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Abstract

Dung’s Argumentation Framework (AF) has been extended
in several directions. Among the numerous proposed exten-
sions, three of them seem to be of particular interest and have
correlations between them. These extensions are: constrained
AF (CAF), where AF is augmented with (strong) constraints;
epistemic AF (EAF), where AF is augmented with epistemic
constraints; and incomplete AF (iAF), where arguments and
attacks can be uncertain. While the complexity and expres-
siveness of CAF and iAF have been studied, that of EAF has
not been explored so far. In this paper we investigate the com-
plexity and expressivity of EAF. To this end, we first intro-
duce the Labeled CAF (LCAF), a variation of CAF where
constraints are defined over the alphabet of labeled argu-
ments. Then, we investigate the complexity of credulous and
skeptical reasoning and show that: i) EAF is more expressive
than iAF (under preferred semantics), ii) although LCAF is
a restriction of EAF where modal operators are not allowed,
these frameworks have the same complexity, iii) the results
for LCAF close a gap in the characterization of the complex-
ity of CAF. Interestingly, even though EAF has the same com-
plexity as LCAF, it allows modeling domain knowledge in a
more natural and easy-to-understand way.

Introduction
In the last decades, Formal Argumentation has become an
important research field in the area of knowledge repre-
sentation and reasoning (Gabbay et al. 2021). Argumenta-
tion has potential applications in several contexts, including
e.g. modeling dialogues, negotiation (Amgoud, Dimopou-
los, and Moraitis 2007; Dimopoulos, Mailly, and Moraitis
2019), and persuasion (Prakken 2009). Dung’s Argumenta-
tion Framework (AF) is a simple yet powerful formalism
for modeling disputes between two or more agents (Dung
1995). An AF consists of a set of arguments and a binary at-
tack relation over the set of arguments that specifies the in-
teractions between arguments: intuitively, if argument a at-
tacks argument b, then b is acceptable only if a is not. Hence,
arguments are abstract entities whose status is entirely de-
termined by the attack relation. An AF can be seen as a di-
rected graph, whose nodes represent arguments and edges
represent attacks. Several semantics—e.g. grounded (gr),
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Figure 1: AFs Λ1 (left) and Λ3 (right) of Examples 1 and 3.

complete (co), preferred (pr), stable (st), and semi-stable
(sst) (Dung 1995; Caminada 2006)—have been defined for
AF, leading to the characterization of σ-extensions, that in-
tuitively consist of the sets of arguments that can be collec-
tively accepted under semantics σ ∈ {gr, co, st, pr, sst}.
Example 1. Consider AF Λ1 = 〈A1 = {a, b, c, d}, R1 =
{(a, b), (b, c), (c, d), (d, c)}〉 whose graph is shown in Fig-
ure 1 (left). Λ1 describes the following scenario. A party
planner invites Alice (a), Bob (b), Carl (c) and David (d) to
join a party. Alice replies that she will join the party. How-
ever, (i) Bob replies that he will join the party if Alice does
not; (ii) Carl replies that he will join the party if both Bob
and David do not; (iii) David replies that he will join the
party if Carl does not. This situation can be modeled by AF
Λ1, where an argument x states that “(the person whose ini-
tial is) x joins the party”. Under the preferred (stable, and
semi-stable) semantics, Λ1 has extensions E1 = {a, c} and
E2 = {a, d}, meaning that either Alice and Carl, or Alice
and David will attend the party. 2

Argumentation semantics can be also defined in terms
of labelling (Baroni, Caminada, and Giacomin 2011). In-
tuitively, a σ-labelling for an AF is a total function L as-
signing to each argument the label in if it is accepted,
out if it is rejected, and und if it is undecided under σ.
For instance, L1 = {in(a),out(b), in(c),out(d)} and
L2 = {in(a),out(b),out(c), in(d)} are the σ-labellings
for AF Λ1 of Example 1 under semantics σ ∈ {st, pr, sst}.
Herein, L1 and L2 correspond to E1 and E2, respectively.

Despite the expressive power and generality of Dung’s
framework, in some cases it is difficult to accurately model
domain knowledge by an AF in a natural and easy-to-
understand way. For this reason, Dung’s framework has been
extended by introducing further constructs, such as pref-
erences (Amgoud and Cayrol 1998; Modgil and Prakken
2013; Alfano et al. 2022b, 2023b,f) weights (Bistarelli and
Santini 2019, 2021; Bistarelli, Rossi, and Santini 2018),
supports (Cayrol and Lagasquie-Schiex 2013; Cohen et al.
2018; Cayrol, Cohen, and Lagasquie-Schiex 2021; Gonzalez
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AF iAF LCAF EAF
σ CAσ SAσ CAσ SAσ CAσ SAσ CAσ SAσ

co NP-c P-c NP-c coNP-c NP-c coNP-c NP-c coNP-c
st NP-c coNP-c NP-c coNP-c NP-c coNP-c NP-c coNP-c
pr NP-c Πp

2-c NP-c Πp
2-c Σp2-c Πp

2-c Σp2-c Πp
2-c

sst Σp2-c Πp
2-c Σp2-c Πp

2-c Σp2-c Πp
2-c Σp2-c Πp

2-c

Table 1: Complexity of credulous (CA) and skeptical (SA) acceptance under semantics σ ∈ {co, pr, st, sst} for AF, LCAF,
iAF, and EAF. For any complexity class C, C-c means C-complete. New results are highlighted in grey.

et al. 2021), topics (Budán et al. 2020), constraints (Coste-
Marquis, Devred, and Marquis 2006; Arieli 2015; Sakama
and Son 2020; Alfano et al. 2021b), as well as further ac-
ceptance conditions (Alfano et al. 2023e), to achieve more
comprehensive, natural, and compact ways for representing
useful relationships among arguments.

In the following we focus on an interesting extension of
Dung’s framework with epistemic constraints called Epis-
temic Argumentation Framework (EAF) (Sakama and Son
2020). Herein, an epistemic constraint represents the belief
of an agent that must be satisfied. In particular, an epistemic
constraint is a propositional formula over labeled arguments
(e.g. in(a), out(c)) extended with the modal operators K
and M. Intuitively, Kφ (resp. Mφ) states that the consid-
ered agent believes that φ is always (resp. possibly) true.
The semantics of an EAF is given by the set of so-called σ-
epistemic labelling sets. Intuitively, a σ-epistemic labelling
set is a collection of σ-labellings that reflects the belief of an
agent. More in detail, every σ-epistemic labelling set con-
sists of σ-labellings of the underlying AF and it is a maximal
set of σ-labellings that satisfy the epistemic constraint.
Example 2. Consider the AF Λ1 = 〈A1,R1〉 of Exam-
ple 1, and assume that the party planner believes that Carl
will certainly join the party. This can be modeled by EAF
∆2 = 〈A1,R1, ϕ〉, where the epistemic constraint ϕ =
Kin(c) states that c must be accepted in every solution.
For σ ∈ {st, pr, sst}, ∆2 has one σ-epistemic labelling
set consisting of L1 only, meaning that the party planner
concludes that Alice and Carl will attend the party. 2

In general an EAF may have multiple σ-epistemic la-
belling sets, as shown in the following example.
Example 3. Consider the AF Λ3 = 〈A1,R1 ∪ {(b, a)}〉,
whose graph is shown in Figure 1 (right). The set of its σ-
labellings with σ ∈ {st, pr, sst} is {L1,L2,L3}, where
L1 and L2 are σ-labellings for AF Λ1 of Example 1 and
L3 = {out(a), in(b),out(c), in(d)}. Then, EAF ∆3 =
〈A1,R1 ∪ {(b, a)},Kin(a)∨Kin(d)〉 has two σ-epistemic
labelling sets, {L1,L2} and {L2,L3}, representing the sce-
narios compliant with the belief of the party planner that Al-
ice or David will certainly join the party. 2

Credulous and skeptical reasoning are well-known ap-
proaches to deal with uncertain information represented
by the presence of multiple solutions. For this reason,
their computational complexity have been explored in de-
tail for AF (Dvorák and Dunne 2017) as well as for sev-
eral frameworks extending AF, such as incomplete AF

(iAF) (Baumeister, Neugebauer, and Rothe 2018; Baumeis-
ter et al. 2021), where arguments and attacks may be uncer-
tain, and AF with integrity constraints, namely Constrained
AF (CAF) (Alfano et al. 2021b), among others. However, to
the best of our knowledge, the complexity of credulous and
skeptical reasoning in EAF has not been addressed so far.

In this paper, we investigate the complexity of credulous
and skeptical reasoning in EAF and explore the relationships
between three frameworks: EAF, iAF and Labelled CAF
(LCAF), a restricted form of EAF that generalizes CAF.
Contributions. Our main contributions are as follows.

• We first introduce the Labelled Constrained AF (LCAF),
an extension of AF with constraints defined by means
of propositional formulae over labeled arguments. LCAF
is a restriction of EAF where the modal operators K
and M are disallowed. Moreover, while the semantics
of LCAF constraints (which are built over labelled argu-
ments) is two-valued, that of CAF constraints (which are
defined over arguments) is generally three-valued (Coste-
Marquis, Devred, and Marquis 2006; Arieli 2015; Alfano
et al. 2021b). We investigate the complexity of credulous
and skeptical acceptance in LCAF (cf. Table 1).

• We show that LCAF generalizes iAF, in the sense that
credulous and skeptical reasoning in iAF can be reduced
to credulous and skeptical reasoning in LCAF under
complete, preferred, stable and semi-stable semantics.
Transitively, this entails that EAF generalizes iAF.

• We explore the complexity of the credulous and skeptical
acceptance in EAF, showing that EAF is more expressive
than iAF (this particularly holds if we compare the com-
plexity of credulous acceptance under preferred seman-
tics, cf. Table 1). Finally, we show that the complexity of
the considered problems for EAF coincides with that for
LCAF even if more general constraints can be expressed
in EAF.

Preliminaries
In this section, after recalling some complexity classes, we
review the AF-based frameworks considered in the paper.

Complexity Classes
We recall here the main complexity classes used in the pa-
per and, in particular, the classes Σpk and Πp

k with k ≥ 0
(see e.g. (Papadimitriou 1994)): Σp0 = Πp

0 = P ; Σp1 = NP

and Πp
1 = coNP ; Σpk = NPΣp

k−1 and Πp
k = coΣpk,
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∀k > 0. For a class C, NPC denotes the class of prob-
lems that can be solved in polynomial time using an oracle
in C by a non-deterministic Turing machine. Under stan-
dard complexity-theoretic assumptions, we have that Σpk ⊂
Σpk+1 ⊂ PSPACE and Πp

k ⊂ Πp
k+1 ⊂ PSPACE ∀k ≥ 0.

Argumentation Framework
An abstract Argumentation Framework (AF) is a pair 〈A,R〉,
where A is a set of arguments and R ⊆ A × A is a set of
attacks. If (a, b) ∈ R then we say that a attacks b.

Given an AF Λ = 〈A,R〉 and a set S ⊆ A of arguments,
an argument a ∈ A is said to be i) defeated w.r.t. S iff ∃b ∈ S
such that (b, a) ∈ R, and ii) acceptable w.r.t. S iff for every
argument b ∈ A with (b, a) ∈ R, there is c ∈ S such that
(c, b) ∈ R. The sets of defeated and acceptable arguments
w.r.t. S are as follows (where Λ is known):

• Def(S) = {a ∈ A | ∃(b, a) ∈ R . b ∈ S};
• Acc(S) = {a ∈ A | ∀(b, a) ∈ R . b ∈ Def(S)}.

Given an AF 〈A,R〉, a set S ⊆ A of arguments is said to be:

• conflict-free iff S ∩Def(S) = ∅;
• admissible iff it is conflict-free and S ⊆ Acc(S).

Different argumentation semantics have been proposed
to characterize collectively acceptable sets of arguments,
called extensions (Dung 1995; Caminada 2006). Every ex-
tension is an admissible set satisfying additional conditions.
Specifically, the complete, preferred, stable, semi-stable, and
grounded extensions of an AF are defined as follows.

Given an AF 〈A,R〉, a set S ⊆ A is an extension called:

• complete (co) iff it is an admissible set and S = Acc(S);
• preferred (pr) iff it is a ⊆-maximal complete extension;
• stable (st) iff it is a total preferred extension, i.e. a pre-

ferred extension such that S ∪Def(S) = A;
• semi-stable (sst) iff it is a preferred extension such that
S ∪Def(S) is maximal (w.r.t. ⊆);

• grounded (gr) iff it is a ⊆-minimal complete extension.

The set of complete (resp. preferred, stable, semi-stable,
grounded) extensions of an AF Λ will be denoted by co(Λ)
(resp. pr(Λ), st(Λ), sst(Λ), gr(Λ)). It is well-known that
the set of complete extensions forms a complete semilat-
tice w.r.t. ⊆, where gr(Λ) is the meet element, whereas
the greatest elements are the preferred extensions. All the
above-mentioned semantics except the stable admit at least
one extension. The grounded semantics, that admits exactly
one extension, is said to be a unique status semantics, while
the others are said to be multiple status semantics. With a
little abuse of notation, in the following we also use gr(Λ)
to denote the grounded extension. For any AF Λ the follow-
ing inclusion relations hold: i) st(Λ) ⊆ sst(Λ) ⊆ pr(Λ) ⊆
co(Λ), ii) gr(Λ) ∈ co(Λ), and iii) st(Λ) 6= ∅ implies that
st(Λ) = sst(Λ). Arguments occurring in an extension are
said to be accepted, whereas arguments attacked by accepted
arguments are said to be rejected; the remaining arguments
are said to be undecided (w.r.t. the considered extension).

ca b

Figure 2: AF Λ4 of Example 4.

Labelling Argumentation semantics can be also defined in
terms of labelling (Baroni, Caminada, and Giacomin 2011).
A labelling for an AF 〈A,R〉 is a total function L : A →
{in,out,und} assigning to each argument a label: L(a) =
in means that a is accepted, L(a) = out means that a is
rejected, and L(a) = und means that a is undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = in}, out(L) = {a |
a ∈ A∧L(a) = out}, and und(L) = {a | a ∈ A∧L(a) =
und}, a labelling L can be represented by means of a triple
〈in(L),out(L), und(L)〉.

Given an AF Λ = 〈A,R〉, a labelling L for A is said to be
admissible (or legal) if ∀a ∈ in(L) ∪ out(L) it holds that:
(i) L(a) = out iff ∃ (b, a) ∈ R such that L(b) = in; and

(ii) L(a) = in iff ∀(b, a) ∈ R, L(b) = out holds.
Moreover, L is a complete labelling iff conditions (i) and (ii)
hold for all arguments a ∈ A.

Between complete extensions and complete labellings
there is a bijective mapping defined as follows: for
each extension E there is a unique labelling L(E) =
〈E,Def(E),A \ (E ∪ Def(E))〉 and for each labelling L
there is a unique extension, that is in(L). We say that L(E)
is the labelling corresponding to E. Moreover, we say that
L(E) is a σ-labelling for a given AF Λ and semantics σ ∈
{co, pr, st, sst, gr} iff E is a σ-extension of Λ.

In the following, we say that the status of an argument
a w.r.t. a labelling L (or its corresponding extension in(L))
is in (resp. out, und) iff L(a) = in (resp. L(a) = out,
L(a) = und). We will avoid to mention explicitly the la-
belling (or the extension) if no ambiguity arises.
Example 4. Let Λ4 = 〈A4,R4〉 be an AF where A4 = {a,
b, c} and R4 = {(a, b), (b, a), (b, c), (c, c)} (see Figure 2).
AF Λ4 has three complete extensions: E1 = ∅, E2 =
{a}, E3 = {b}, whose corresponding complete labellings
are L1 = 〈∅, ∅, {a, b, c}〉, L2 = 〈{a}, {b}, {c}〉, and L3 =
〈{b}, {a, c}, ∅〉. Moreover, pr(Λ4) = {E2, E3}, st(Λ4) =
sst(Λ4) = {E3}, and gr(Λ4) = {E1}. Correspondingly,
the pr-labelling set is {L2,L3}, the st- and sst-labelling
set is {L3}, while the gr- labelling set is {L1}. 2

Two fundamental problems in AF are deciding credulous
and skeptical acceptance. Given an AF Λ = 〈A,R〉, a (goal)
argument g ∈ A, and a semantics σ ∈ {gr, co, st, pr, sst}:
• the credulous acceptance problem (denoted as CAσ) is

deciding whether g is credulously accepted, that is, de-
ciding whether g belongs to a σ-extension of Λ.

• the skeptical acceptance problem (denoted as SAσ) is de-
ciding whether g is skeptically accepted, that is, deciding
whether g belongs to every σ-extension of Λ.

Clearly, for the grounded semantics, which admits exactly
one extension, these problems become identical.

The complexity of the acceptance problems for AF is
summarized Table 1 (Dvorák and Dunne 2017).
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Figure 3: iAF ∆5 (left) and completion Λ′′
5 (right) of Exam-

ple 5.

Incomplete Argumentation Framework
We now recall the incomplete AF (Baumeister et al. 2018).

Definition 1. An incomplete AF (iAF) is a tuple 〈A,B,R, T〉,
where A and B are disjoint sets of arguments, and R and
T are disjoint sets of attacks between arguments in A ∪ B.
Arguments in A and attacks in R are said to be certain, while
arguments in B and attacks in T are said to be uncertain.

Certain arguments in A are definitely known to exist,
while uncertain arguments in B are not known for sure: they
may occur or may not. Analogously, certain attacks in R are
definitely known to exist if both the incident arguments ex-
ist, while for uncertain attacks in T it is not known for sure
if they hold, even if both the incident arguments exist.

An iAF 〈A,B,R,T〉 is said to be an arg-iAF iff T = ∅,
i.e. it does not contain uncertain attacks. We may omit the
empty set T and use 〈A,B,R〉 to denote an arg-iAF.

An iAF compactly represents alternative AF scenar-
ios, called completions. A completion for an iAF ∆ =
〈A,B,R,T〉 is an AF Λ = 〈A′,R′〉 such that A ⊆ A′ ⊆
A ∪ B and R ∩ (A′ × A′) ⊆ R′ ⊆ (R ∪ T) ∩ (A′ × A′).

Acceptance Problems for iAF. As our focus is to com-
pare the expressive power of different AF-based frame-
works by looking at their acceptance problems, hereafter
we consider two acceptance problems for iAF investi-
gated in (Baumeister et al. 2021) which consist in deciding
whether a given goal argument is in any or every solution of
an iAF, respectively, where a solution is an extension of a
completion. These forms of credulous and skeptical reason-
ing are defined in what follows.

Given an iAF ∆ = 〈A,B,R,T〉, an argument g ∈ A ∪ B,
and a semantics σ ∈ {gr, co, pr, st, sst}, we say that

1. g is credulously accepted under σ (denoted as
CAσ(∆, g)) iff there exists a completion Λ of ∆ and a
σ-extension E of Λ such that g ∈ E;

2. g is skeptically accepted under σ (denoted as SAσ(∆, g))
iff for every completion Λ of ∆, g occurs in every σ-
extension of Λ.

We use CAσ (resp. SAσ), or simply CA (resp. SA) when-
ever σ is known, to denote the problem of deciding credu-
lous (resp. skeptical) acceptance. It is worth noting that CA
(resp. SA) is called possible credulous acceptance (resp. nec-
essary skeptical acceptance) in (Baumeister et al. 2021) to
emphasize that it considers any (resp. every) completion.

Example 5. Consider the AF of Example 1 and assume that
the participation of Carl is uncertain. This can be modeled
by the (arg-)iAF ∆5=〈{a, b, d}, {c}, {(a, b), (b, c), (c, d),
(d, c)}, ∅〉 whose graph is shown in Figure 3 (left), where
the uncertain argument is represented by a dotted circle. ∆5

has 2 completions: Λ′
5=Λ1 of Example 1 and Λ′′

5= 〈{a, b, d},
{(a, b)}〉, respectively shown in Figure 1 (left) and Figure 3

(right). Under semantics σ ∈ {st, pr, sst}, AF Λ′
5 has

two extensionsE1={a, d}, andE2={a, c}, while AF Λ′′
5 has

only one extensionE3={a, d}. Thus, for iAF ∆5, arguments
a, c, d are credulously accepted, while only argument a is
skeptically accepted, under σ ∈ {st, pr, sst}. 2

The complexity of CAσ and SAσ for iAF has been in-
vestigated in (Baumeister et al. 2021) for semantics σ ∈
{gr, co, st, pr} and in (Alfano et al. 2022a) for the semi-
stable semantics. Also these results are reported in Table 1.

Constrained Argumentation Frameworks
Constrained Argumentation Frameworks (CAFs) have been
studied in several works (Coste-Marquis, Devred, and Mar-
quis 2006; Arieli 2015; Alfano et al. 2021b). They extend
AF by considering a set of constraints, that is, a set of propo-
sitional formulae {ϕ1, ..., ϕn} to be satisfied by extensions.
Intuitively, constraints introduce subjective knowledge of
agents, whereas the AF encodes objective knowledge. Here-
after, w.l.o.g., we assume to have, instead of a set of con-
straints {ϕ1, ..., ϕn}, a unique constraint ϕ =

∧n
i=1 ϕi.

In this paper we consider a variation of CAF called La-
belled Constrained AF (LCAF), where the constraint ϕ is
defined by means of a propositional formula over labelled
arguments. We will show later in the paper that LCAF is a
special case of Epistemic AF and is at least as expressive as
CAF considered in (Alfano et al. 2021b).
Definition 2. A Labelled Constrained AF (LCAF) is a triple
〈A,R, ϕ〉where 〈A,R〉 is an AF and ϕ is a propositional for-
mula (called constraint) built from λA = {in(a),out(a),
und(a) | a ∈ A} by using the connectives ¬, ∨, and ∧ .

A labelling L satisfies a formula ϕ (denoted as L |= ϕ) if
the formula obtained from ϕ by replacing every atom occur-
ring in L with t (true), and every atom not occurring in L
with f (false), evaluates to true.

The semantics of LCAF is given by the set of σ-
extensions of the underlying AF that satisfy the constraint.
Definition 3 (LCAF Semantics). For any semantics σ ∈
{gr, co, pr, st, sst}, a set S ⊆ A is a σ-extension of LCAF
〈A,R, ϕ〉 if S is a σ-extension for 〈A,R〉 and L(S) |= ϕ, i.e.
the σ-labelling corresponding to S satisfies the constraint ϕ.

Given an LCAF ∆ and a semantics σ ∈ {gr, co, pr, st,
sst}, we use σ(∆) to denote the set of σ-extensions of ∆.
Moreover, L(E) is a σ-labelling for ∆ iff E ∈ σ(∆).

Similarly to AF, for a given LCAF and (goal) argument g,
the credulous (resp. skeptical) acceptance problem, denoted
as CAσ (resp. SAσ), is the problem of deciding whether g
belongs to some (resp. all) σ-extension of the LCAF.
Example 6. Consider the AF Λ1 = 〈A1,R1〉 of Ex-
ample 1 and assume that the party planner wishes to
exclude the participation of David. This can be car-
ried out by making unfeasible the extensions which do
not exclude the participation of David, and thus can be
modeled by LCAF ∆6 = 〈A1,R1, {out(d)}〉. Recall
that L1 = {in(a),out(b), in(c),out(d)} and L2 =
{in(a),out(b),out(c), in(d)} are the σ-labellings for the
underlying AF Λ1 under semantics σ ∈ {st, pr, sst}. We
have that L1 |= out(d) while L2 6|= out(d). Thus, the set
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of σ-labellings of ∆6 consists of L1 only. Clearly, a and c
are skeptically accepted w.r.t. ∆6 and σ ∈ {st, pr, sst}. 2

Notice that, for a given LCAF 〈A,R, ϕ〉, the set of com-
plete extensions (i.e. the complete extensions of 〈A,R〉 satis-
fying ϕ) does not always form a complete meet-semilattice.
Roughly speaking, this happens since the constraints may
break the lattice by making unfeasible some extensions.
Thus, even the grounded extension is not guaranteed to exist.
For instance, the LCAF 〈{a}, {(a, a)}, in(a)〉 has no com-
plete extension and, thus, no grounded extension.

Epistemic Argumentation Framework
We now review the Epistemic Argumentation Frame-
work (Sakama and Son 2020), which extends Dungs’ frame-
work with epistemic constraints.

Given an AF Λ = 〈A,R〉, an epistemic atom over Λ is
of the form Kϕ or Mϕ, where ϕ is a propositional formula
built from λA = {in(a),out(a),und(a) | a ∈ A} by us-
ing the connectives ¬, ∨, and ∧. Differently from LCAF,
here the modal operators K and M are also considered. An
epistemic literal is an epistemic atom or its negation. An
epistemic formula (over λA) is a propositional formula con-
structed over epistemic literals and connectives ∧ and ∨. As
for LCAF, epistemic formulae introduce subjective knowl-
edge of agents, whereas the AF encodes the objective knowl-
edge. Intuitively, Kϕ (resp. Mϕ) means that the considered
agent believes that ϕ is always true (resp. ϕ is possibly true).

The satisfaction of a formula ϕ over λA w.r.t. a labelling
L (denoted as L |= ϕ) is defined as in the case of LCAF.

A set LS of labellings satisfies an epistemic formula ϕ,
denoted asLS |= ϕ, if one of the following conditions holds:
• ϕ = t,
• ϕ = Kψ and L |= ψ for every L ∈ LS ,
• ϕ = Mψ and L |= ψ for some L ∈ LS ,
• ϕ = ¬ψ and LS 6|= ψ,
• ϕ = ϕ1 ∧ ϕ2 and (LS |= ϕ1 and LS |= ϕ2),
• ϕ = ϕ1 ∨ ϕ2 and (LS |= ϕ1 or LS |= ϕ2).

An epistemic formulaϕ is consistent if there exists a (non-
empty) set LS of labellings such that LS |= ϕ; otherwise, ϕ
is inconsistent. The following basic properties hold:
• LS |= ¬Mϕ iff LS |= K¬ϕ,
• LS |= ¬Kϕ iff LS |= M¬ϕ,
• LS |= M(ϕ1 ∨ ϕ2) iff LS |= Mϕ1 ∨ LS |= Mϕ2,
• LS |= K(ϕ1 ∧ ϕ2) iff LS |= Kϕ1 ∧ LS |= Kϕ2.

Definition 4 (EAF Syntax). An Epistemic AF (EAF) is a
triple 〈A,R, ϕ〉 where 〈A,R〉 is an AF and ϕ is an epistemic
formula, also called epistemic constraint.

The semantics of EAF relies on the concept of σ-
epistemic labelling, that is a maximal set of labellings of the
underlying AF satisfying the epistemic constraint.

Definition 5 (EAF Semantics). Let ∆ = 〈A,R, ϕ〉 be an
EAF and σ ∈ {gr, co, pr, st, sst} be a semantics. A set
LS of labellings is a σ-epistemic labelling set of ∆ if (i)
each L ∈ LS is an σ-labelling of 〈A,R〉, and (ii) LS is a
⊆-maximal set of σ-labellings of 〈A,R〉 that satisfies ϕ.

As mentioned earlier, an EAF may have multiple σ-
epistemic labelling sets. In fact, a σ-epistemic labelling set
is a collection of σ-labellings that represent the belief of
an agent. In particular, EAF ∆ = 〈A,R, t〉 has a unique
σ-epistemic labelling set that coincides with the set of σ-
labellings of the underlying AF. By definition, an EAF al-
ways has a (possibly empty) σ-epistemic labelling set.
Example 7. Consider the EAF ∆3 = 〈A1,R1 ∪ {(b,
a)}, Kin(a) ∨ Kin(d)〉, whose preferred (stable and
semi-stable)-epistemic labelling sets are given in Exam-
ple 3. The only grounded epistemic labelling set for ∆3

is ∅, as the grounded labelling L = {und(a),und(b),
und(c),und(d)} of the underlying AF Λ3 does not satisfy
the epistemic constraint, that is, L 6|= (Kin(a)∨Kin(d)). 2

In the following, we assume that epistemic constraints are
of formϕ = ϕ1∨· · ·∨ϕn, whereϕi = Kϕi,0∧· · ·∧Kϕi,ki∧
Mϕi,ki+1

∧· · ·∧Mϕi,mi
and each ϕi,j (with i ∈ [1..n], j ∈

[0..mi]) is a general propositional formula. As it will be clear
in what follows, this form of constraints is general enough
to allow the use of unrestricted propositional formulas over
which modal operators are applied, and able to capture the
constraints of (L)CAF in a natural way without resulting in
an increase of complexity as well as the credulous/skeptical
acceptance reasoning of iAF—the same assumption is made
in the work introducing EAF (Sakama and Son 2020).

Complexity of LCAF and Relationship
with iAF

In this section, we characterize the complexity of credulous
and skeptical acceptance in LCAF and relate its expressive-
ness to that of iAF. As a consequence of the fact that LCAF
is a special form of EAF, the analysis of this section pro-
vides lower bounds on the complexity of EAF as well as a
characterization of the relationship between iAF and EAF.

Complexity of Acceptance for LCAF
Although, as said earlier, the presence of constraints in
LCAFs breaks the meet-semilattice of complete extensions,
reasoning under the grounded semantics remains tractable.
Intuitively, this follows from the fact that the grounded ex-
tension of the underlying AF is the only candidate extension
to be considered for checking the satisfaction of constraints.
Proposition 1. Checking whether an LCAF admits a
grounded extension can be done in PTIME.

Thus, since if a grounded extension for an LCAF exists
then it is unique, computing the credulous (or, equivalently,
the skeptical) acceptance under the grounded semantics is
still polynomial. This is stated in the following theorem
which also states the complexity of credulous acceptance
under the multiple status semantics σ ∈ {co, pr, st, sst}.
Theorem 1. For any LCAF, CAσ is:
• in P for σ = gr;
• NP-complete for σ ∈ {co, st};
• Σp2-complete for σ ∈ {pr, sst}.

The following theorem characterizes the complexity of
the skeptical acceptance problem for LCAF.
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Figure 4: (Left) AF of LCAF ∆5
′ encoding the iAF ∆5 of

Example 5. (Right) AF underlying the EAF ∆9 of Exam-
ple 9.

Theorem 2. For any LCAF, SAσ is:

• in P for σ = gr;
• coNP-complete for σ ∈ {co, st};
• Πp

2-complete for σ ∈ {pr, sst}.
Interestingly, it can be shown that the reduction provided

for CApr also holds for CAF of (Alfano et al. 2021b), where
CApr for CAF is shown to be NP-hard and in Σp2. That is, our
result entails that CApr for CAF is Σp2-complete, meaning
that LCAF and CAF have the same complexity. In fact, it
can be also shown that any CAF constraint can be rewritten
into an LCAF constraint.

Relationship between LCAF and iAF
In this section, we analyze the relationship between LCAF
and iAF. We focus on multiple status semantics only, avoid-
ing considering the grounded semantics that behaves differ-
ently in the two frameworks. Indeed, differently from LCAF
where the grounded semantics remains unique status as in
AF, for iAF the grounded semantics prescribes multiple ex-
tensions (one for each completion). Thus comparing LCAF
and iAF under grounded semantics would mean comparing
a deterministic semantics with a non-deterministic one, that,
in our opinion, does not make much sense when focusing
on credulous and skeptical reasoning (that mainly deal with
uncertain information represented by multiple solutions).

The following proposition states that LCAF (and thus
EAF) can be used to decide credulous and skeptical accep-
tance over iAF. Although the result is given for a special
class of iAF (i.e. arg-iAF), we recall that arg-iAF is as ex-
pressive as (general) iAF (Alfano et al. 2022a; Baumeister,
Neugebauer, and Rothe 2018; Baumeister et al. 2021).

Theorem 3. Let ∆ = 〈A,B,R〉 be an iAF, g ∈ A ∪ B an
argument, and σ ∈ {co, pr, st, sst} a semantics. Then, it
holds that CAσ(∆, g) ≡ CAσ(∆′, g) (resp. SAσ(∆, g) ≡
SAσ(∆′, g)) where ∆′ = 〈A′,R′, ϕ〉 is the LCAF obtained
from ∆ as follows:

• A′ = A ∪ B ∪ {xb, xb | b ∈ B};
• R′ = R ∪ {(xb, xb), (xb, xb), (xb, b) | b ∈ B}; and
• ϕ =

∧
b∈B

(
¬und(xb)

)
.

Example 8. Consider the iAF ∆5 of Example 5 and
the (corresponding) LCAF ∆′

5 = 〈{a, b, c, d, xc, xc},
{(a, b), (b, c), (c, d), (d, c), (xc, xc), (xc, xc), (xc, c)},
{¬und(xc)}〉, whose AF is shown in Figure 4 (left). For
σ ∈ {st, pr, sst}, ∆′

5 has 3 σ-extensions:E1 = {a, d, xc},
E2 = {a, c, xc}, E3 = {a, d, xc}, that correspond (modulo
meta-arguments xc and xc) to those of ∆5, and this relation-
ship also holds for credulous and skeptical acceptance. 2

AF

LCAF

EAF

iAF

1 2

4
3 5

Figure 5: Relationships between frameworks. The solid ar-
rows 1,2, and 3 represent syntactic reductions, while the
dashed arrows 4 and 5 represent reductions due to the re-
sult of Theorem 3.

It is worth noting that defining an alternative (unique sta-
tus) grounded semantics for iAF and LCAF as the inter-
section of all complete extensions would let Theorem 3 to
be applicable also to the grounded semantics. Moreover, a
PTIME algorithm for computing LCAF ∆′ from iAF ∆ can
be easily implemented.

Figure 5 summarizes the relationships between the con-
sidered frameworks. Particularly, credulous/skeptical accep-
tance in AF 〈A,R〉 can be clearly reduced to credulous/skep-
tical acceptance in LCAF 〈A,R, t〉 and iAF 〈A, ∅,R, ∅〉
(arrows 1 and 2, respectively). Moreover, LCAF is a spe-
cial case of EAF where modal operators K and M are
not used. In fact, for any LCAF ∆ = 〈A,R, ϕ〉, the EAF
∆′ = 〈A,R,Kϕ〉 is such that σ(∆) = σ(∆′) for σ ∈
{gr, co, st, pr, sst} (arrow 3). Finally, from the result of
Theorem 3 we have that LCAF and EAF can encode iAF
credulous/skeptical acceptance (arrows 4 and 5). Notice that,
the complexity results in Table 1 indicate that there exists
also a polynomial reduction from EAF to LCAF. However,
differently from the reductions shown in Figure 5, how to
translate an EAF into an LCAF remains an open problem.

Overall, the results of this section entail that LCAF (and
thus EAF) is generally more expressive than iAF. This par-
ticularly holds if we compare the complexity of credulous
acceptance under preferred semantics (cf. Table 1). In the
next section, we show that the complexity of EAF coincides
with that of LCAF even if more general constraints using
modal operators can be expressed in EAF.

Note that, for a given CAF 〈A,R,C〉, the set of complete
extensions (i.e. the complete extensions of 〈A,R〉 satisfy-
ing C) does not always form a complete meet-semilattice,
that is constraints can break the lattice by making some ex-
tension unfeasible. As a consequence, even the grounded
extension could no longer exist. For instance, the CAF
〈{a}, {(a, a)}, {in(a)}〉 has no complete extension and,
thus, the grounded extension does not exists.

Complexity of EAF
In this section, we investigate the complexity of the credu-
lous and skeptical acceptance problems in EAF.

Definition 6 (Credulous/Skeptical Acceptance). Let ∆ =
〈A,R, ϕ〉 be an EAF and σ ∈ {gr, co, st, pr, sst} a se-
mantics. A (goal) argument g ∈ A is said to be:

1. credulously accepted under σ, denoted as CAσ(∆, g), iff
there exists a σ-epistemic labelling set LS of ∆ such that
in(g) occurs in at least one σ-labelling L of LS;
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2. skeptically accepted under σ, denoted as SAσ(∆, g), iff
for every σ-epistemic labelling set LS of ∆, in(g) occurs
in every σ-labelling L of LS .
We use CAσ (resp. SAσ), or simply CA (resp. SA) when-

ever σ is known, to denote the problem of deciding credu-
lous (resp. skeptical) acceptance.
Example 9. Let ∆9 = 〈A9,R9 Kin(a) ∨ Kin(d)〉
be an EAF obtained by extending the EAF of Exam-
ple 3 as follows: A9 = A3 ∪ {e, f} and R9 =
R3 ∪ {(a, e), (d, e), (e, f)}. The AF 〈A9,R9〉, under-
lying the EAF ∆9, is shown in Figure 4 (right).
L1 = {in(a),out(b), in(c),out(d),out(e), in(f)},
L2 = {in(a),out(b),out(c), in(d),out(e), in(f)}, and
L3 = {out(a), in(b),out(c), in(d),out(e), in(f)} are
the σ-labellings for AF 〈A9,R9〉 under semantics σ ∈
{pr, st, sst}. For EAF ∆9 there are two σ-epistemic la-
belling sets {L1,L2} and {L2,L3}. Then, we have that
a, b, c, d and f are credulously accepted, while only argu-
ment f is skeptically accepted under σ. 2

We now present some results that will be useful to char-
acterize the complexity of CA and SA.
Proposition 2. Checking whether a given labelling set sat-
isfies a given epistemic formula is decidable in PTIME.

As stated next, the grounded-epistemic labelling set is
unique. This entails that CAgr ≡ SAgr.
Fact 1. For any EAF 〈A,R, ϕ〉, the gr-epistemic labelling
set is {L(gr(〈A,R〉))} if L(gr(〈A,R〉))|= ϕ; ∅ otherwise.

The following theorems characterize the complexity of
the credulous and skeptical acceptance problems for EAF.
Theorem 4. For any EAF, CAσ is:
• in P for σ = gr;
• NP-complete for σ ∈ {co, st};
• Σp2-complete for σ ∈ {pr, sst}.

Theorem 5. For any EAF, SAσ is:
• in P for σ = gr;
• coNP-complete for σ ∈ {co, st};
• Πp

2-complete for σ ∈ {pr, sst}.
Hence it turns out that EAF has the same complexity as

LCAF. That is, the presence of the modal operators is not a
source of complexity, though they allow modeling domain
knowledge in a more natural and easy-to-understand way.

Additional relationships between EAF and iAF.
In (Baumeister et al. 2021), two further problems con-
cerning ‘intermediate degrees of acceptance’ have been
defined, consisting in checking whether i) there is a com-
pletion such that every extension contains the goal (possible
skeptical acceptance), and ii) for every completion there is
an extension containing the goal (called necessary credulous
acceptance). The two problems, even if specifically con-
ceived for iAF, can still be reduced to analogous problems
formulated in the context of EAF (Alfano et al. 2023c).
This enables a mapping from iAF to EAF for solving the
possibly skeptical and necessary credulous acceptance
problems. The benefits behind the translations from iAF

to LCAF (and EAF) is to offer meaningful insights to the
relationship between these argumentation formalisms from
the perspective of acceptance problems. Indeed, credulous
and skeptical reasoning problems in iAF can be easily
encoded in EAF, and thus EAF could be taken as a unifying
framework for representing classical constraints, epistemic
constraints, and unquantified uncertainty—this can also
justified from a complexity standpoint.

Potential algorithmic solutions. SAT-based CEGAR al-
gorithms have been successfully used for solving various
Σp2-complete problems, including e.g. stable conclusions in
ASPIC+ (Lehtonen, Wallner, and Järvisalo 2022) and ac-
ceptance in iAF (Baumeister et al. 2021). This suggests that,
following this approach, EAF acceptance problems could
be addressed in a similar way. Alternatively, considering
the tight relationship between AF and Answer Set Pro-
gramming (ASP) (Alfano et al. 2020c; Bichler, Morak, and
Woltran 2018), EAF acceptance problems could be solved
by mapping EAF into Epistemic ASP (EASP) and using
EASP solvers (Leclerc and Kahl 2018; Hecher, Morak, and
Woltran 2020).

Related Work
Work on epistemic logic dates back to the early 1860s.
Since then epistemic logic has played an important role also
in computer science. This field is very active and impor-
tant results are reported in a recent book surveying state-
of-the-art research (van Ditmarsch et al. 2015). Epistemic
Logic extends propositional logic by allowing to also ex-
press knowledge of agents, called subjective knowledge.
The idea of extending logic with epistemic constructs has
been investigated also in the field of Answer Set Program-
ming (ASP) (Gelfond 1991, 2011; Fandinno, Faber, and Gel-
fond 2022). Epistemic logic programs, firstly proposed in
(Gelfond 1991), extend disjunctive logic programs under the
stable model semantics with modal constructs called subjec-
tive literals (Cabalar, Fandinno, and del Cerro 2020, 2021;
Herzig and Yuste-Ginel 2021; Shen and Eiter 2022).

Besides being related to the proposals of CAF in (Coste-
Marquis, Devred, and Marquis 2006; Arieli 2015) as dis-
cussed earlier, our work is also related to the approach in
(Booth et al. 2013) that provides a method for generat-
ing non-empty conflict-free extensions for CAF. Constraints
have been also used in the context of dynamic AFs to refer to
the enforcement of some change (Doutre and Mailly 2018).
In this context, extension enforcement aims at modifying an
AF to ensure that a given set of arguments becomes (part
of) an extension for the chosen semantics (Baumann and
Brewka 2010; Baumann 2012; Coste-Marquis et al. 2015;
Wallner, Niskanen, and Järvisalo 2017; Niskanen, Wallner,
and Järvisalo 2018). This is different from the approach
of (Sakama and Son 2020) where epistemic constraints are
used to discard unfeasible solutions (extensions), without
enforcing that a new set of arguments becomes an extension.

LCAF and CAF are different actualizations of abstract ar-
gumentation with constraints. Constraints in LCAF are de-
fined over the alphabet of labelled arguments and the seman-
tics is based on two-valued logic, whereas in the CAF of (Al-
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fano et al. 2021b) constraints are defined over the alphabet
of arguments and the semantics is based on Lukasiewicz’s
three-valued logic. However, different CAF semantics have
been defined in the literature. As also discussed in (Sakama
and Son 2020), a difference between the CAF of (Coste-
Marquis, Devred, and Marquis 2006) and EAF concerns the
meaning of constraints. Indeed, constraints in CAF are im-
posed on the admissibility of sets of arguments (i.e. over
admissible sets) that are at the basis of σ-extensions, with
σ ∈ {gr, co, pr, st, sst}. As a consequence, a drawback
of this approach is that σ-extensions of the CAF in (Coste-
Marquis, Devred, and Marquis 2006) are no longer guaran-
teed to be σ-extensions of the underlying AF, that is, we
may have E ∈ σ(〈A,R,C〉) \ σ(〈A,R〉). Differently, the
CAF of (Alfano et al. 2021b), LCAF, and EAF prescribe σ-
labellings that are σ-labellings of underlying AF.

AF with epistemic attacks (EAAF) has been introduced
in (Alfano et al. 2023d). While in EAF the labelings of the
underlying AF satisfying constraints are grouped into (mul-
tiple) epistemic labeling sets, EAAF extends AF by consid-
ering three kinds of attacks (classical, weak epistemic, and
strong epistemic) and extends the concepts of defeated and
acceptable argument. The two frameworks are different, as
confirmed by the different complexity results obtained.

The relationship between epistemic constraints and pref-
erences has been explored in (Sakama and Son 2020), where
it is shown that EAF enables us to specify a kind of prefer-
ences over not only arguments but also justification states
of arguments. Dung’s framework has been extended in sev-
eral ways for allowing preferences over arguments (Amgoud
and Cayrol 2002; Modgil 2009; Amgoud and Vesic 2011).
In particular, it is worth noting that preferences relying to so-
called critical attacks (Amgoud and Vesic 2014) can be en-
coded into EAF, possible through reductions relying on ad-
ditional (meta)-arguments and attacks (Kaci, van der Torre,
and Villata 2018).

Preferences can be also expressed in value-based
AFs (Bench-Capon 2003; Dunne and Bench-Capon 2004),
where each argument is associated with a numeric value,
and a set of possible orders (preferences) among the val-
ues is defined. In (Dunne et al. 2011) weights are associated
with attacks, and new semantics extending the classical ones
on the basis of a given numerical threshold are proposed.
(Coste-Marquis et al. 2012) extends (Dunne et al. 2011) by
considering other aggregation functions over weights apart
from sum. Except for weighted solutions under grounded
semantics (that prescribes more than one weighted solu-
tion), the complexity of the main reasoning tasks in the
above-considered AF-based frameworks is lower than that
of EAFs, which suggests that EAFs are more expressive and
can be used to model those frameworks (we plan to formally
investigate these connections in future work).

Conclusions and Future Work
We have investigated the complexity of credulous and skep-
tical reasoning in EAF, where epistemic constraints are ex-
pressed by using modal operators. It turns out that EAF has
the same complexity as LCAF, though the latter is a restric-
tion of EAF where modal operators are not allowed. We

have also shown that credulous and skeptical acceptance in
iAF can be reduced to credulous and skeptical acceptance
in LCAF, and thus in EAF, providing a tight connection be-
tween these three AF-based frameworks.

It is worth noting that, the connection between AF and
iAF, LCAF and EAF carry over to other AF-based frame-
works that can be mapped (in PTIME) into extensions-
equivalent AFs (modulo meta-arguments added in the
rewriting) (Alfano et al. 2020c), such as Bipolar AF (Cohen
et al. 2014) and AF with recursive attacks and supports (Co-
hen et al. 2015; Cayrol et al. 2018), among others (Villata
et al. 2012; Gottifredi et al. 2018). Particularly, epistemic
constraints can be added to such AF-based frameworks, and
our results entail equivalent ones in the epistemic variant
of those frameworks. That is, the complexity of acceptance
problems in such resulting epistemic frameworks remains
the same as that of EAF.

Future work will be devoted to considering more general
forms of epistemic constraints, such as epistemic constraints
allowing to express conditions on aggregates (e.g. the agent
believe that at least n arguments from a given set S should
be accepted/rejected). Finally, we plan to explore epistemic
constraints in structured argumentation formalisms (Bon-
darenko et al. 1997; Garcia, Prakken, and Simari 2020).

Finally, given the inherent nature of argumentation and
the typical high computational complexity of most of the
reasoning tasks (Alfano et al. 2020a, 2023a), there have been
several efforts toward the investigation of incremental tech-
niques that use AF solutions (e.g. extensions, skeptical ac-
ceptance) at time t to recompute updated solutions at time
t + 1 after that an update (e.g. adding/removing an attack-
/argument) is performed (Alfano and Greco 2021; Alfano,
Greco, and Parisi 2021; Doutre and Mailly 2018; Niskanen
and Järvisalo 2020). These approaches have been extended
to argumentation frameworks more general than AFs (Al-
fano, Greco, and Parisi 2018; Alfano et al. 2020b, 2021a).
Following this line of research, we plan to investigate in-
cremental techniques for recomputing EAF semantics after
performing updates consisting of changes to the AF compo-
nent or to the sets of epistemic constraints.
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