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Abstract

The ability to accurately predict the trajectory of surround-
ing vehicles is a critical hurdle to overcome on the journey
to fully autonomous vehicles. To address this challenge, we
pioneer a novel behavior-aware trajectory prediction model
(BAT) that incorporates insights and findings from traffic psy-
chology, human behavior, and decision-making. Our model
consists of behavior-aware, interaction-aware, priority-aware,
and position-aware modules that perceive and understand the
underlying interactions and account for uncertainty and vari-
ability in prediction, enabling higher-level learning and flex-
ibility without rigid categorization of driving behavior. Im-
portantly, this approach eliminates the need for manual la-
beling in the training process and addresses the challenges
of non-continuous behavior labeling and the selection of ap-
propriate time windows. We evaluate BAT’s performance
across the Next Generation Simulation (NGSIM), Highway
Drone (HighD), Roundabout Drone (RounD), and Macao
Connected Autonomous Driving (MoCAD) datasets, show-
casing its superiority over prevailing state-of-the-art (SOTA)
benchmarks in terms of prediction accuracy and efficiency.
Remarkably, even when trained on reduced portions of the
training data (25%), our model outperforms most of the base-
lines, demonstrating its robustness and efficiency in predict-
ing vehicle trajectories and the potential to reduce the amount
of data required to train autonomous vehicles, especially in
corner cases. In conclusion, the behavior-aware model rep-
resents a significant advancement in the development of au-
tonomous vehicles capable of predicting trajectories with the
same level of proficiency as human drivers. The project page
is available on our GitHub.

Introduction
Recent advancements in autonomous driving (AD) have
been remarkable. Nonetheless, as we move towards the
commercialization of high-level AD technology, challenges
abound. One of the most significant barriers is equipping
autonomous vehicles (AVs) with the ability to anticipate the
trajectory of nearby vehicles in intricate situations as skill-
fully as humans.

*Authors contributed equally; †Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An overview of our proposed behavior-aware pool-
ing mechanism and the classical pooling mechanism. Left:
Modeling the vehicle using polar coordinates. Right: Mod-
eling the vehicle using fixed-size grids and representing the
position in Cartesian coordinates.

Driving, for humans, necessitates continuous monitoring
of the current states of surrounding vehicles and forecasting
their future states before actions like acceleration or overtak-
ing. These states, predominantly determined by trajectories,
form the bedrock of safe driving and collision prevention.
This demands a keen assessment of the interaction among
vehicles and an unbiased grasp of their behavior, in line
with traffic regulations and accumulated driving experience
(Müller, Risto, and Emmenegger 2016).

In our quest to enhance the trajectory prediction capabil-
ities of AVs, mimicking human-like comprehension and re-
sponse to surrounding scenarios might be a breakthrough.
As highlighted in (Schwarting et al. 2019; Wang et al.
2022a), accounting for the behaviors of other drivers in the
decision-making processes of AVs can potentially result in
enhanced driving performance. With this understanding, we
advocate that a deeper dive into driver behavior can signifi-
cantly uplift trajectory prediction for AVs.

Previous investigations have posited that there exists a
certain relationship between different drivers’ behaviors and
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their driving performance (Toledo, Musicant, and Lotan
2008; Chandra et al. 2020; Xie et al. 2020). When con-
fronted with the prospect of another vehicle attempting to
overtake, aggressive drivers may accelerate to impede the
overtaking vehicle, while cautious drivers may reduce their
speed slightly to facilitate safe passing. In addition, driver
behavior on the road tends to exhibit a degree of predictabil-
ity, persistence, and consistency (Hang, Lv, and Chen 2022;
Schwarting et al. 2019). For example, an individual who has
recently violated the speed limit is likely to continue driv-
ing at high speeds as long as circumstances allow, while
cautious drivers maintain their conservative driving strategy.
These stability and repetition characteristics make it possi-
ble to predict and anticipate the behavior of other drivers.

In addition, humans naturally perceive their surroundings
in relative terms, especially when it involves spatial un-
derstanding. This intrinsic way of processing spatial data
based on relative positioning and orientation often does not
align with the fixed Cartesian coordinates commonly used in
many predictive models. However, polar coordinates, which
detail a point’s position based on its distance from a ref-
erence and the angle from a reference direction, echo this
human-centric perception. When driving, humans think in
terms like ”slightly ahead and to the right” rather than spe-
cific Cartesian coordinates. Adopting this perspective, our
pioneering pooling mechanism, as illustrated in Fig.1, cap-
tures vehicle positions using polar coordinates, offering a
more intuitive representation especially pertinent for trajec-
tory prediction in AVs.

Despite extensive research in AD trajectory prediction,
significant gaps remain. To bridge these, we’ve combined in-
sights from human behavior and decision-making to design
an innovative behavior-aware trajectory prediction model. In
summary, our work’s principal contributions are:

• We present a novel dynamic geometric graph approach
that eliminates the need for manual labeling during train-
ing. This method addresses the challenges of labeling
non-continuous behaviors and selecting appropriate time
windows, while effectively capturing continuous driving
behavior. Inspired by traffic psychology, decision theory,
and driving dynamics, our model incorporates centrality
metrics and behavior-aware criteria to provide enhanced
flexibility and accuracy in representing driving behavior.
To the best of our knowledge, this is the first attempt
to incorporate continuous representation of behavioral
knowledge in trajectory prediction for AVs.

• We propose a novel pooling mechanism, aligned with
human observational instincts, that extracts vehicle po-
sitions in polar coordinates. It simplifies the represen-
tation of direction and distance in Cartesian coordinates,
accounts for road curvature, and allows modeling in com-
plex scenarios such as roundabouts and intersections.

• We introduce a new Macao Connected Autonomous
Driving (MoCAD) dataset, sourced from a L5 au-
tonomous bus with over 300 hours across campus and
busy urban routes. Characterized by its unique right-
hand-drive system, MoCAD, set to be publicly avail-
able, is pivotal for research in right-hand-drive dynamics

and enhancing trajectory prediction models.

• Our model significantly outperforms the SOTA base-
line models when tested on the NGSIM, HighD, RounD,
and MoCAD datasets, respectively. Remarkably, it main-
tains impressive performance even when trained on only
25.0% of the dataset, demonstrating exceptional robust-
ness and adaptability in various traffic scenarios, includ-
ing highways, roundabouts, and busy urban locales.

Related Work

A plethora of research has been conducted in the realm of
trajectory prediction, with a diverse array of approaches be-
ing proposed. These approaches can be broadly classified
into three categories: physics-based, statistics-based, and
deep learning-based approaches.

Physics-based Approaches. These approaches are pri-
marily divided into kinetic and kinematic models (Lin, Ul-
soy, and LeBlanc 2000). They use principles from physics
and mechanics, taking into account the current state of the
vehicle, such as speed and steering angle, to make predic-
tions (Wong et al. 2022). Despite their interpretability and
computational efficiency, these methods often exhibit lower
prediction accuracy compared to SOTA techniques (Huang
et al. 2022).

Statistics-based Approaches. In contrast, statistical-
based approaches, both parametric and non-parametric, de-
scribe predicted trajectories using predefined maneuver dis-
tributions, such as Gaussian processes, hidden Markov mod-
els, dynamic Bayesian networks, and support vector ma-
chines (Wang et al. 2021; Li et al. 2023b). These meth-
ods tend to offer more refined and sophisticated model
structures, resulting in better prediction performance than
physics-based approaches. Their experiments on real-world
data showed significant improvements over baselines.

Deep Learning-based Approaches. The surge in pop-
ularity of deep learning has led to extensive research
in trajectory prediction for AVs. Recurrent Neural Net-
works (RNNs), Convolutional Neural Networks (CNNs),
and Transformers (Vaswani et al. 2017) are among the
most widely used approaches, each offering unique model-
ing considerations and focuses (Ye, Cao, and Chen 2021;
Liang et al. 2020). RNNs, such as Long Short-Term Mem-
ory (LSTM), are often used to process time-series trajec-
tory data, while CNNs excel at extracting spatial features
from inputs such as bird’s-eye or raster images. Some re-
searchers combine RNNs and CNNs to integrate both tem-
poral and spatial features into their models (Liao et al. 2023;
Huang, Mo, and Lv 2022; Bhattacharyya, Huang, and Czar-
necki 2023; Zhang and Li 2022). Transformers, with their
renowned success in many domains, have also demonstrated
superior performance in trajectory prediction (Li et al. 2022;
Zeng et al. 2023; Li et al. 2023a). Compared to physics-
based and statistics-based methods, these data-driven ap-
proaches have generally demonstrated superior prediction
performance, especially for tasks requiring long-term pre-
dictions (beyond 3 seconds).
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Problem Formulation
The trajectory prediction task can be formulated as follows.
At each time t, we predict the multimodal trajectories of the
ego vehicle, based on historical observations of both the ego
vehicle and its surrounding vehicles (agents). Given the in-
puts of historical observations X , the model aims to predict
a multi-modal distribution over future trajectories of the ego
vehicle P (Y |X).

Inputs and Outputs
The inputs X to our model are the historical trajectories over
a fixed time horizon th of both the ego vehicle (subscript 0)
and all the surrounding vehicles (subscripts 1 to n):

Xt−th:t
i =

{
pt−th:t
i

}
, ∀i ∈ [0, n] (1)

where pt−th:t
0:n denotes the 2D position coordinates.

The output of the model is a probability distribution over
the future trajectory of the ego vehicle during the prediction
horizon tf :

Y = Y
t+1:t+tf
0 = {yt+1

0 , yt+2
0 , . . . , y

t+tf−1
0 , y

t+tf
0 } (2)

As aforementioned, we define the motion of the vehicles
in Polar coordinates (shown in Fig.1) rather than the Carte-
sian coordinates. In the Polar coordinate, we assume the ori-
gin O of the stationary frame of reference is fixed at the cen-
ter of the ego vehicle at time t. Our inputs and outputs can
be further written as (take the ego vehicle as an example, for
convenience, assume input at instant t and output at instant
t+ 1):

xt
0 = {ρt0, θt0} (3)

and
yt+1
0 = {ρt+1

0 , θt+1
0 } (4)

where ρ and θ are the distance and angle of the vehicle.
The transformation relationship between Cartesian and

Polar coordinate systems is illustrated below. Given a ve-
hicle’s position history in lateral coordinate xtk

i and longitu-
dinal coordinate ytki at time tk, the distance ρtki and vehicle
orientation θtki for Polar representation can be computed as
the following formula:

ρtki =

√(
xtk
i − xt

0

)2
+
(
ytki − yt0

)2
θtki = arctan

(
y
tk
i −yt

0

x
tk
i −xt

0

) (5)

where xt
0 and yt0 are the lateral and longitudinal coordinates

of the ego vehicle (defined as the origin O) at time t, respec-
tively. ρtki is the Polar diameter relative to the origin O, and
θtki is the orientation of the ith vehicle at time tk.

Multi-modal Probabilistic Maneuver Prediction
To account for the uncertainty and variability in the predic-
tion, the multimodal prediction framework considers multi-
ple potential maneuvers that the ego vehicle could perform
and estimates the probability of each maneuver based on
previous observations. This not only provides multiple pre-
dictions but also quantifies the confidence level associated

with each prediction. This is particularly beneficial for in-
formed decision-making in response to anticipated maneu-
vers, as it allows AVs to account for the uncertainty inherent
in the predictions.

Proposed Model
Fig. 2 shows the architecture of BAT, which is upon the
encoder-decoder framework with four modules to capture
different aspects of behaviors and interactions between dif-
ferent agents, including behavior-aware, interaction-aware,
priority-aware, and position-aware modules. The project
page is available on our Github1.

Behavior-aware Module
The complex and dynamic nature of traffic scenarios
presents significant challenges in interpreting and categoriz-
ing driver behavior. Unlike previous studies that categorize
driver behavior into finite and human-defined classifications,
we present a more flexible and adaptable solution, namely
the behavior-aware module, by avoiding discrete behavior
categories in favor of a continuous representation of behav-
ioral information. Our behavior-aware module is motivated
by the multi-policy decision-making (MPDM) framework
for human drivers (Markkula et al. 2020) and integrates traf-
fic psychology (Toghi et al. 2022) using dynamic geometric
graphs (DGGs) (Dall and Christensen 2002) to model and
evaluate human driving behavior.

Dynamic Geometric Graphs At time t, the graph Gt can
be given as follow:

Gt = {V t, Et} (6)

where V t = {vt0, vt1 . . . , vtn} is the set of nodes, vti is the i-
th node representing the i-th vehicle, Et = {et0, et1 . . . , etn}
is the set of undirected edges, and eti is the edge between
the node vti and other vehicles that have potential influences
on it. It is assumed that the interaction only exists when the
nodes vi and vj are in close proximity to one another, or
formally, the shortest distance between them, d

(
vti , v

t
j

)
, is

less than or equal to the predetermined distance threshold r.
Therefore, we define

eti = {vtivtj | (j ∈ N t
i )} (7)

where N t
i =

{
vtj ∈ V t\ {vti} | d

(
vti , v

t
j

)
≤ r, i ̸= j

}
.

Correspondingly, the symmetrical adjacency matrix At of
Gt can be given as:

At(i, j) =

{
d
(
vti , v

t
j

)
if d

(
vti , v

t
j

)
≤ r, i ̸= j

0 otherwise
(8)

Centrality Measures To more accurately capture the po-
tential interactions between the observed traffic agents, we
use centrality measures (degree, closeness, and eigenvector
centrality measures) (Freeman 1978) as prior knowledge to
portray driving behavior in DGGs.

1https://github.com/Petrichor625/BATraj-Behavior-aware-
Model
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Figure 2: Architecture of behavior-aware trajectory prediction model.

Degree Centrality. Degree centrality is characterized by
the count of immediate connections a node has with other
nodes within the graph. This concept intuitively suggests
that a traffic agent with more connections is both more sus-
ceptible to the influences of other agents and more influential
in shaping their actions. Formally,

J t
i (D) =

∣∣N t
i

∣∣+ J t−1
i (D) (9)

where |N t
i | is the total number of elements in N t

i at time t.
Closeness Centrality. We propose that the closer a ve-

hicle is to its surroundings, the higher its likelihood of in-
teracting with adjacent vehicles. This idea is encapsulated
by the closeness centrality metric, which gauges the ease of
interaction and accessibility between a vehicle and its neigh-
boring vehicles. Closeness centrality is determined using the
shortest paths between the vehicle (node) and other vehicles
in the traffic graph. This is achieved by summing the inverse
of their distances. Formally,

J t
i (C) =

|N t
i | − 1∑

∀vt
j∈N t

i
d
(
vti , v

t
j

) (10)

Eigenvector Centrality. In the context of understanding
driver behavior, a vehicle’s eigenvector centrality takes into
account both its interactions with nearby vehicles and the
influence of those interactions. Specifically, this metric in-
tegrates the vehicle’s number of connections and the weight
of the influence of connected vehicles. This helps to identify
influential vehicles in a traffic context and their potential im-
pact on other drivers. Formally,

J t
i (E) =

∑
∀vt

j∈N t
i
d
(
vti , v

t
j

)
λ

(11)

where λ is the eigenvalue. In addition, the Perron-Frobenius
theorem states that for a non-negative matrix (such as the ad-
jacency matrix in our case), there exists a positive eigenvec-
tor solution for the greatest eigenvalue of the matrix (Pillai,

Suel, and Cha 2005). This means that the eigenvector corre-
sponding to the greatest eigenvalue of the adjacency matrix
can be used to compute the eigenvector centrality measure
of the nodes in the graph.

Behavior-aware Criterion The behavior-aware criterion
is devised to mirror human-like trajectory predictions by
leveraging the analytical properties of centrality measures.
This aids in detecting and comprehending human driving
behavior. By doing so, it removes the necessity for manual
labeling, addressing issues like labeling non-continuous be-
haviors and choosing optimal time frames. Furthermore, this
criterion effectively encapsulates continuous driving behav-
iors. Incorporating this with the Behavior Likelihood Esti-
mate (BLE) and Behavior Intensity Estimate (BIE) refines
prediction accuracy and dependability in fluctuating and in-
tricate traffic conditions.

Behavior Likelihood Estimate. The BLE criterion quan-
tifies behavior probabilities using time-based row deriva-
tives, even without explicit behavior classifications. A higher
probability of a behavior is indicated by prominent row
derivatives and local extrema. For vti at time t, the BLE con-
sidering all three centrality measures is as follows:

It
i =

[∣∣∣∣∂J t
i (D)

∂t

∣∣∣∣ , ∣∣∣∣∂J t
i (C)

∂t

∣∣∣∣ , ∣∣∣∣∂J t
i (E)

∂t

∣∣∣∣]T (12)

where |·| denotes the absolute value operator.
Behavior Intensity Estimate. The BIE quantifies the po-

tential impact intensity of a driving behavior on surrounding
vehicles. It takes into account the duration of the behavior,
with longer-lasting behaviors assumed to have a greater im-
pact than those that are brief. The BIE for the node vti at time
t is built on top of BLE, and is defined as:

Lt
i =

∣∣∣∣∂It
i

∂t

∣∣∣∣ = [∣∣∣∣∂2J t
i (D)

∂2t

∣∣∣∣ , ∣∣∣∣∂2J t
i (C)

∂2t

∣∣∣∣ , ∣∣∣∣∂2J t
i (E)

∂2t

∣∣∣∣]T
(13)
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In summary, the BIE in conjunction with the BLE as prior
knowledge provides a comprehensive understanding of indi-
vidual driver behavior. This is achieved by segmenting each
traffic scene into behavior-aware regions centered around
observed agents of the ego vehicle. For these regions, behav-
ioral features are extracted from the traffic agents, includ-
ing contextual information (as shown in Fig. 1). These fea-
tures are then embedded and encoded frame by frame by an
LSTM network to generate high-dimensional behavior vec-
tors. By combining insights into the probability and intensity
of the behavior, the overall impact on the surrounding traffic
is determined. This infusion of human-like reasoning aligns
with human perception and cognition, improving the accu-
racy and efficiency of trajectory prediction for AVs.

Interaction-aware Module
To capture and assemble social interactions between the ego
vehicle and its surrounding agents, we introduce an innova-
tive interaction-aware pooling mechanism. This module in-
cludes a hierarchical LSTM encoder and a position encoding
layer. The LSTM encoder processes recent historical trajec-
tories for both ego and observed agents, updating hidden fea-
tures with shared LSTM weights frame by frame. The fea-
tures are then represented in polar coordinates and mapped
through the position encoding layer to capture higher-order
interactive information.

Priority-aware Module
The priority-aware module uses an attention mechanism
layer to compute dynamic attention weight vectors for sur-
rounding agents based on their higher-order interactive in-
formation. This attention mechanism (Vaswani et al. 2017)
assigns weights that indicate their importance in predict-
ing the ego vehicle’s trajectory. These weight vectors ex-
press the relative importance of the agents and are used to
weight higher-order interaction data in later stages. They
are then fed into a multi-layer perceptron (MLP) to produce
high-dimensional aggregate pooling vectors through a max-
pooling layer.

Position-aware Module
To further enhance the modeling of temporal dependencies
and spatial relationships, this module employs a dedicated
LSTM network to encode and learn the dynamic position
of the ego vehicle. The historical trajectory of the ego vehi-
cle is also represented in polar coordinates and subsequently
embedded using an LSTM. This refinement enhances the
model’s ability to detail the agent’s trajectory.

Decoder
The position vector of the ego vehicle is integrated with ad-
ditional information about the hidden pooling vectors and
the high-dimensional behavior vector. This composite un-
dergoes embedding by a softmax activation function (behav-
ior embedding), followed by processing by an MLP (behav-
ior encoding). Finally, the processed input is analyzed by
the LSTM decoder, which generates a probability distribu-
tion over the possible future trajectories of the ego vehicle.

Experiments
We evaluate the effectiveness of our model using four
datasets: NGSIM (Deo and Trivedi 2018), HighD (Krajew-
ski et al. 2018), RounD (Krajewski et al. 2020), and Mo-
CAD. These datasets, sourced from varied and intricate real-
world traffic situations like highways, roundabouts, and ur-
ban locales, serve as a comprehensive testing ground. To
gauge our model’s precision, we employed the Root Mean
Square Error (RMSE) metric.

Experimental Setup
These data sets were partitioned into training, validation,
and test sets using standard sampling. We refer to the com-
plete test set as the overall test set. The trajectories for the
NGSIM, HighD, and MoCAD datasets were divided into 8-
second intervals. The first 3 seconds served as the trajectory
history (th = 3) for input, and the following 5 seconds repre-
sented the ground truth (tf = 5) for output. For the RounD
dataset, the trajectories were divided into 6-second chunks
with th = 2 and tf = 4. To delve deeper into our model’s
performance, the NGISM dataset was further split based
on distinct vehicular maneuvers, including no lane-change
(keep), on-ramp lane merging (merge), right lane-change
(right), and left lane-change (left). This subset, termed the
maneuver-based test set, allows for a granular examination
of our model’s capabilities across different traffic actions.

Training and Implementation Details
Our model is trained to converge using an NVIDIA A100
40GB GPU. We introduce the Negative Log-Likelihood cri-
terion as a complement to the RMSE in the loss function.

Experimental Results
We evaluate BAT against various SOTA trajectory predic-
tion methods from 2016 to 2023. These include well-known
benchmarks such as S-LSTM (Alahi et al. 2016), S-GAN
(Gupta et al. 2018), CS-LSTM (Deo and Trivedi 2018), S-
GAN (Gupta et al. 2018), MATF-GAN (Zhao et al. 2019),
NLS (Messaoud et al. 2019), DN-IRL (Fernando et al.
2019), DRBP(Gao et al. 2023), WSiP (Wang et al. 2023),
CF-LSTM (Xie et al. 2021), MHA (Messaoud et al. 2021),
MATH (Hasan et al. 2021), HMNet (Xue et al. 2021), EA-
Net (Cai et al. 2021), TS-GAN (Wang et al. 2022b), STDAN
(Chen et al. 2022b), and iNATran (Chen et al. 2022a). The
results, displayed in Table 1, highlight our model’s sig-
nificant advancements in trajectory prediction over current
SOTA baselines. Using RMSE as the evaluation metric, our
model surpasses recent baselines (2021-2023) by 2.6% for
short-term predictions (1s-3s) and reduces prediction error
by 56.7% for long-term predictions (4s-5s) on the NGSIM
dataset. On the HighD dataset, known for its superior data
volume and precision, our model significantly outperforms
most baselines, showing improvements of 62.7% and 43.6%
compared to STDAN and iNATran, respectively, over a 5-
second horizon.

The strengths of BAT become more evident in complex
scenarios, like urban streets and unstructured roads (RounD
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Dataset Model
Prediction Horizon (s)

1 2 3 4 5

NGSIM

S-LSTM 0.65 1.31 2.16 3.25 4.55
S-GAN 0.57 1.32 2.22 3.26 4.40

CS-LSTM 0.61 1.27 2.09 3.10 4.37
MATF-GAN 0.66 1.34 2.08 2.97 4.13

NLS 0.56 1.22 2.02 3.03 4.30
DRBP 1.18 2.83 4.22 5.82 -

DN-IRL 0.54 1.02 1.91 2.43 3.76
WSiP 0.56 1.23 2.05 3.08 4.34

CF-LSTM 0.55 1.10 1.78 2.73 3.82
MHA 0.41 1.01 1.74 2.67 3.83

HMNet 0.50 1.13 1.89 2.85 4.04
TS-GAN 0.60 1.24 1.95 2.78 3.72
STDAN 0.39 0.96 1.61 2.56 3.67

BAT (25%) 0.31 0.85 1.65 2.69 3.87
BAT 0.23 0.81 1.54 2.52 3.62

HighD

S-LSTM 0.22 0.62 1.27 2.15 3.41
S-GAN 0.30 0.78 1.46 2.34 3.41
WSiP 0.20 0.60 1.21 2.07 3.14

CS-LSTM 0.22 0.61 1.24 2.10 3.27
MHA 0.19 0.55 1.10 1.84 2.78
NLS 0.20 0.57 1.14 1.90 2.91

DRBP 0.41 0.79 1.11 1.40 -
EA-Net 0.15 0.26 0.43 0.78 1.32

CF-LSTM 0.18 0.42 1.07 1.72 2.44
STDAN 0.19 0.27 0.48 0.91 1.66
iNATran 0.04 0.05 0.21 0.54 1.10

BAT (25%) 0.14 0.34 0.65 0.89 1.27
BAT 0.08 0.14 0.20 0.44 0.62

RounD

S-LSTM 0.94 1.82 3.43 5.21 -
S-GAN 0.72 1.57 3.01 4.78 -

CS-LSTM 0.71 1.21 2.09 3.92 -
MATH 0.38 0.80 1.76 3.08 -
MHA 0.62 0.98 1.88 3.65 -
NLS 0.62 0.96 1.91 3.48 -
WSiP 0.52 0.99 1.88 3.07 -

CF-LSTM 0.51 0.87 1.79 3.14 -
STDAN 0.35 0.77 1.74 2.92 -

BAT (25%) 0.32 0.72 1.99 3.12 -
BAT 0.23 0.55 1.43 2.46 -

MoCAD

S-LSTM 1.73 2.46 3.39 4.01 4.93
S-GAN 1.69 2.25 3.30 3.89 4.69

CS-LSTM 1.45 1.98 2.94 3.56 4.49
MHA 1.25 1.48 2.57 3.22 4.20
NLS 0.96 1.27 2.08 2.86 3.93
WSiP 0.70 0.87 1.70 2.56 3.47

CF-LSTM 0.72 0.91 1.73 2.59 3.44
STDAN 0.62 0.85 1.62 2.51 3.32

BAT (25%) 0.65 0.99 1.89 2.81 3.58
BAT 0.35 0.74 1.39 2.19 2.88

Table 1: Evaluation results for BAT and the baselines in the
overall test set over a different horizon. Note: RMSE (m)
is the evaluation metric, where lower values indicate better
performance, with some not specifying (’-’). Values in bold
represent the best performance in each category.

and MoCAD datasets). Here, our model consistently sur-
passes current SOTA baselines, with accuracy gains between
17.8%-75.5% on RounD and 12.7%-79.8% on MoCAD.
Such improvements underscore the significance of factoring
in driving behavior and our relative distance pooling mech-
anism, especially in dense traffic scenarios. For scalability

Dataset Model
Prediction Horizon (s)

1 2 3 4 5

keep

S-LSTM 0.35 1.01 1.81 2.82 4.15
S-GAN 0.36 1.01 1.81 2.83 4.15

CS-LSTM 0.34 0.98 1.75 2.77 4.06
MATF-GAN 0.37 1.11 1.74 2.66 3.91

WSiP 0.32 0.89 1.58 2.51 3.59
HMNet 0.31 0.83 1.56 2.51 3.68
STDAN 0.28 0.85 1.52 2.53 3.49

BAT (25%) 0.28 0.86 1.54 2.52 3.73
BAT 0.23 0.81 1.49 2.44 3.56

merge

S-LSTM 0.81 1.31 2.51 4.01 5.78
S-GAN 0.71 1.32 2.53 4.11 5.97

CS-LSTM 0.61 1.34 2.58 4.12 5.94
MATF-GAN 0.53 1.41 2.56 3.97 5.52

WSiP 0.40 1.18 2.41 3.72 5.16
HMNet 0.34 1.17 2.32 3.63 5.20
STDAN 0.28 1.19 2.21 3.67 4.95

BAT (25%) 0.31 0.95 1.95 3.31 4.98
BAT 0.25 0.89 1.83 3.04 4.45

left

S-LSTM 0.77 1.68 3.04 4.67 6.59
S-GAN 0.66 1.68 3.11 4.85 6.8

CS-LSTM 0.54 1.63 3.01 4.71 6.63
MATF-GAN 0.61 1.72 3.02 4.62 6.34

WSiP 0.41 1.46 2.82 4.42 6.22
HMNet 0.41 1.31 2.87 4.47 6.33
STDAN 0.35 1.33 2.84 4.51 5.97

BAT (25%) 0.43 1.24 2.43 4.01 5.91
BAT 0.33 1.07 2.24 3.73 5.51

right

S-LSTM 0.69 1.97 3.81 6.17 9.09
S-GAN 0.72 1.97 3.91 6.32 9.23

CS-LSTM 0.61 2.01 3.97 6.48 9.48
MATF-GAN 0.56 1.88 3.90 6.07 9.01

WSiP 0.52 1.61 3.60 5.78 8.45
HMNet 0.49 1.62 3.47 5.87 8.59
STDAN 0.38 1.49 3.46 5.87 7.93

BAT (25%) 0.47 1.41 3.09 5.19 7.87
BAT 0.31 1.36 2.96 5.15 6.78

Table 2: Evaluation results for the proposed model and the
baselines in the maneuver-based test set for NGSIM dataset.

testing, even when our model was trained on just 25% of
the training data, it still managed to outperform most base-
lines, indicating a potential reduction in data needs for train-
ing AVs in challenging contexts.

We also conducted tests on the maneuver-based test set,
as detailed in Table 2. Specifically, in the merge and right
test subsets, our model achieves significantly lower RMSE
values than the SOTA baselines, demonstrating an improve-
ment of at least 10.1% for a prediction horizon of 5 seconds,
which could significantly mitigate the risk of traffic acci-
dents. Moreover, our model shows remarkable improvement
in the keep and left test subsets, highlighting its robustness
and effectiveness in accurately predicting future vehicle tra-
jectories in various driving scenarios and maneuvers.

Overall, our findings affirm our model’s capability and ef-
ficiency in predicting vehicle trajectories for AVs.
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Figure 3: Visualizations and heat maps selected from the
NGSIM (a-b) and RounD (c-d) datasets. The target vehicle is
depicted in orange, while its surrounding vehicles are shown
in blue. The darkness of the blue color indicates the higher
importance weight of the surrounding vehicle.

Ablation Studies
Table 3 presents an analysis of four critical components:
polar coordinates, behavior-aware, interaction-aware, and
priority-aware modules. We tested five models: Model
A (using Cartesian coordinates), Model B (excluding
the behavior-aware module), Model C (excluding the
interaction-aware module), Model D (excluding the priority-
aware module), and Model E (with all components).

On evaluating against the NGSIM and RounD datasets,
all stripped-down versions (A-D) underperformed compared
to the comprehensive Model E. Notably, the integration of
interaction-aware and priority-aware modules significantly
boosted performance, underlining their importance in en-
hancing prediction accuracy.

Dataset Time (s)
Model (∆Method E)

A B C D E

NGSIM

1 0.27 0.30 0.27 0.28 0.23
2 0.86 0.89 0.85 0.87 0.81
3 1.63 1.68 1.60 1.63 1.54
4 2.65 2.68 2.62 2.64 2.52
5 4.02 4.08 3.97 3.97 3.62

RounD

1 0.76 0.55 0.44 0.35 0.23
2 0.94 0.83 0.76 0.72 0.55
3 1.87 1.72 1.63 1.54 1.43
4 3.02 2.82 2.76 2.68 2.46

Table 3: Ablation results for different models on NGSIM
and RounD datasets (Evaluation metric: RMSE (m)).

The behavior-aware module’s inclusion significantly en-
hanced performance by capturing dynamic vehicular in-

teractions, vital for accurate trajectory prediction. By fac-
toring in surrounding vehicles’ behavior, BAT predicts the
ego vehicle’s trajectory more insightfully. This mirrors
human decision-making, where actions and intentions of
other agents, including vehicles, shape trajectory predic-
tions (Baron 2000). Furthermore, adopting the polar coor-
dinate system in Model C outperformed the Cartesian ap-
proach, especially in roundabout environments like RounD.
This aligns with studies on human perception, suggesting
people process goal-relevant information distinctively (Todd
and Gigerenzer 2000). The polar system better reflects hu-
man cognition of spatial vehicular relationships, emphasiz-
ing the significance of both behavioral and spatial consider-
ations in trajectory prediction.

Intuition and Interpretability Analysis
To further underscore the prowess of BAT, we visually dis-
sect its prediction outcomes across diverse scenarios in Fig.
3. For the sake of clarity, we spotlight solely the trajectories
deemed most probable for the ego vehicle in each context.
We meticulously chose two demanding driving situations:
transitioning into the right lane (Fig. 3 (a-b)) and maneuver-
ing through a roundabout (Fig.3 (c-d)). Intriguingly, the heat
maps vividly unveil a direct relationship between the prox-
imity of the ego to neighboring vehicles and their respec-
tive significance. This exposes pronounced social interplay
among the nearby agents. In Fig. 3 (a), the bottom-most ve-
hicle with the red circle exhibits friendly driving behavior,
intuitively creating ample space for the ego vehicle’s lane
transition. On the flip side, the vehicle with the red circle
in Fig. 3 (b) manifests aggressive driving tendencies, poten-
tially accelerating to impede the ego vehicle’s lane merge.
Herein lies the genius of BAT’s behavior-aware module: it
discerns driver personas, predicting the ego vehicle’s in-
ability to seamlessly merge, aligning impeccably with the
ground truth. Conversely, models bereft of this driving be-
havior consideration falter, such as Stdan and WSiP, deviat-
ing significantly from the actual trajectory.

In addition, BAT captures the influence of agents even
from non-adjacent lanes, attributing this to their distinct
driving behavior—a facet frequently sidestepped in conven-
tional studies. To sum up, BAT doesn’t just predict; it ob-
serves, interprets, and decides like a human. By mirroring
human decision-making, BAT offers a promising leap to-
ward autonomous driving that’s both accurate and reliable.

Conclusion
Predicting the trajectories of surrounding vehicles with a
high degree of accuracy is a fundamental challenge that
must be addressed in the quest for full AVs. To address
this challenge, we propose a behavior-aware modular model
with four components: behavior-aware, interaction-aware,
priority-aware, and position-aware modules. Our model out-
performs current SOTA baselines in terms of prediction ac-
curacy and efficiency on the NGSIM, HighD, RounD, and
MoCAD datasets, even when trained on 25% training set,
demonstrating its robustness, applicability, and potential to
reduce training data requirements for AVs in challenging or
unusual situations such as corner cases, roundabouts.
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