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Abstract

This paper studies the design and analysis of approxima-
tion algorithms for aggregating preferences over combinato-
rial domains, represented using Conditional Preference Net-
works (CP-nets). Its focus is on aggregating preferences over
so-called swaps, for which optimal solutions in general are al-
ready known to be of exponential size. We first analyze a triv-
ial 2-approximation algorithm that simply outputs the best of
the given input preferences, and establish a structural condi-
tion under which the approximation ratio of this algorithm is
improved to 4/3. We then propose a polynomial-time approx-
imation algorithm whose outputs are provably no worse than
those of the trivial algorithm, but often substantially better. A
family of problem instances is presented for which our im-
proved algorithm produces optimal solutions, while, for any
ε, the trivial algorithm cannot attain a (2−ε)-approximation.
These results may lead to the first polynomial-time approx-
imation algorithm that solves the CP-net aggregation prob-
lem for swaps with an approximation ratio substantially bet-
ter than 2.

Introduction
The goal of preference aggregation is to find, given a set of
individual rankings over objects called outcomes, either the
best collective outcome or the best collective ranking over
the outcomes. Preference aggregation has applications in the
domain of recommender systems, multi-criteria object se-
lection, and meta-search engines (Dwork et al. 2001). In this
paper, we study preference aggregation over combinatorial
domains, using so-called Conditional Preference Networks
(CP-nets, (Boutilier et al. 2004)) as a compact representa-
tion model for outcome rankings. A combinatorial domain
defines outcomes as vectors of attribute-value pairs. By ex-
pressing conditional dependencies between attributes, a CP-
net represents the preferences over a large number of out-
come pairs using compact statements. For example, given
five attributes V1 through V5, such a statement might be
“Given value 1 in attribute V4, I prefer value 0 over value
1 in attribute V5.” This statement means that all outcomes
with value assignment (1, 0) for attributes (V4, V5) are pre-
ferred over those with value assignment (1, 1), irrespective
of their values in the attributes V1 through V3. This saves the
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resources needed for explicitly listing preferences between
pairs of outcomes with various values in V1 through V3. In
this example, V4 is called a parent of V5; in general, an at-
tribute can have more than one parent.

In this paper, we study the problem of aggregating mul-
tiple CP-nets N1, . . . , Nt (without cyclic dependencies be-
tween attributes) into a single CP-net N which forms the
best possible consensus of N1, . . . , Nt in terms of the as-
sociated outcome rankings. One objective might be to mini-
mize the total number of outcome pairs that are ordered dif-
ferently by N and Ns, summed up over all s ∈ {1, . . . , t}.
However, feasible solutions to this problem are unlikely to
be found, partly because even determining how a given CP-
net orders a given outcome pair is NP-hard (Boutilier et al.
2004). For this and other reasons, Ali et al. (2021) propose
to focus on an objective function that counts only swaps that
are ordered differently by N and Ns. A swap is a pair of
outcomes that differ only in the value of a single attribute;
deciding how a CP-net orders any given swap can be done
in polynomial time (Boutilier et al. 2004).

We adopt the objective function proposed by Ali et al.
(2021).1 However, they showed that this function cannot be
optimized in polynomial time; in particular, sometimes the
size of the only optimal solution is exponential in the size
of the input. In a preliminary result, we show that only the
number of input CP-nets (not the number of attributes) con-
tribute to the hardness of optimal aggregation. Motivated by
these results, we study efficient approximation algorithms
for Ali et al.’s objective function.

A first (trivial) approximation algorithm simply outputs
an input that obtains the smallest value of the objective func-
tion among all inputs. It is a well-known fact that this triv-
ial algorithm guarantees a 2-approximation, but Endriss and
Grandi (2014) showed that the bound of 2 cannot be im-
proved. Our first main result states that the trivial algorithm
obtains an approximation ratio of 4/3 in case the inputs sat-
isfy a natural (yet limiting) symmetry condition.

We then propose an improved algorithm that, given an at-
tribute Vn, considers the parent sets for Vn in the input CP-
nets N1, . . .Nt. For each such parent set P , the algorithm

1Technically, we limit this objective function to only swaps in
which the two outcomes differ in a fixed attribute Vn, since it is
sufficient to reduce the CP-net aggregation problem to an attribute-
wise aggregation problem. Technical details will follow.
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first computes a provably optimal aggregate among all CP-
nets that use P as a parent set for Vn. It then computes the
objective value for each resulting aggregate and outputs one
with the smallest such value. Our formal results on this im-
proved algorithm entail that it is guaranteed to be no worse
than the trivial algorithm. We then define a family of prob-
lem instances for which the improved algorithm is optimal
(i.e., has approximation ratio 1), while the trivial algorithm
has ratio at least 3/2. In particular, the ratio of the trivial al-
gorithm cannot be bounded below 2 for this family. Whether
the improved algorithm obtains a ratio of at most 4/3 in gen-
eral, remains an open question.

We hope to thus initiate a line of research on approxi-
mation algorithms for CP-net aggregation, and to enrich the
research on approximation algorithms in the more general
context of binary aggregation (Endriss and Grandi 2014).

Related Work
A substantial body of research addresses preference aggre-
gation using explicit preference orders, represented as per-
mutations over the outcome space, with the goal of find-
ing a permutation that minimizes some objective function
(Sculley 2007; Dwork et al. 2001; Dinu and Manea 2006;
Bachmaier et al. 2015). For outcomes defined over a combi-
natorial domain, one works with compact preference repre-
sentations (Airiau et al. 2011), e.g., CP-nets (Boutilier et al.
2004), LP-Trees (Booth et al. 2010), utility-based models,
or logical representation languages (Lang 2004).

One approach to preference aggregation using CP-nets
is that of mCP-nets (Rossi, Venable, and Walsh 2004;
Lukasiewicz and Malizia 2016, 2019, 2022). In this ap-
proach, the input is a set of partial CP-nets. No single ag-
gregate model is constructed. Instead, preference reasoning
tasks such as outcome ordering and optimization are per-
formed using some voting rule on the set of input CP-nets,
and all input CP-nets must be stored.

Given a set of acyclic input CP-nets, Lang (2007) pro-
poses to elicit votes sequentially over the attributes, using
the value assigned to any parent attributes, thus construct-
ing a consensus outcome. Xia, Lang, and Ying (2007a,b)
showed that sequential voting may lead to paradoxical out-
comes, which can be avoided by assuming some linear or-
dering over the attributes. Further work on sequential voting
was presented by Lang and Xia (2009); Grandi et al. (2014).
A similar approach considers voting over general CP-nets
using a hypercube-wise decomposition, (Xia, Conitzer, and
Lang 2008; Conitzer, Lang, and Xia 2011; Li, Vo, and
Kowalczyk 2011; Brandt et al. 2016). Lastly, (Cornelio et al.
2013, 2015, 2021) address aggregating CP-nets using PCP-
nets, which are an extension to CP-nets that allow for prob-
abilistic uncertainty.

In the present study, we are not interested in finding the
joint best outcome of the given input CP-nets. Instead we
want to create a consensus preference ordering (over all so-
called swap pairs, i.e., pairs of outcomes that differ only in
a single attribute) that best aggregates the given preference
orders, under the constraint that this consensus ordering can
be represented as a CP-net. Our approach is similar to that of
Ali et al. (2021), in that we treat preference aggregation as

an optimization problem where the input profile and the op-
timal output are both represented using CP-nets. In contrast
to the mCP-nets or PCP-nets approach, this avoids storing all
input CP-nets and allows for applying existing CP-net algo-
rithms for reasoning about preferences. However, Ali et al.
(2021) showed that there is no polynomial-time algorithm
solving the problem that we focus on. This motivates us to
study approximation algorithms for said problem.

Hardness results for aggregation were also established
outside the context of CP-nets. For rank aggregation over ex-
plicit total or partial orders over the outcome space, Dwork
et al. (2001) showed that optimizing based on the cumula-
tive pairwise distance from each input ordering, known as
Kemeny optimization, is intractable. In the related field of
judgement aggregation, Endriss, Grandi, and Porello (2012)
proved that distance-based aggregation is intractable, which
motivates a simple 2-approximation algorithm (Endriss and
Grandi 2014). Ailon, Charikar, and Newman (2008); Ailon
(2010) studied (expected) approximation ratios of a random-
ized algorithm as well as of a linear programming approach.

Preliminaries
Boutilier et al. (2004) define a CP-net N as a directed graph,
in which the vertex set V = {V1, . . . , Vn} is a set of n binary
attributes, with {0, 1} as the set of possible values of each at-
tribute Vi. A preference over Vi is now simply one of the two
possible total orders over {0, 1}. An edge (Vj , Vi) means
that the user’s preference over Vi depends on the value of
Vj , in which case Vj is called a parent of Vi. We focus solely
on acyclic CP-nets. By Pa(N,Vi) one denotes the set of par-
ents of Vi in a CP-net N . If Pa(N,Vi) = ∅ for all Vi ∈ V ,
then N is called separable.

For each Vi, the user’s conditional preferences over {0, 1}
are listed in a Conditional Preference Table (CPT), denoted
CPT(N,Vi). For example, suppose Vi has only one parent,
namely Vj . Then the CPT entry 0 : 0 ≻ 1 is read “If Vj

has the value 0, then 0 is preferred over 1 for Vi.” Since a
CPT for Vi specifies at most one preference per assignment
of values to Pa(N,Vi), it lists at most 2k preferences, called
CPT rules, where k = |Pa(N,Vi)|. The size of a CPT is the
total number of its rules. An incomplete CPT is one that is of
size strictly less than 2k. In this paper, we always assume im-
plicitly that CP-nets are complete, i.e., any CPT contains the
maximum possible number of rules.2 This assumption can
be limiting for algorithmic studies, but is not uncommon in
the literature (see, e.g., (Alanazi, Mouhoub, and Zilles 2020;
Ali et al. 2021)). Note that our study can be generalized to
incomplete CP-nets with some additional effort, yet without
major conceptual differences.

An instantiation of a set V ′ ⊆ V is an assignment of val-
ues to each attribute in V ′; then Inst(V ′) denotes the set
of all instantiations of V ′. Note that Inst(∅) contains only
the empty tuple. Assuming a fixed order over V , each el-
ement γ ∈ Inst(V ′) is simply a boolean vector with |V ′|

2This would allow us to represent CPTs more compactly, by
only listing those rules whose preference over {0, 1} is less fre-
quent. However, all formal results in this paper hold irrespective of
whether one represents CPTs this way or by listing all rules.
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components, where γ[Vi] denotes the value of γ in Vi, if
Vi ∈ V ′. Given V ′,V ′′ ⊆ V and γ′ ∈ Inst(V ′), and
γ′′ ∈ Inst(V ′′), we say γ′ is consistent with γ′′ (and vice
versa) iff γ′[V ] = γ′′[V ] for all V ∈ V ′ ∩ V ′′. Elements
of Inst(V) are called outcomes. Thus, any outcome o cor-
responds to the vector (o[V1], . . . , o[Vn]). An outcome pair
(o, o′) is called a swap over Vi if o, o′ differ only in their
value in Vi, and o[Vi] = 0, o′[Vi] = 1.

In general, consider a CPT rule for Vi of the form γ :
b ≻ b′, where γ ∈ Inst(Pa(N,Vi)) and {b, b′} = {0, 1}.
Here, γ is called the context of the CPT rule. The rule is
interpreted using the ceteris paribus assumption: if (o, o′)
or (o′, o) is a swap over Vi, o[Vi] = b, o′[Vi] = b′, and
o[Vj ] = o′[Vj ] = γ[Vj ] for all Vj ∈ Pa(N,Vi), then o is
preferred over o′, written o ≻ o′. This way, a complete CP-
net orders all swap pairs, i.e., for each swap (o, o′) over any
attribute Vi, the CP-net entails either o ≻ o′ or o′ ≻ o. By
identifying ≻ with its transitive closure, one obtains a partial
preference order over the space Inst(V) of all outcomes.

Problem Formulation The focus of this paper lies
on forming an aggregate CP-net, given a tuple T =
(N1, . . . , Nt) of input CP-nets. This aggregate is supposed
to represent a consensus among the preferences of the un-
derlying individual input CP-nets. This raises the question
of how to assess how well a CP-net N represents a consen-
sus between several input CP-nets. One measure could be
the total number of triples (s, o, o′) where 1 ≤ s ≤ t and
(o, o′) is any outcome pair, such that N orders (o, o′) differ-
ently than Ns. However, Boutilier et al. (2004) showed that
deciding whether a CP-net entails o ≻ o′ is NP-hard in gen-
eral, which substantially hinders the design of efficient al-
gorithms for constructing consensus CP-nets that minimize
such measure. Moreover, not every outcome pair is ordered
by every CP-net, which makes it non-trivial to even define
when “N orders (o, o′) differently than Ns” (Ali et al. 2021).

By contrast, deciding whether a CP-net entails o ≻ o′,
for arbitrary swaps (o, o′) can be done in polynomial time
(Boutilier et al. 2004). Also, since every complete CP-net
orders every swap, it is easy to test whether two CP-nets
order a given swap in two different ways. We thus follow the
approach by (Ali et al. 2021), namely to aggregate CP-nets
with respect to a measure that counts the number of cases in
which a proposed consensus CP-net disagrees with a given
input CP-net. Specifically, given two CP-nets N and Ns, we
define the swap disagreement ∆(N,Ns) as the number of
swaps (o, o′) such that N and Ns order (o, o′) differently,
i.e., one of them entails o ≻ o′, while the other entails o′ ≻
o. Our objective function for a CP-net N , given a tuple T =
(N1, . . . , Nt) of input CP-nets, then evaluates to

fT (N) =
∑

1≤s≤t
∆(N,Ns) .

Our goal is the study of algorithms that, given T , aim at con-
structing an N that minimizes this objective function. Note
that fT (N) can be calculated in polynomial time, given T
and N (Ali et al. 2021).

One further advantage of focusing on swaps rather than
general outcome pairs is that the CPT for an attribute Vi

alone determines how a CP-net orders a swap over Vi. Thus

aggregating CP-nets can be done by aggregating their CPTs
for each attribute separately. Therefore, we will henceforth
overload the notation N and Ns (which so far only repre-
sented CP-nets) to refer to CPTs for the fixed attribute Vn,
and we will focus only on aggregating CPTs for Vn.

In sum, this paper focuses on (efficient) algorithms that
produce (optimal or approximate) solutions to the following
problem, called the CPT aggregation problem:
• input: A tuple T = (N1, . . . , Nt) of CPTs for an attribute
Vn, over a set V = {V1, . . . , Vn−1} of n−1 potential par-
ent attributes. (We call any such T a problem instance.)

• desired output: A CPT N for attribute Vn, over V , that
minimizes fT (N).

CPT aggregation is a special case of binary aggregation
(Endriss and Grandi 2014). In binary aggregation, one fixes
a set of issues I = {1, . . . ,m}. A problem instance is a tuple
of ballots, i.e., of elements of {0, 1}m, and the goal is to find
the best collective ballot with a 0/1 vote for each issue. For
CPT aggregation, each swap (o, o′) would be an issue, and
for each issue we would have one of two possible orderings.

Matrix Representation for CP-net Aggregation Con-
sider T = (N1, . . . , Nt), 1 ≤ s ≤ t, and any swap (o, o′)
over Vn. There is a context γ ∈ Inst(Pa(Ns, Vn)) such that
o[V ] = o′[V ] = γ[V ] for each V ∈ Pa(Ns, Vn). Given γ,
Ns entails o ≻ o′ iff CPT(Ns, Vn) has the rule γ : 0 ≻ 1.
We thus encode the preference (called vote) of any given
CPT on any given swap with a boolean value: it is 0 if Ns

entails o ≻ o′, and 1 otherwise. We also encode the 2n−1

swaps over Vn with their corresponding bit strings over the
attributes V1, . . . , Vn−1. This encodes the votes of all input
CPTs on all swaps using a 2n−1 × t boolean matrix M(T ).
Any given row represents all the CPT votes for one swap,
and any given column represents the votes of one CPT on
all swaps. We use M(T )µν to denote the vote on swap µ by
CPT ν. Clearly, there are a total of t·2n−1 votes for any prob-
lem instance T . Certain sub-matrices of M(T ) have useful
interpretations. For V ′ ⊆ V \{Vn}, |V ′| = k, and some con-
text γ of Inst(V ′), the sub-matrix M ′ corresponding to only
the swaps (o, o′) with o[V ] = o′[V ] = γ[V ] for all V ∈ V ′

contains the 2n−k−1 rows with all possible instantiations of
V \ (V ′ ∪ {Vn}), and all t columns. For a sub-tuple τ of T ,
the sub-matrix M ′ corresponding to only the votes of input
CPTs in τ contains all 2n−1 rows, and the |τ | columns corre-
sponding to CPTs in τ . We now introduce some definitions
based on this matrix representation.
Definition 1. freqM (1 ≻ 0) denotes the number of votes
in a matrix M encoded by 1 and freqM (0 ≻ 1) denotes the
number of votes in a matrix M encoded by 0. In particular,
if M has 2n−1 rows and t columns,

freqM (1 ≻ 0) =
∑

0≤µ<2n−1

∑
1≤ν≤t

Mµν

freqM (0 ≻ 1) = t · 2n−1 − freqM (1 ≻ 0)

For any given swap (o, o′), a given row of M(T ) gives us
the votes of the t input CPTs for (o, o′). Hence, we call the
corresponding row vector of length t the voting configura-
tion (of T for swap (o, o′)). There are 2t possible bit strings
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of length t, but not all of them necessarily occur as voting
configurations in M(T ).

Optimal Solutions
Ali et al. (2021) showed that the CPT aggregation problem
cannot be solved optimally in polynomial time, simply be-
cause in some cases the size of any optimal solution is expo-
nential in the size of the input tuple T (measured in terms of
the total number of CPT rules in N1, . . . , Nt):

Theorem 2 (Ali et al. (2021)). There is a family Fbad =
(Tn)n∈N of problem instances, such that any N∗ minimizing
fTn(N

∗) is of size exponential in the size of Tn.

The family Fbad of problem instances witnessing The-
orem 2 contains, for each n ≥ 4, a tuple Tn =
(Nn

1 , . . . , N
n
n−1) of t = n − 1 input CPTs, where

Pa(Ns, Vn) = {Vs}. Every optimal aggregate CPT for Tn

must have the full set {V1, . . . , Vn−1} as a parent set and
thus have 2n−1 CPT rules, while Tn contains only 2(n− 1)
rules (two rules per input CPT).

On the positive side, Ali et al. (2021) noted that optimal
CPT aggregation is possible in polynomial time for the sub-
set of problem instances in which the smallest input parent
set has at most k attributes less than the union of all input
parent sets, for some fixed k. We here offer an additional
positive result, based on the observation that the design of
Fbad critically hinges on the number t of input CPTs grow-
ing linearly with the number n of attributes.

Proposition 3. Let Ft∈O(1) be a family of problem instances
T = (N1, . . . , Nt) for Vn over V , where t is a constant.
Then there is a linear-time algorithm that optimally solves
the CPT aggregation problem for Ft∈O(1).

Proof. The size of the input is in Θ(2n
′
) where n′ =

max1≤s≤t |Pa(Ns, Vn)|. Since t is a constant, we have n′ =
Θ(|

⋃
1≤s≤t Pa(Ns, Vn)|). Now consider an algorithm that

constructs a CPT over P :=
⋃

1≤s≤t Pa(Ns, Vn); for each
context γ over P , it checks each of the t input CPTs and de-
termines whether 1 ≻ 0 is the majority preference over the
input CPTs for context γ. If yes, γ : 1 ≻ 0 is added to the
output CPT; otherwise γ : 0 ≻ 1 is added to the output CPT.
Clearly, this algorithm optimally solves the CPT aggregation
problem for Ft∈O(1) in linear time.

In particular, the difficulty of scaling with the number t
of input parent sets is the only cause for the hardness result
in Theorem 2—scaling with the number n of attributes does
not pose any problems to efficient optimization. Given the
overall hardness of optimally solving the CPT aggregation
problem, the main focus of this paper is on efficiently con-
structing approximate solutions. First, we will look at ob-
taining approximate solutions by simply picking the best in-
put CPT from the tuple T given as problem instance.

Best Input CPTs as Approximate Solutions
As shown by Endriss, Grandi, and Porello (2012), judge-
ment aggregation modeled as a distance-based optimization
problem is intractable. This motivated the work by Endriss

and Grandi (2014), which still aims at a distance optimiza-
tion approach, but restricts the solution space to the inputs
provided, aiming to find what they call the most representa-
tive voter. For our problem this is equivalent to using the in-
put CPT minimizing the sum of pairwise distances from ev-
ery other input CPT as an approximation to the optimal con-
sensus CPT. The paper discusses three approaches to guide
the selection of input to be used as the consensus. Two of
these rules are shown to be 2-approximations of the opti-
mal solution with a distance minimization approach. How-
ever, the paper also establishes that neither these rules, nor
any other rule restricted to the input ballots submitted, can
guarantee a better approximation. Their result immediately
carries over to CPT aggregation.
Theorem 4. Let T = (N1, . . . , Nt) be any problem instance
and N any optimal solution for T . Then min{fT (Ns) |
1 ≤ s ≤ t} < 2fT (N). Moreover, for every ε > 0, there
exists a problem instance Tε = (Nε

1 , . . . , N
ε
tε) such that

min{fTε
(Nε

s ) | 1 ≤ s ≤ tε} > (2 − ε)fTε
(Nε), where

Nε is any optimal solution for Tε.

Proof. Since every problem instance of CPT aggregation is
also a problem instance of binary aggregation, the first state-
ment follows directly from the corresponding result by En-
driss and Grandi (2014). The second statement likewise fol-
lows from (Endriss and Grandi 2014), since the proof therein
of the corresponding binary aggregation statement uses a
problem instance for which both the instance itself and the
optimal solution can be cast as binary CPTs.3

Since one can calculate fT (Ns) for all s ∈ {1, . . . , t} in
polynomial time, Theorem 4 trivially yields a polynomial-
time 2-approximation algorithm. By exploiting the special
structure of CPTs (as opposed to general ballots in binary
aggregation), we can present an improved approximation ra-
tio for the special case of so-called symmetric CPTs.
Definition 5. A CPT Ns for Vn, with |Pa(Ns, Vn)| = k, is
called symmetric iff its corresponding column vector (in ma-
trix representation) has an equal number of zeros and ones
in any sub-matrix corresponding to some fixed context of a
proper subset of Pa(Ns, Vn).

In particular, when all input CPTs are symmetric and have
pairwise disjoint parent sets, the trivial algorithm witness-
ing Theorem 4 is guaranteed to yield a 4/3-approximation.
Moreover, any input CPT yields an equally good approxi-
mation in this case:
Theorem 6. Let t ≥ 3 and T = (N1, . . . , Nt) be a prob-
lem instance in which every Ns is symmetric, such that
Pa(Ns, Vn) ∩ Pa(Ns′ , Vn) = ∅ for s ̸= s′. Let N be any
optimal solution for T . Then, for all s ∈ {1, . . . , t}, we have
fT (Ns) = min{fT (Ns′) | 1 ≤ s′ ≤ t} ≤ 4

3fT (N).

The proof of Theorem 6 is sketched via Lemmas 7–12,
with details omitted due to space constraints. Note that Lem-
mas 8–12 assume the same premises as Theorem 6.
Lemma 7. Let T ′ = (N ′

1, . . . , N
′
t) be any problem instance

of t CPTs. Assuming each of the 2t voting configurations

3We will get back to this problem instance in Theorem 17.
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Algorithm 1: Build CPT(Na, Vn) that minimizes fT sub-
ject to Pa(Na, Vn) ⊆ Pa(Ns, Vn) for some s ∈ {1, . . . , t}

1: for s ∈ {1, . . . , t} do
2: compute a CPT N∗

s that minimizes fT among all
CPTs with parent set contained in Pa(Ns, Vn)

3: end for
4: Na = N∗

s∗ where fT (N
∗
s∗) = min{fT (N∗

s ) | 1 ≤ s ≤
t}.

occurs exactly once in M(T ′), and N is an optimal solution
for T ′, we have

fT ′(N) =

{
2 ·

∑c−1
κ=0 κ

(
2c−1
κ

)
if t = 2c− 1

2 ·
∑c−1

κ=0 κ
(
2c
κ

)
+ c

(
2c
c

)
if t = 2c

Proof. Each possible voting configuration can be repre-
sented by some bit string of length t. Consider a voting con-
figuration with κ CPTs voting 0 ≻ 1 and t − κ CPTs vot-
ing 1 ≻ 0, κ ≤ t − κ. Clearly, N makes κ errors on this,
0 ≤ κ ≤ ⌊ t

2⌋. The total error of N on all voting config-

urations where 0 ≻ 1 is in the minority is
∑⌊ t

2 ⌋
κ=0 κ ·

(
t
κ

)
.

Accounting for those where 1 ≻ 0 is in the minority, and
(in case t is even) those where 0 ≻ 1 and 1 ≻ 0 are equally
frequent, we obtain the desired expression for fT ′(N).

Lemma 8. Each of the 2t voting configurations of T is the
row vector for exactly 2n−t−1 swaps.

Proof. Let U = (V \{Vn})\
⋃

1≤s≤t Pa(Ns, Vn). Consider
a bit string of length t where the s-th bit represents the or-
dering entailed by Ns. Assume the s-th bit is 0. Given sym-
metry, we know that exactly 2ps−1 contexts of Pa(Ns, Vn)
entail 0 ≻ 1, where ps = |Pa(Ns, Vn)|. Thus, 2ps−1 of the
voting configurations have 0 in the s-th bit. Extending this
argument, a given voting configuration can be generated by∏t

s=1 2
ps−1 contexts. Each such bit string also occurs once

for each context of U . Thus, 2|U| ∏t
s=1 2

ps−1 swaps of Vn

have this given voting configuration. Since all input parent
sets are pairwise disjoint, this simplifies to 2n−t−1.

The next four lemmas are stated, with proof details omit-
ted due to space constraints.

Lemma 9. Suppose each of the 2t voting configurations oc-
curs for the same number of swaps. Let N be an optimal
solution for T . Then

fT (N) =

{
t · 2n−2 − 2n−t−1 · c

(
2c−1

c

)
if t = 2c− 1

t · 2n−2 − 2n−t−1 · c
(
2c
c

)
if t = 2c

For a problem instance T under our premises, this yields
combinatorial expressions to compute the error made by an
optimal CPT. Next, we give an expression for the error made
by any of the input CPTs Ns, which we claim to be at most
4/3 times the objective value of an optimal solution.

Lemma 10. fT (Ns) = (t−1) ·2n−2 for all s ∈ {1, . . . , t}.

Lemma 11. If 1 ≤ s ≤ t = 2c− 1, c > 1 then fT (Ns)
fT (N) ≤ 4

3 .

Lemma 12. If 1 ≤ s ≤ t = 2c, c > 1 then fT (Ns)
fT (N) ≤ 4

3 .

This finally completes the proof of Theorem 6.

Optimal Solution for a Fixed Parent Set
Theorem 4 states that the best input CPT is never worse than
the optimal solution by more than a factor of 2. This raises
the question whether the best input parent set yields better
guarantees on the approximation ratio. To this end, instead
of taking the best input CPT unmodified as an aggregate out-
put, we propose Algorithm 1 as an approximation algorithm.

Clearly, Algorithm 1 cannot produce worse outputs than
the trivial algorithm that simply selects the best input CPT.
What still needs to be addressed is (i) can this algorithm
be designed to run in polynomial time?, and (ii) what ap-
proximation ratio can this algorithm achieve (under which
circumstances)? To address (i), all that is needed is a
polynomial-time algorithm that, given T = (N1, . . . , Nt)
and a parent set P ∈ {Pa(Ns, Vn) | 1 ≤ s ≤ t}, pro-
duces a CPT N∗

s that minimizes fT among all CPTs with
parent set Pa(Ns, Vn). With Algorithm 2, we provide an
algorithm that solves a more general problem: given T =
(N1, . . . , Nt) and any parent set P ⊆

⋃
1≤s≤n Pa(Ns, Vn),

it produces a CPT N∗
s that minimizes fT among all CPTs

with parent set contained in P . We will see below, that this
algorithm runs in time polynomial in the size of its input,
when the cardinality of P is bounded by the size of the
largest input parent set.

Given T and P as input, Algorithm 2 computes, for each
context γ of P , the frequency of both possible preference
orderings, and assigns the ordering 0 ≻ 1 if it is in the ma-
jority, 1 ≻ 0 otherwise. Lines 3-7 iterate over each Ns in T ,
and count the number of rules in CPT(Ns, Vn) that would
apply to a swap consistent with context γ and entail 0 ≻ 1.
This count is multiplied by the number of swaps ordered by
each rule in CPT (Ns, Vn) and then divided by the number
of possible contexts for P \ Pa(Ns, Vn), since P is fixed to
γ. At each iteration, zerovotes has the number of swaps for
which Ns entails 0 ≻ 1 given γ. After line 7, zerovotes has
the total number of swaps for which 0 ≻ 1 is entailed given
γ, summed over all input CPTs. The number of votes for
1 ≻ 0 is then found by subtracting this from the total number
of votes given γ. Lines 9-13 then assign the ordering 0 ≻ 1 if
it is in the majority, 1 ≻ 0 otherwise. Repeating this for each
possible context of P , we obtain CPT(Na, Vn) with 2|P |

rules. Some of the attributes in P might be irrelevant par-
ents for this CPT in the sense that their value does not affect
the preference order of the CPT, see (Koriche and Zanuttini
2010; Allen 2015). Removing these attributes yields a more
compact representation semantically equivalent to Na. This
can be done in time linear in the size of Na and quadratic in
n (Ali et al. 2021).

First, we show that Algorithm 2 is correct, i.e., it produces
the optimal aggregate CPT with the given parent set.

Theorem 13. Algorithm 2 constructs CPT(Na, Vn) such
that fT (Na) ≤ fT (N) for all N with Pa(N,Vn) ⊆ P .

Proof. Assume there is some N , Pa(N,Vn) = PN ⊆
P , such that fT (N

a) > fT (N). Then there exists γ ∈
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Algorithm 2: Build CPT(Na, Vn) that minimizes fT with
Pa(Na, Vn) ⊆ P for given T and P

1: for each γ ∈ Inst(P ) do
2: zerovotes = 0
3: for each s ∈ {1, . . . , t} do
4: numRules = the number of rules in

CPT(Ns, Vn) voting 0 ≻ 1 with contexts consis-
tent with γ

5: numSwaps = numRules · 2n−|Pa(Ns,Vn)|−1

6: numSwaps = numSwaps/2|P−Pa(Ns,Vn)|

7: zerovotes = zerovotes+ numSwaps
8: end for
9: onevotes = t · 2n−|P |−1 − zerovotes

10: if zerovotes > onevotes then
11: add γ : 0 ≻ 1 to CPT(Na, Vn)
12: else
13: γ : 1 ≻ 0 to CPT(Na, Vn)
14: end if
15: remove irrelevant parents from CPT(Na, Vn)
16: end for

Inst(PN ) for which N and Na entail different orders, and
N disagrees with T on fewer swaps consistent with γ than
Na does. Now γ corresponds to some sub-matrix M ′. The
corresponding sub-matrices for N and Na contain a con-
stant value each—one of them 0, the other 1. Wlog, assume
Na has an all-ones sub-matrix in place of M ′. By Algo-
rithm 2, this implies freqM ′(0 ≻ 1) ≤ freqM ′(1 ≻ 0).
By our assumption, N ′ now has the all-zeros sub-matrix in
place of M ′, and this all-zeros matrix has fewer inconsisten-
cies with M ′ than Na’s all-ones matrix. From this, we have
freqM ′(0 ≻ 1) > freqM ′(1 ≻ 0)—a contradiction.

Second, Algorithm 2 runs in polynomial time, when |P |
is bounded by the size of the largest input parent set.

Theorem 14. Algorithm 2 runs in time O(2|P | ·∑
Ns∈T |CPT(Ns, Vn)|). In particular, if |P | ≤

max{|Pa(Ns, Vn) | 1 ≤ i ≤ t}, it runs in time poly-
nomial in

∑
1≤s≤t |CPT(Ns, Vn)|. Moreover, Algorithm 1

runs in polynomial time.

Proof. The total runtime of the inner loop (lines 3-7 iter-
ated) is in O(

∑
1≤s≤t |CPT (Ns, Vn)|), which is linear in

input size. The inner loop runs once per γ ∈ Inst(P ), i.e.,
2|P | times. Since removing irrelevant parents can be done in
time linear in the size of Na and quadratic in n, this yields a
runtime in O(2|P | ·

∑
1≤s≤t |CPT (Ns, Vn)|). The remain-

ing statements of the theorem follow immediately.

Thus Algorithm 1 is an efficient method providing the op-
timal CPT wrt any of the input parent sets. It clearly cannot
produce an output worse than the trivial algorithm, which
simply outputs the best input CPT. To demonstrate that it
can do substantially better, we define a family of input in-
stances that provides useful insights into CPT aggregation.
Definition 15. For n ≥ 3 and k ∈ {2, . . . , n − 1} define
T k,n = (Nk,n

1 , . . . , Nk,n
t ) as follows. Let t =

(
n−1
k

)
2k.

Then each number s ∈ {1, . . . , t} corresponds to a unique
pair (P, γ), where P is a k-element subset of V \ Vn and
γ is a context over P . Now let Nk,n

s be the CPT with rules
γ : 1 ≻ 0, and γ′ : 0 ≻ 1 for all contexts γ′ ∈ Inst(P )\{γ}.

For the case k = n− 1, (T k,n)k,n was already mentioned
by Endriss and Grandi (2014). It will turn out (Theorem 16)
that Algorithm 1 produces an optimal solution for T k,n

when n ≥ 3 and 2 ≤ k ≤ n− 1. By contrast, for k = n− 1,
Endriss and Grandi (2014) proved that the trivial algorithm,
which outputs the best input CPT, cannot obtain an approxi-
mation ratio better than 2 for the family (Tn−1,n)n≥3 (The-
orem 17). Moreover, we will argue that the trivial algorithm
provides solutions whose objective value is at least a factor
of 3/2 above the optimum (Theorem 18).

Theorem 16. Let n ≥ 3 and k ∈ {2, . . . , n − 1}. Then
Algorithm 1 outputs an optimal solution for T k,n.

Proof. Each k-element subset V ′ ⊆ V \ Vn is the parent set
of 2k input CPTs. By definition of T k,n, for any context over
any V ′, all but one of the CPTs with V ′ as parent set entail
0 ≻ 1. Thus, for all swaps of Vn, 0 ≻ 1 is the majority or-
dering and the optimal solution is the separable 0 ≻ 1. Now
assume Pa(Nk,n

s , Vn) is the input to Algorithm 2, for some
s ∈ {1, . . . ,

(
n−1
k

)
2k. Consider the 2k sub-matrices corre-

sponding to contexts of Pa(Nk,n
s , Vn), each with 2n−k−1

rows. On each row, 0 ≻ 1 occurs more often than 1 ≻ 0. So,
over each sub-matrix M , freqM (0 ≻ 1) > freqM (1 ≻ 0).
Thus Algorithm 2 outputs the optimal separable 0 ≻ 1, and
Algorithm 1 outputs an optimal solution.

Theorem 17 (cf. (Endriss and Grandi 2014)). Let ε > 0 be
any positive real number. Then there is some n ≥ 3 such that

fTn−1,n(Nn−1,n
s ) > (2− ε)fTn−1,n(N)

for all 1 ≤ s ≤ 2n−1 (=
(
n−1
n−1

)
2n−1), where N is any

optimal solution for Tn−1,n.

Theorem 18. Let n ≥ 3, k ∈ {2, . . . , n − 1}, and 1 ≤
s ≤

(
n−1
k

)
2k. Let N be an optimal solution for T k,n. Then

fTk,n(Nk,n
s ) ≥ (3/2)fTk,n(N).

In order to prove this theorem, we will need to establish
two helpful lemmas.

Lemma 19. Let N be an optimal solution for T k,n. Then
fTk,n(N) = 2n−1

(
n−1
k

)
.

Proof. Each Nk,n
2 in T k,n entails 1 ≻ 0 for one rule ap-

plying to 2n−k−1 swaps. By the proof of Theorem 16, N
is the separable 0 ≻ 1, implying ∆(N,Nk,n

s ) = 2n−k−1.
Summing up over all t values of s proves the claim.

Lemma 20. Let 1 ≤ s ≤
(
n−1
k

)
2k. Then fTk,n(Nk,n

s ) =

(2n − 2n−k)
∑k

k′=0

(
k
k′

)(
n−k−1
k−k′

)
.

Proof. Note that fTk,n(Nk,n
s ) =

∑
s′ ̸=s ∆(Nk,n

s , Nk,n
s′ ).

The value ∆(Nk,n
s , Nk,n

s′ ) depends on |Pa(Nk,n
s , Vn) ∩

Pa(Nk,n
s′ , Vn)| =: k′, as well as the contexts γ1 and γ2 for
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which Nk,n
s and Nk,n

s′ , resp., entail 1 ≻ 0. Let P denote
Pa(Nk,n

s′ , Vn) for some s′ ̸= s, 1 ≤ s′ ≤
(
n−1
k

)
2k.

Given 0 ≤ k′ ≤ k, there are
(
k
k′

)(
n−k−1
k−k′

)
parent sets P of

size k such that Pa(Nk,n
s , Vn) ∩ P = k′. For each such P ,

if k′ = k, the tuple T has 2k − 1 CPTs other than Nk,n
s that

have parent set P . For k′ < k, T has 2k CPTs with parent
set P . While it is not necessary to treat the cases k′ = k and
k′ = 0 separately, we still do so, as it may help the reader
better understand our argument for general values of k′.

For k′ = k there are 2k contexts of Pa(Nk,n
s , Vn) ∪

P (= Pa(Nk,n
s , Vn)). By construction, Nk,n

s and Nk,n
s′

disagree on 2 contexts and thus on 2n−k swaps, i.e.,
∆(Nk,n

s , Nk,n
s′ ) = 2n−k for each of the 2k − 1 CPTs Nk,n

s′

other than Nk,n
s that have parent set P .

For k′ = 0 there are 22k contexts of Pa(Nk,n
s , Vn) ∪ P .

Nk,n
s entails 0 ≻ 1 for 2k − 1 contexts and Nk,n

s′ entails
1 ≻ 0 for one context. These contexts are independent of
each other since k′ = 0. This yields (2k − 1) · 1 = 2k − 1
contexts of Pa(Nk,n

s , Vn) ∪ P on which the two CPTs dis-
agree. Accounting also for the symmetric case with the roles
of Nk,n

s and Nk,n
s′ exchanged, we obtain a disagreement on

2k+1−2 contexts of Pa(Nk,n
s , Vn)∪P , each corresponding

to 2n−2k−1 swaps. This yields ∆(Nk,n
s , Nk,n

s′ ) = 2n−k −
2n−2k for each CPT Nk,n

s′ that has a parent set P disjoint
from Pa(Nk,n

s , Vn), i.e., a parent set P yielding k′ = 0.
There are 2k

(
n−k−1

k

)
such CPTs, namely 2k CPTs for each

choice of k-element set P disjoint from Pa(Nk,n
s , Vn).

Lastly, for 1 ≤ k′ ≤ k − 1, there are 22k−k′
contexts of

Pa(Nk,n
s , Vn)∪P . Note that, for γ1 ∈ Inst(Pa(Nk,n

s , Vn))

and γ2 ∈ Inst(P ), we have: (Nk,n
s has γ1 : 1 ≻ 0 and Nk,n

s′

has γ2 : 1 ≻ 0) iff γ1 and γ2 are consistent, i.e., they have
the same values on all attributes in Pa(Nk,n

s , Vn)∩P . Now
suppose Nk,n

s entails 1 ≻ 0 for γ1. There are 2k−k′
CPTs

with parent set P that entail 1 ≻ 0 for some γ2 consistent
with γ1, and 2k − 2k−k′

CPTs with parent set P that do not.
Consider CPTs of the first type. There are 2k contexts of

Pa(Nk,n
s , Vn); for exactly one such context, namely γ1, the

CPT Nk,n
s entails 1 ≻ 0. Each of the 2k−k′

contexts of
P \ Pa(Nk,n

s , Vn) can be appended to γ1. For 2k−k′ − 1

of these, Nk,n
s′ entails 0 ≻ 1; so Nk,n

s and Nk,n
s′ disagree

on all such contexts appended to γ1. Also counting the sym-
metric case where Nk,n

s′ entails 1 ≻ 0, Nk,n
s and Nk,n

s′ dis-
agree on 2k−k′+1 − 2 contexts of Pa(Nk,n

s , Vn) ∪ P , each
of which orders 2n−2k+k′−1 swaps. Thus ∆(Nk,n

s , Nk,n
s′ ) =

2n−k − 2n−2k+k′
in this case.

Consider CPTs of the second type. There are 2k contexts
of Pa(Nk,n

s , Vn); for exactly one such context, namely γ1,
the CPT Nk,n

s entails 1 ≻ 0. Each of the 2k−k′
contexts of

P \ Pa(Nk,n
s , Vn) can be appended to γ1. Since CPTs of

the second type entail 0 ≻ 1 for every γ2 ∈ Inst(P ) that
is consistent with γ1, we have that Nk,n

s′ entails 0 ≻ 1 for
all 2k−k′

completions of γ1 in Inst(P ). Counting also the
symmetric case where Nk,n

s′ entails 1 ≻ 0, Nk,n
s and Nk,n

s′

disagree on 2k−k′+1 contexts of Pa(Nk,n
s , Vn) ∪ P , each

of which orders 2n−2k+k′−1 swaps. Thus ∆(Nk,n
s , Nk,n

s′ =
2n−k in this case.

Combining these pieces, the value of fTk,n(Nk,n
s ) equals

(2k − 1) · 2n−k + 2k
(
n− k − 1

k

)
(2n−k − 2n−2k)

+
k−1∑
k′=1

[
2k−k′

(
k

k′

)(
n− k − 1

k′

)
(2n−k − 2n−2k+k′

)

+2k − 2k−k′
(
k

k′

)(
n− k − 1

k′

)
2n−k

]
Simplifying this with straightforward calculations yields

fTk,n(Nk,n
s ) = (2n − 2n−k)

∑k
k′=0

(
k
k′

)(
n−k−1

k′

)
.

Proof of Theorem 18. Follows from Lemmas 19 and 20, us-
ing Vandermonde’s identity. Details are omitted.

Conclusions
Since CP-net aggregation (wrt swap preferences) is known
to be intractable, the design and analysis of approximation
algorithms for preference aggregation is one of few viable
approaches to efficient preference aggregation in this con-
text. Proposition 3 implies that optimal CP-net aggregation
is intractable not due to any difficulties in scaling with the
number of attributes, but just due to the difficulty of scaling
with the number of input CPTs. In particular, the cause of
intractability lies solely in the parent set size of optimal so-
lutions, which can be asymptotically larger than the size of
the largest input parent set.

Therefore, we focused on approximation algorithms that
keep the size of the output parent set linear in the size of
the largest input parent set. A trivial such algorithm is one
that simply outputs the best input CPT, which yields a 2-
approximation in general. When imposing a symmetry con-
straint on the input CPT, the approximation ratio of this al-
gorithm improves from 2 to 4/3, but in general, the ratio can
be arbitrarily close to 2 (see Theorem 17).

Algorithm 1 instead considers each input parent set and
calculates a provably optimal CPT for that parent set. Finally
it outputs the best thus attained CPT. This polynomial-time
method is never worse than the trivial algorithm, yet sub-
stantially better for some families of input instances. At the
time of writing this paper, we are not aware of any problem
instance on which Algorithm 1 attains an approximation ra-
tio greater than 4/3. One open problem is to either prove
that 4/3 is indeed an upper bound on this algorithm’s ap-
proximation ratio, or else to provide a problem instance for
which Algorithm 1 has a ratio exceeding 4/3.

Due to the relations between binary aggregation and CP-
net aggregation, we hope that our work provides insights that
are useful beyond the aggregation of CP-nets.
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