods. Rule-
based methods, such as NeuralLP (Yang, Yang, and Cohen
2017), RuleN (Meilicke et al. 2018), and DRUM (Sadeghian
etal. 2019), induce the entity-independent rules based on ob-
served co-occurrence patterns. Such methods are naturally
suitable for inductive scenarios with inherent inductive at-
tributes. However, they suffer from limited expressive abil-
ity, and scalability (Teru, Denis, and Hamilton 2020). In-
spired by the great achievements of GNN-based methods for
other graph-based tasks, several GNN-based inductive rela-
tion reasoning models have recently been proposed. Among
them, Graph Inductive Learning (Teru, Denis, and Hamilton
2020), i.e., GralL, is the most influential. It first leverages
RGCN (Schlichtkrull et al. 2018) to infer missing triplets
based on the enclosing subgraph, which gains great induc-
tive ability. Based on the prototype GralL, many GralL-
based models (e.g., TACT (Chen et al. 2021), CoMPILE
(Mai et al. 2021), Meta-iKG (Zheng et al. 2022), RMPI
(Geng et al. 2023), etc.) are proposed. Although proven ef-
fective, there are two common limitations in most GralL-
based models, i.e., (1) insufficient message communication,
and (2) insufficient neighborhood information collection.
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(a) Comparison of Message-Passing Passageways w./w.o. the
Complete Mutual Message-Passing Passageways

teammate_of ?
spouse_of ?

target triplet

(b) Comparison of Extracted Subgraph Structures w./w.o. the
Isolated Neighbors beyond the Enclosing Subgraph.

Figure 2: Limitations of existing GralL-based models. The
differences between ideal scenarios (right figures) and sce-
narios in previous models (left figures) are colored in orange.

Insufficient message communication. Mutual relation-
ships can always be found between two related entities in
the real world. However, due to the incompleteness issue,
such mutual relationships will usually not both exist in the
given KG, e.g., the edge (A,child_of,H), which represents the
mutual relationship corresponding to (H father_of,A), does
not exist in Fig. 2 (a). Meanwhile, existing message-passing
mechanisms can only aggregate messages along the given
edges. Therefore, without such mutual relational edges, the
expressive ability of the model is limited. However, we ar-
gue that the absence of edges in graphs does not mean the
absence of message-passing passageways. For example, the
orange passageways should exist in Fig. 2 (a). Thus, we
want a more powerful message communication mechanism
by leveraging the omitted mutual information.

Insufficient neighborhood information collection.
Most of the existing GralL-based models perform reasoning
on enclosing subgraphs composed of the paths between
the target head and tail entities. Such subgraph extraction
fashions abandon many neighbors around the target entities,
which have been proven important in other tasks (Chen
et al. 2022a; Liu et al. 2022; Niu et al. 2021). In this
work, we argue that isolated neighbors around the target
entities beyond the enclosing subgraph will benefit the
discriminative ability of the models. For example, the
subgraph with the isolated neighbors, i.e., C and D, will
be more informative for the model to distinguish the edges
representing the reammate_of and spouse_of relations, com-
pared to the corresponding enclosing subgraph in Fig. 2 (b).
Thus, performing reasoning based on a neighbor-enhanced
subgraph with more isolated neighbors is worth a try.

To this end, we propose a novel GralL-based framework
(MINES) by introducing a Message Intercommunication
mechanism on the Neighbor-Enhanced Subgraph. Con-
cretely, we first extract the neighbor-enhanced subgraph by
including isolated neighbors around the target entities be-
yond the enclosing subgraph. Then, a sequential message
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intercommunication mechanism is designed to introduce bi-
directed information interactions between connected enti-
ties. It is achieved by inserting an undirected/bi-directed
graph convolutional network (GCN) layer between each of
two uni-directed relational graphs convolutional network
(RGCN) layers to compensate for the omitted hidden mu-
tual information. Since we only know such missing mutual
relational edges are very likely to exist but cannot tell the
exact type of relation, the homogeneous subgraph without
relations is used for intercommunication. The main contri-
butions are summarized below:

* We propose a novel inductive relation reasoning frame-
work, MINES, which improves the capacity of GralL-
based models by introducing a message intercommuni-
cation mechanism on the neighbor-enhanced subgraph.
We innovatively design the message intercommunication
mechanism. It introduces the bi-directed message inter-
actions between connected entities to compensate for the
omitted mutual relational information. Besides, we first
perform inductive relation reasoning on the neighbor-
enhanced subgraph for better discriminative ability.
Extensive experiments on twelve inductive datasets
demonstrate the superiority, effectiveness, and transfer
ability of MINES.

Related Work

Transductive Relation Reasoning Methods Transduc-
tive relation reasoning methods (Liang et al. 2022) are
usually embedding-based methods these years, including
TransE (Bordes et al. 2013) and their variants (Trouillon
et al. 2017; Sun et al. 2018; Luo et al. 2023a). Besides,
such relation reasoning tasks are also extended to tempo-
ral (Chen, Liao, and Zhao 2023; Chen et al. 2023d), multi-
modal scenarios (Zhao et al. 2022; Song, Li, and Li 2023;
Chen et al. 2023c¢), few-shot scenarios (Chen et al. 2022b,c).
However, most of these methods inherently assume a fixed
entity set (Teru, Denis, and Hamilton 2020; Yang, Cohen,
and Salakhudinov 2016), generally referring to transductive
scenarios instead of inductive ones. Concretely, transductive
settings are the most used and practical scenario, while it is
not the best. Under this setting, models are handling tasks
with unseen atoms, e.g., relations, entities, by retraining the
models again to ensure visibility of the models, which is re-
ally resource-consuming.

Inductive Relation Reasoning Methods Rule-based and
GNN-based methods (Bi et al. 2023b,a; Yu et al. 2023a,b)
are two typical inductive relation reasoning methods. Rule-
based methods induce logical rules in KGs according to ob-
served co-occurrences of frequent patterns. RuleN (Meil-
icke et al. 2018) and AMIE (Galarraga et al. 2013) set
empirical thresholds based on the number of statistical re-
sults to mine the rules. Moreover, NeuralLP (Yang, Yang,
and Cohen 2017) and DRUM (Sadeghian et al. 2019) de-
rive rules in an end-to-end differentiable way. However, they
suffer from limited expressive ability and scalability. In-
spired by the great achievements of GNN for other graph-
based tasks, several GNN-based inductive relation reason-
ing models have recently been proposed. The GNN models
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based on Graph Inductive Learning, i.e., GralL-based mod-
els, (Teru, Denis, and Hamilton 2020) are the most influ-
ential among them. The prototype GralL (Teru, Denis, and
Hamilton 2020), as the landmark GNN-based model, first
leverages RGCN to perform the reasoning based on the local
enclosing subgraph. Based on it, many incremental works
are developed, including TACT (Chen et al. 2021), CoM-
PILE (Mai et al. 2021), Meta-iKG (Zheng et al. 2022), RPC-
IR (Pan et al. 2021), and etc. These GrallL-based models
all achieve promising inductive performances. TACT (Chen
et al. 2021) and CoMPILE (Mai et al. 2021) both raise the
importance of relation embeddings in the task. Concretely,
TACT uses topology-aware correlations between relations to
generate representations for triplet scoring. Besides, CoM-
PILE enhances the message interactions between relations
and entities with a novel mechanism. After that, some pop-
ular strategies are also integrated, such as contrastive learn-
ing models (e.g., RPC-IR (Pan et al. 2021), etc.) and meta-
learning models (e.g., Meta-iKG (Zheng et al. 2022), etc.).

Message Passing in GNN-based Models The message-
passing schemes aim to achieve information communica-
tion between entities. Based on the basic message-passing
scheme proposed in vanilla GNN (Scarselli et al. 2008),
various strategies are integrated to achieve better expres-
sive ability, such as the GCN (Welling and Kipf 2017) and
GAT (Velickovi€ et al. 2018), which shows great capaci-
ties on graph-based tasks (Tu et al. 2022, 2023; Yang et al.
2023a,b; Mo et al. 2023a,b; Wen et al. 2023b,a). Then,
with these ideas extended from homogeneous to other graph
types, more message-passing schemes come out, including
HAN (Wang et al. 2019), HGNN (Feng et al. 2019), RGCN
(Schlichtkrull et al. 2018), etc. However, the above message-
passing mechanisms can only aggregate the message along
the given edges. However, the mutual relational edges are
usually missing in the given KGs, which restricts the ex-
pressive ability of the model. However, we argue that the ab-
sence of edges in graphs does not mean the lack of message-
passing passageways. For example, the passageway from en-
tity A to T corresponding to (7, mother_of, A) is supposed
to exist in Fig. 2 (a). Some works try to conquer this prob-
lem by directly adding “inverse relation” (Vashishth et al.
2019) to provide such bi-directional message communica-
tion, which will sometimes lead to incorrect inversing edge
construction. It will further hinder the discriminative ability
of models. For example, the edge (A, FatherOf, B) and its
inversing edges (B, FatherOf, A) can never both exist.

Subgraph Extraction in GralL-based Models Recently,
GralL-based models have shown promising potential for the
task. The prototype GralL (Teru, Denis, and Hamilton 2020)
first performs inductive relation reasoning on the undirected
enclosing subgraph, which only considers the entities within
the paths between the target entities. Like GralL, its variants,
i.e., other GralL-based models, all perform reasoning on the
enclosing subgraph, but some make specific implementation
modifications on subgraph extraction. For example, CoM-
PILE (Mai et al. 2021) extracts the directed enclosing sub-
graph instead of the undirected enclosing subgraph to im-
prove the inference performance on symmetrical triplets. In
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our work, inspired by the success of exploiting more neigh-
borhood information for GNN-based models for other tasks
(Hamilton, Ying, and Leskovec 2017; Chen et al. 2022a;
Liu et al. 2022), we notice that a certain number of isolated
neighbors outside the enclosing subgraph will also benefit
inductive models. However, directly applying their subgraph
strategies (Long et al. 2021; Wang et al. 2021) to our task
will include more useless nodes in subgraphs, which may
hinder the reasoning efficiency and accuracy. Compared to
it, MINES is the first model to perform inductive relation
reasoning on specific neighbor-enhanced subgraphs. More-
over, the filtering procedure for subgraph extraction (See
Sec.3.2) effectively purges the useless nodes and improves
the reasoning performance.

Method
Preliminary

The KG is the directed relational graph, denoted as KG
= (£, R, G), where the entity (i.e., node) set and the relation
(i.e., edge label) set are represented as £ and R, respectively,
and G = {(ey, Ty, €v) | €us €y € E,7y, € R} is the set of
fact triplets (i.e., edges) in the given KG. The main goal of
the inductive relation reasoning is to predict the likelihood
of the target relation r; between the target head ej and tar-
get tail e; by scoring the target triplet (ey,, 7, e;) in the given
KG. MINES is implemented based on the prototype GralLL
(Teru, Denis, and Hamilton 2020), and the main ideas in
our paper have good scalability, which can be easily applied
to other GralL-based inductive models. For a fair compari-
son, we follow the settings in previous GralL-based models
to perform reasoning solely based on the structural seman-
tics derived from the subgraph. The proposed MINES have
four steps (See Fig. 3): (1) neighbor-enhanced subgraph ex-
traction, (2) entity labeling and embedding initialization, (3)
message intercommunication, and (4) triplet scoring.

Neighbor-Enhanced Subgraph Extraction

The neighbor-enhanced (N-E) subgraph in MINES is ex-
tracted by including more isolated neighbors beyond the
paths between the target entities based on the enclosing
subgraph extracted. Similar to (Teru, Denis, and Hamilton
2020), we first generate the k-hop neighbors around the tar-
get head and tail for both incoming and outgoing edges, de-
noted as Ny (ep,) and N (e;). Then, we take the intersection
of the neighbor sets and get the enclosing subgraph by fil-
tering out the entities which are isolated beyond the paths
between target entities. However, different from the enclos-
ing subgraph in previous GralL-based models, the neighbor-
enhanced subgraph further contains the k-hop isolated enti-
ties around the target head and target tail entities, together
with the corresponding edges, which constitutes the k-hop
path between each isolate entity and the target entity (See or-
ange lines in Fig. 3). In this way, MINES enlarges the orig-
inal enclosing subgraph to the more informative neighbor-
enhanced open subgraph for reasoning.
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Figure 3: The framework of the proposed MINES, which includes four main steps: neighbor-enhanced subgraph extraction,
entity labeling & embedding initialization, message intercommunication, and triplet scoring. Our main contribution lies in the
first and the third step. Precisely, in the first step, we extract the neighbor-enhanced subgraph by adding neighboring entities and
edges (colored in orange) to the enclosing subgraph (colored in black). In the previous work, only the black entities and relations
are included in the subgraph for reasoning; In the third step, we feed subgraphs into the novel message intercommunication
module to learn representations. In this step, GCN is integrated with RGCN to achieve better information interactions.

Entity Labeling and Embedding Initialization

Entity features are required for the message communication
mechanism in GNN models. Since no prior entity attributes
are used in our framework, we leverage the structural seman-
tics to initialize entity features, including two steps, i.e., en-
tity labeling, and embedding initialization. Concretely, each
entity e; in the subgraph for the target triplet (ep, ¢, €4) is
labeled with the distance tuple (d(e;, ep,), d(e;, €¢)), where
d(e;, ep,) represents the shortest distance of the undirected
path between e; and e;, without counting any path through
er, (likewise for d(e;,e¢)). An example is present in Fig.
3. Afterward, we initialize the embedding by the one-
hot operation, denoted as hY [one-hot(d(e;, ep)) B
one-hot(d(e;, e¢))]. Note that two target entities, e, and e;
are uniquely labeled as (0, 1) and (1, 0).

Message Intercommunication Mechanism

The message communication mechanisms in previous
GralL-based models for inductive relation reasoning mainly
rely on the R-GCN (Schlichtkrull et al. 2018). With such
a uni-directional message-passing scheme, the model will
leave out the hidden mutual relational information underly-
ing each edge in the given KG. Thus, the expressive ability
of models is restricted without such information.

To achieve sufficient message communication, we pro-
pose a message intercommunication mechanism composed
of the Uni-Directional Message Passing (i.e., UD-MP) and
Bi-Directional Message Passing (i.e., BD-MP) layers, which
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are two different network layers with different message
passing schemes. The message passing scheme in UD-MP
layers is based on the original subgraph (i.e., original view),
and the R-GCN is selected to update the embeddings as
same as GralL-based models. In comparison, the message
passing scheme in the BD-MP layer is selected as the sim-
ple GCN based on the homogeneous view of the subgraph.
Besides, we use a sequential framework by inserting a UD-
MP layer (i.e., undirected GCN layer) between each of two
directed BD-MP layers (i.e., directed RGCN layers) in the
proposed message intercommunication mechanism.

Uni-Directional Message Passing in the Original View
We adopt the RGCN (Schlichtkrull et al. 2018), denoted as
gud4(+), for embedding updating in the original view of the
subgraph, which is the initially extracted subgraph without
any modifications. The UD-MP layers persevere the similar
message communication schemes in previous GralL-based
models. They focus on the uni-directional message passing
along the given edges in the KGs.

h!' =guahe)=o (> >

rER e;ENT,

1

Ce

he, W, +he, Wy |,

ey
where the feature vector of entity e; at the I*" layer is
present as hfg Besides, the set of neighbour indices for spe-
cific entity e; with the relation » € R is marked as N
Ce;,r = [N | is a normalization constant. W', W{ are two
weight parameters. Moreover, o (-) is an activation function.
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Figure 4: Illustration of parallel and sequential intercommu-
nication frameworks.

Bi-Directional Message Passing in the Homogeneous
View The basic GCN (Welling and Kipf 2017), denoted
as gpq(+), is adopted for embedding updating in the ho-
mogeneous view of the subgraph, which is generated
by replacing the uni-directed labelled edges with the bi-
directed/undirected unlabeled edges in the extracted sub-
graph (See Fig. 3). Since we only know such missing mutual
edges are very likely to exist but cannot tell the exact rela-
tion (i.e., edge label) without any language models, e.g., Bert
(Devlin et al. 2019), we just build up the missing message-
passing passageways with unlabeled edges in this work to
bridge the message intercommunication between entities.

> hijwl> e

€jENe;

1

Cﬁi ’

€5

hlejl = gbd(hlei) =0 (

where we leverage héi to denote as the entity feature vector
of e; at the [t" layer. Besides, the set of neighbor indices of
node e; is present as ;. Morever, a normalization constant
for edge (es,e;) is calculated as ce, o; = /|Ne,| - [Nl
Meanwhile, W! and o(-) denote the weight parameter and
activation function separately.

Framework of the Intercommunication Mechanism
The sequential framework integrates the UD-MP and BD-
MP layers in our message intercommunication mechanism.
Concretely, we insert a UD-MP layer (i.e., undirected GCN
layer) between each of two directed BD-MP layers (i.e., di-
rected RGCN layers) to compensate for the hidden mutual
information omitted by each RGCN layer. Besides, we reas-
sign the entity embedding generated in one view to the cor-
responding entity in the other view for the cross-view com-
munication of the entity embeddings. Moreover, our model
fixes the first and last network layer as the UD-MP layer. The
main reason for selecting a sequential framework instead
of a parallel one is to reduce the complexity of the model.
As shown in Fig. 4, parallel frameworks will generally take
more GNN layers than sequential ones. Meanwhile, the sub-
stitution of the simpler GCN layer for the RGCN layer will
lead to a reduction in the number of parameters.

Triplet Scoring

The scoring function f(ep, ¢, e;), which aims to measure
whether the inferring is of high possibility or not, is calcu-
lated as follows in MINES.

flen,re,e) = W[hKGNE(e} es) ® he, ®he, @ hy,], 3)
where W denotes as the weight parameter, h., and h,, rep-

resent the hidden embeddings of entities for head and tail
respectively, the learned embedding of the target relation is
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Figure 5: Transferring MINES from prototype Grall to
GralL-based models (from MINES to MINES+).

marked as h,,. hgg, Blenrerer) 85 the subgraph representa-
tion, is calculated as follows:

1
reee) ‘51\75‘

> hg,

hKGNE(p
s
e, €ENE

“

where |Ey g| is the quantity of the entity elements in the set,
and L represents the number of network layers used in the
model, i.e., layer quantity of UD-MP and BD-MP layers.

Based on the scoring function, we train the model to
score positive triplets higher than the negative triplets via
the noise-contrastive hinge loss (Bordes et al. 2013):

>

(en,rt.et)€G

L= max(07f(6277‘?76?) _f(e}l7rtaet)+7)7

(5)
where ~ is the margin hyper-parameter, and we use
(en,Tt,e) and (e}, 7, ef) to represent the positive and neg-
ative triplets separately. In particular, we generate a negative
triplet by replacing the head (or tail).

From MINES to MINES+

Although MINES is developed based on prototype GralL.
in previous sections, however, as most of the GrallL.-based
models are also developed based on prototype GralL, the
two most important modules in MINES can be easily ex-
tended to other GralL-based models, as shown in Fig. 5.
Such plug-and-play attributes are promising and proven by
transfer analysis in experiment sections.

Experiment
Experiment Setting

Most KG datasets are originally created for transductive set-
tings. To evaluate the inductive ability, 12 datasets based on
FB15K-237, NELL-995, and WN18RR, which contain v1,
v2, v3, v4 subsets (Teru, Denis, and Hamilton 2020). We im-
plement MINES based on the prototype GralL. model (Teru,
Denis, and Hamilton 2020), and experiments are conducted
based on a single NVIDIA TITAN XP. We select the 3-layer
model (i.e., UD-MP+BD-MP+UD-MP) and 3-hop extracted
subgraphs as same as the prototype GralL to compare with
SOTA models fairly. Besides, the dimension of the feature
representation and dropout rate is set to 32 and 0.5 sepa-
rately. Moreover, the batchsize and the margin parameter ~y
are set to 16 and 10 separately.

Main Results

Tab. 1, Tab. 2 and Tab. 3 show that MINES significantly out-
performs other compared baselines on inductive datasets for
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Methods WNI18RR FB15K-237 NELL-995

vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
Neural-LP  86.02 83.78 6290 82.06 69.64 76.55 7395 75.74 64.66 83.61 87.58 85.69
Rule-Based DRUM 86.02 84.05 63.20 82.06 69.71 7644 74.03 76.20 59.86 8399 87.71 85.94
RuleN 90.26 89.01 76.46 71.75 7524 88.70 91.24 91.79 8499 88.40 87.20 80.52
GralL 9432 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 9334 87.50
GralL-based TACT 9464 9745 8633 97.97 83.82 9298 91.28 9442 88.72 9480 9479 85.76
CoMPILE 98.23 99.56 93.60 99.80 85.50 91.68 93.12 94.90 80.16 95.88 96.08 85.48
RPC-IR 99.41 93776 98.75 87.24 9275 93.93 9526 84.23 88.12 94.12 96.10 87.81
Ours MINES 99.69 99.48 99.27 99.58 99.01 9941 99.56 99.48 99.55 99.59 99.70 97.52

Table 1: AUC-PR on the inductive benchmark datasets. Best results are boldfaced, and the second best ones are underlined.

25000 WNI1SRR 40000 FB15K-237 15000 NELL995
B GralL = MINES B GralL = MINES B GralL = MINES
30000

2] # 35000 2
5 20000 g £ 25000
g £ 30000 g
£ 15000 & 5 20000
o £ 25000 & 15000

10000 - - L EE 50000 - L | LN L - - -

vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4

Figure 6: Comparison of the parameter numbers of 3-layer MINES and prototype GralL for training on benchmark datasets.

WNI18RR

Methods vl v2 v3 v4
Neural-LP 7437 68.93 46.18 67.13
Rule-Based DRUM 7437 68.93 46.18 67.13
RuleN 80.85 78.23 53.39 71.59
GralLL 8245 78.68 5843 7341
TACT 83.24 81.63 62.73 76.27
GralL-based CoMPILE 83.60 79.82 60.69 75.49
RPC-IR  85.11 81.63 6240 7635
Ours MINES 87.23 83.87 69.42 79.04

Table 2: Hit@10 results on the WN18RR.

FB15K-237 NELL-995

Methods vl v2 v3 vd
Neural-LP 5292 5894 8271 80.58
Rule-Based DRUM 5292 58.73 82.71 80.58
RuleN 49.76  77.82 7726 61.35
GralL 64.15 81.80 91.41 73.19
TACT 65.61 83.05 91.35 74.69
GralL-based CoMPILE 67.64 8298 92.77 75.19
RPC-IR 67.56 8253 94.01 71.82
Ours MINES 67.67 83.18 9592 81.61

Table 3: Hit@10 results on the FB15K-237 and NELL-995.

both the Hits@ 10 and AUC-PR evaluation metrics. On aver-
age, our method makes 4.01% on AUC-PR and 2.78% on
Hit@10 boosts on each dataset compared to the previous
best performances. Specifically, MINES improves the best
AUC-PR performance by an average of 6.06% on NELL-
995 and FB15K-237 datasets. It further highlights the bet-
ter discriminative and expressive ability of MINES with the
novel message intercommunication mechanism and novel
strategy of reasoning on the neighbor-enhanced subgraph.
Besides, we observe that the improvement of our Hit@10
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performance on FB15K-237 is not apparent, which indicates
that our model may be more effective for the sparser datasets
with fewer relations. Besides, Fig. 6 shows that MINES is a
lightweight model compared to the prototype GralL. model.
For each dataset, MINES reduces about 1500 parameters for
training. Such parameter reduction is caused by replacing an
RGCN layer with a simpler GCN layer. Thus, the above re-
sults demonstrate the superiority of MINES from both the
evaluation metrics and model complexity aspects.

Ablation Study

The ablation studies are performed on multiple benchmarks
to investigate the effectiveness and robustness of the strategy
of reasoning on the neighbor-enhanced (N.E.) subgraph and
message intercommunication (M.I.) mechanism in MINES.
Two compared models (i.e., GralL w. M.I. and GralL w.
N.E.) are generated. In GralL w. MLI., only the message in-
tercommunication mechanism is integrated with the GralL.
In GralL w. N.E., the original uni-directional message com-
munication mechanism is kept, but the neighbor-enhanced
subgraph substitutes the enclosing subgraph. Tab. 4 shows
that the average AUC-PR values on WN18RR, FB15K-
237, and NELL-995 increased by 7.66%, 8.77%, and 7.64%
with the M.I. mechanism, which is higher compared to im-
provements of the neighbor-enhanced subgraph (i.e., 2.01%,
0.33%, 1.67%) on these datasets. It suggests that the mes-
sage intercommunication mechanism is more effective for
classification performance. Besides, Tab. 5 and Tab. 6 show
that the average Hit@ 10 values are increased by 1.98% with
the M.I. mechanism, while lower than the average improve-
ment of 3.62% brought by leveraging the N.E. procedure. It
indicates that the ranking performance benefits more from
the N.E. subgraph.
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Methods WNI18RR FB15K-237 NELL-995
vl v2 v3 v4 vl v2 v3 v4 vl v2 v3 v4
GralL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
GralL w. M. 99.507  99.431 99.171  99.561 98467 99.081 99.52¢ 99.41%1 97.16¢  99.501 99.567 93.831
GralL w. N.E. 95.68T 95.6617 88.80T 95.221 85.3817  90.941 91.711 94.697 87.801T 94.381 94.211 89.811
MINES 99.691T 99.481 99.27T 99.581 99.011 994117 99.56T 99.481 99.551  99.591 99.70T 97.521
Table 4: Ablation study of AUC-PR on the benchmark datasets w./w.o. M.I. and N.E.. 1 denotes “increasing”.
WNI8RR WNI18RR v1 NELL-955 vl
Methods i V2 % VA Methods AUC-PR Hit@l0 AUC-PR Hi@I0
GralL 82.45 78.68 58.43 73.41 GralL 94.32 82.45 86.05 59.50
GralL w. M.1. 84.041t 80277  60.99T 75791 GralL w. M.LN.E. 99.69 87.23 99,55 63.50
GralL w. N.E. 87.031 82.351 68.211 78.901 TACT 94.64 83.24 85.58 35.00
MINES 87.237 83871 69421  79.041 TACT w. MIN.E. 9555 8511 8872  62.00
CoMPILE 98.23 83.60 80.16 58.38
Table 5: Ablation study of Hit@10 on WN18RR w./w.o. CoMPILE w. MIN.E. 100.00  87.50  100.00  60.00

M.I. and N.E.. T denotes “increasing”.

Table 7: Evaluation on MINES+: transfer experiments on

FB15K-237 NELL-995 TACT and CoMPILE. The best results are boldfaced.
Methods
vl v2 v3 v4
GralL 64.15 81.80 91.41 73.19 Methods WNI18RR vl FB15K-237 vl NELL-955 vl

GralLw. M. 64901 82434 93331 77.621 AUC-PR Hit@10 AUC-PR Hit@10 AUC-PR Hit@10

Grall w.NE. 66291 82531 914l 75811 RRR 9568 8703 8469 6415 8605 5950

GGG 97.00 84.04 82.99 61.22 67.11 47.50

CCC 89.74 82.18 82.21 62.20 67.16 49.00

Table 6: Ablation Stlldy of Hit@10 on the FB15K-237 and GRR 96.02 84.04 85.61 64.15 86.04 60.50

NELL-995 w./w.o. M.I. and N.E.. 1 denotes “’increasing”. RRG 9950 84.04 9878 54.63 99.51  54.50

RGR 99.69 87.23 99.01 67.67 99.55 63.50

Transfer Analysis on TACT and CoMPILE

The results in previous sections have shown that our strate-
gies can benefit the prototype GralL model. In this sec-
tion, we further extend our idea to TACT and CoMPILE,
two typical GralL-based models, to evaluate the scalability
and generalizability of our approach. The new models (i.e.,
TACT w. M.LLN.E. and CoMPLIE w. M.LLN.E.) are imple-
mented by replacing the subgraph extraction and message
communication modules with the neighbor-enhanced sub-
graph extraction and message intercommunication mecha-
nism in MINES. Tab. 7 shows the significant improvements
in both AUC-PR and Hit@10 metrics on two benchmark
datasets (i.e., WNI8RR vl and NELL-995 v1) for both of
the new models. It demonstrates that the ideas in MINES
can be well-scaled to other GralL-based models.

Intercommunication Framework Analysis

To demonstrate the suitability of the proposed sequential in-
tercommunication framework, we investigate various com-
binations of the BD-MP and UD-MP layers in MINES on
three benchmark datasets. Concretely, the compared frame-
works include (1) RRR, (2) Bi-RRR, (3) GGG, (4) GRR,
(5) RRG, (6) CCC and (7) RGR (i.e., the baseline with-
out any inter-communication frameworks), where R repre-
sents one UD-MP layer, i.e., one RGCN layer in the orig-
inal view of the subgraph, and G represents one BD-MP
layer, i.e., one GCN layer in the homogeneous view of the
subgraph. In particular, Bi-RRR is a 3-RGCN-layer model
in the bi-directional subgraph that adds all of the inversing
edges to the original subgraph. CCC represents the model
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Table 8: Performance comparison between different inter-
communication frameworks. The best results are boldfaced.

that the RGCNs in UN-MP layers in GralL are replaced by
COMPGCNSs, where new weights and embeddings for re-
versed relation™! are trained. Tab. 8 shows that the RGR
used in MINES outperforms Bi-RRR and GGG on average
by 16.63% on AUC-PR and 6.78% on Hit@10. It indicates
that the negative impacts of the redundant relation informa-
tion in the Bi-RRR and the relationship information loss in
GGG influence the performance more than the positive im-
pacts of the intercommunication. Besides, compared to GRR
and RRG, the average AUC-PR and Hit@10 are higher by
5.17% and 5.82%. It suggests that fixing the first and last
RGCN layers benefits the discriminative ability of the mod-
els for the relation reasoning tasks in KGs. Thus, our RGR
is most proper.

Conclusion

In this paper, we propose a novel GralL-based framework,
termed MINES, by introducing Message Intercommunica-
tion mechanism on the Neighbor-Enhanced Subgraph. As a
result, our model is of better discriminative and expressive
ability due to sufficient information communication. Exten-
sive experiments prove the promising capacity of the pro-
posed MINES from various aspects, especially for the supe-
riority, effectiveness, and transfer ability. In the future, we
aim to investigate neighbor-enhanced subgraphs in a more
fine-grained and efficient manner.
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