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Abstract

In recent years, the discovery of brain effective connectiv-
ity (EC) networks through computational analysis of func-
tional magnetic resonance imaging (fMRI) data has gained
prominence in neuroscience and neuroimaging. However,
owing to the influence of diverse factors during data collec-
tion and processing, fMRI data typically exhibit high noise
and limited sample characteristics, consequently leading to
the suboptimal performance of current methods. In this pa-
per, we propose a novel brain effective connectivity discovery
method based on meta-reinforcement learning, called MetaR-
LEC. The method mainly consists of three modules: actor,
critic, and meta-critic. MetaRLEC first employs an encoder-
decoder framework: The encoder utilizing a transformer con-
verts noisy fMRI data into a state embedding, and the de-
coder employing bidirectional LSTM discovers brain region
dependencies from the state and generates actions (EC net-
works). Then, a critic network evaluates these actions, in-
centivizing the actor to learn higher-reward actions amidst
the high-noise setting. Finally, a meta-critic framework fa-
cilitates online learning of historical state-action pairs, inte-
grating an action-value neural network and supplementary
training losses to enhance the model’s adaptability to small-
sample fMRI data. We conduct comprehensive experiments
on both simulated and real-world data to demonstrate the ef-
ficacy of our proposed method.

Introduction
In recent years, the study of brain effective connectivity (EC)
has gained prominence within neuroscience and brain imag-
ing research. EC is defined as the causal influence that one
brain region exerts over another (Friston 2011), and it plays
a pivotal role in neural development and disease analysis (Ji
et al. 2021b). With the ongoing advancement of neuroimag-
ing data, particularly functional magnetic resonance imag-
ing (fMRI), the pursuit of accurate and efficient methods to
discover brain EC networks from such data has become a
prominent focus in this research field.

Over the past few years, there has been a surge in the
development of methods employing fMRI data to discover
brain EC networks. These methods contribute to a deeper
comprehension of the intricate interactions among distinct
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brain regions and their connection to cognitive processes.
These methods can be broadly categorized into two groups:
traditional machine learning-based (ML) methods and deep
learning-based (DL) methods. ML methods (Liu et al. 2022;
Pfarr et al. 2021; Mao et al. 2022; Jiang et al. 2023) typically
employ straightforward models that offer interpretability,
stability, and robustness owing to their dependence on prior
knowledge and assumptions. Nonetheless, these approaches
are vulnerable to noise and encounter challenges when han-
dling temporal data and dynamic processes, as they do not
explicitly account for temporal correlations. In contrast, DL
methods have significant advantages in processing high-
dimensional data and nonlinear information flow, which
have been successfully applied in the study of brain EC, such
as convolutional neural networks (CNNs) (Bagherzadeh,
Shahabi, and Shalbaf 2022; Khan et al. 2023), recurrent neu-
ral network (RNN) (Ji et al. 2021a) and generative adversar-
ial network (GAN) (Liu et al. 2020). These methods usually
have higher accuracy and better scalability.

However, in clinical research, fMRI subjects may experi-
ence interference from their own physiological factors (e.g.,
heartbeat, breathing) and external environmental influences.
As a consequence, fMRI data often exhibit substantial noise
levels, significantly constraining the effectiveness of this ap-
proach. Additionally, owing to the substantial cost associ-
ated with fMRI data collection and processing, the avail-
able sample size of fMRI time series data remains limited.
This scarcity of training data presents a formidable hur-
dle for deep learning models striving to accurately discover
brain EC networks. Therefore, discovering brain EC net-
works from small-sample fMRI time series data with high
noise remains an extremely challenging issue in this field.

Recently, there has been notable progress in the realm of
reinforcement learning (Henderson et al. 2018). This tech-
nique uses an agent to explore the environment by trying dif-
ferent actions and continuously learns and optimizes strate-
gies based on observed rewards or feedback from the envi-
ronment, thus enabling it to adapt to different environmen-
tal noises and perform better. At the same time, the success
of the meta-learning paradigm (Liang et al. 2023) on small
sample problems in many application domains proves its ef-
fectiveness. On the one hand, meta-learning can make use
of knowledge learned from other related tasks to assist in
the learning of the task at hand. On the other hand, meta-
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learning can enhance the learning performance of reinforce-
ment learning through optimization strategies (Gupta et al.
2018), loss functions (Huang et al. 2019), and intrinsic re-
wards (Zheng, Oh, and Singh 2018), enabling agents to use
prior experience to make maximum learning progress to dis-
cover EC from small-sample fMRI data quickly and accu-
rately.

In this paper, we propose a brain EC discovery method
based on meta-reinforcement learning, called MetaRLEC.
The method mainly consists of three modules: actor, critic,
and meta-critic. Specifically, the approach is initiated by
employing an encoder-decoder framework within the actor
network. The encoder employs a transformer to encode the
input high-noise fMRI data into a state embedding, while
the decoder utilizes a bidirectional long short-term mem-
ory (LSTM) to discover brain region dependencies from the
state and generate actions. Subsequently, the critic network
assesses the actions, with the actor honing its ability to take
higher-reward actions to adapt to the high-noise environ-
ment. Finally, the meta-critic framework is engaged for the
online learning of historical state-action pairs, encompass-
ing an action-value neural network and supplementary train-
ing losses to amplify the model’s learning proficiency with
small-sample fMRI data. The proposed method has under-
gone rigorous testing using both simulated and real-world
fMRI data, with experimental results demonstrating certain
performance advantages compared to existing state-of-the-
art methods.

The principal contributions of this paper can be summa-
rized as follows:

• To the best of our knowledge, this is the first work that in-
tegrates meta-reinforcement learning strategies to profi-
ciently discover brain EC from small-sample fMRI data.

• We introduce a novel actor-critic framework for the dis-
covery of brain EC, capable of effectively extracting fea-
tures from high-noise fMRI data.

• We propose a meta-critic framework designed to facil-
itate actor-critic learning, thereby enabling the actor to
achieve optimal learning efficiency and consequently en-
hancing the precision of brain EC discovery.

• Systematic experiments conducted on both simulated and
real fMRI datasets demonstrate that the proposed method
surpasses several state-of-the-art approaches in its perfor-
mance on small-sample fMRI data.

Preliminary and Related Work
Notation and Problem Description
We introduce the notation and subsequently formulate a
problem description for the task of discovering brain EC net-
works.

In this paper, we utilize uppercase letters, i.e., Xi to de-
note the variables of brain regions and use the lowercase let-
ters xi to represent the time series of the brain region Xi.
The length of time series xi is t. We use Pa (xi) to denote
the time series of parent nodes of brain region Xi. Xa → Xb

represent the effects exerted by brain region Xa on brain re-

gion Xb, and Xa ↔ Xb denotes that brain region Xa and
brain region Xb have an effect on each other.

Based on the definition of brain EC, which refers to the
neural influence exerted by one brain region over another,
the EC among brain regions can be seen as directed edges
within a causal graph (a directed graph) where the nodes rep-
resent different brain regions (Sanchez-Romero et al. 2019).
Therefore, the task of learning brain EC can be transformed
into a problem of discovering a causal graph from fMRI
time series data. Let G denote a directed graph and X de-
note the fMRI dataset. Therefore, a brain EC network can
be expressed as a directed graph G =< V,E >, where V is
a set of nodes with each node Xi ∈ V representing a brain
region or region of interest (ROI); and E is a set of arcs with
each arc Xa → Xb ∈ E describing an EC from brain regions
(ROIs) Xa to Xb.

Meta-reinforcement Learning
Meta-reinforcement learning is a promising approach for
tackling few-episode learning regimes. It aims to learn to
adapt quickly to new tasks using the prior experience gained
from multiple related tasks. It focuses on developing strate-
gies for effective learning in complex environments, i.e.,
high noise. Two of the most popular are context-based meth-
ods (Sodhani, Zhang, and Pineau 2021; Kirsch et al. 2022;
Yuan and Lu 2022) and optimization-based methods (Finn,
Abbeel, and Levine 2017; Tang 2022; Bechtle et al. 2021).
Another popular family of approaches uses a neural network
model (NN) to extract some context that will be used to in-
form the policy (Wang and Van Hoof 2022). Context-based
methods can use contextual information from the environ-
ment to optimize decisions but it may require large computa-
tional resources. Optimization-based methods allow knowl-
edge transfer between tasks but it needs a large task family to
train. Our meta-reinforcement learning framework is in the
category of optimization-based methods, but unlike most of
these methods, we are able to meta-learn the loss function
online in parallel to learning a single extrinsic task without
costly offline learning on a task family.

Method
In this section, we present the MetaRLEC method which is
a meta-reinforcement learning based causal structure learn-
ing procedure to discover brain EC from fMRI time series
data. We first give an overview of the proposed model, and
then describe the details of the main components. Finally,
we show the description of MetaRLEC.

MetaRLEC Architecture
The method primarily consists of three modules: actor,
critic, and meta-critic. Specifically, the method begins by
employing an encoder-decoder framework as the actor net-
work. The encoder utilizes the transformer model to encode
the input fMRI data into state embeddings, while the de-
coder employs bidirectional LSTM to discover the causal
relationship among brain regions from these states, generat-
ing actions (brain EC network). Transformer-based encoder
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Figure 1: The architecture of MetaRLEC.

and BiLSTM-based decoder help capture long-term depen-
dencies from high noise fMRI data. Then, the critic network
evaluates the actions and trains the actor to adopt actions
with higher returns. Finally, the meta-critic framework is
employed to learn the historical state-action pairs online.
This framework comprises an action-value neural network
and additional training loss to enhance the learning ability
of the model on small sample fMRI data. The structure of
the proposed MetaRLEC is shown in Figure 1.

Actor

Transformer-based Encoder Given the fMRI time series
with n brain regions Xi (i = 1, ..., n) and t length, the input
training data X can be represented as:

X = (x1, x2, ..., xn)⊤ ∈ Rn×t. (1)

A common way is to use X as input to the network di-
rectly. However, the high noise characteristic of fMRI data
presents a great challenge for general feed-forward neural
networks to capture the underlying causal relationships di-
rectly using X as states. Consequently, incorporating an en-
coder module to preprocess the fMRI data proves benefi-
cial in extracting useful information and finding better brain
EC networks. Therefore, we sample X m times and use an
encoder to extract the state embedding each Xm to state
Senc := {s0, s1, ..., sm}.

For the model design of the encoder, we utilize the trans-
former model, which involves first embedding the inputs via
a linear layer, followed by processing them through multi-
ple identical encoder blocks comprising a multihead self-
attention layer and a feed-forward layer; we posit that mul-
tihead self-attention is well suited for extracting temporal
features from fMRI time series data, as it reduces reliance
on external information and better captures internal corre-
lations within the fMRI data. The encoder block operations

are as follows:

X ′ = Linear(Xm) ∈ Rm×n×h,

Ql = WQX ′l + ϵQ,

Kl = WKX ′l + ϵK ,

Vl = WV X ′l + ϵV ,

(2)

where Xm denotes the embedded input, Linear is a fully
connected linear layer that provides a linear transformation
of the input Xm, h denotes the number of hidden layer nodes
of the fully connected linear layer, and X ′l expresses the l-
th input after dividing the embedding X ′ into the L head
self-attention layer. WQ,WK and WV denote the network
parameters for the self-attention layer, and ϵQ, ϵK and ϵV are
the bias vectors. Then, we can obtain Ql,Kl and Vl, which
denote the query, key, and value vector of the self-attention
layer, respectively. Therefore, the self-attention can be cal-
culated as follows:

Attnl = softmax

(
QlK

T
l√

dKl

)
Vl,

Senc = Concat (Attn1, Attn2, ..., AttnL) ,

(3)

where d denotes the number of elements in the last dimen-
sion of the query, key, and value vector Ql,Kl, and Vl, Attnl
describes the l-th head attention vector. Then, we can collect
all L heads of the self-attention vectors. And obtain the em-
bedded state Senc.

BiLSTM-based Decoder Based on the state Senc learned
by the encoder, we use a decoder to discover the underlying
causal relationships among brain regions. We choose bidi-
rectional long short-term memory (Bi-LSTM) (Zhang et al.
2015) with an attention layer for the decoder since it not
only has a strong ability to capture the dependencies be-
tween time series but can also solve the problems of gra-
dient disappearance and gradient explosion in the process of
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long sequence training. The Bi-LSTM model is made up of
multiple LSTM cells.

The process of the Bi-LSTM model consists of two lay-
ers: the forward layer and the backward layer. Specifically,
the forward layer, from time step 1 to t, updates the long-
term memory and stores the hidden state. Given the encoder
output Senc of the j-th time step sj , the hidden state can be
represented as follows:

−→
Hj = f

(
sjW

(f)
1 +

−−−→
Hj−1W

(f)
2 + bias (f)

)
, (4)

where W
(f)
1 ,W

(f)
2 and bias (f) are parameters of the for-

ward layer and function f denotes the LSTM model. The
process of the backward layer is the same as the process of
the forward layer, except the time step is from t to 1:

←−
Hj = f

(
sjW

(g)
1 +

←−−−
Hj−1W

(g)
2 + bias (g)

)
, (5)

where W
(g)
1 ,W

(g)
2 and bias (g) are parameters of the back-

ward layer. After concatenating the hidden state of both lay-
ers, we obtain the hidden state of the Bi-LSTM. The output
can be represented by the following formula:

Oj =
[−→
Hj ,
←−
Hj

]
W + bias. (6)

We then use a pointer network to generate actions (brain
EC networks) from Oj . We restrict each node to be selected
only once by masking the selected nodes to generate a sparse
brain EC network G.

Critic
For the critic, we use a 3-layer feed-forward neural network
with a ReLU activation function. The input of the critic net-
work is the decoder output (actions) and the rewards. To bet-
ter assess the value of the learning brain EC network, we use
the Bayesian information criterion score (BIC) as the reward
function as follows:

SBIC(G) =
n∑

i=1

 t∑
j=1

log p (xij | Pa (xij) ; θj)−
|θj |
2

log t

 ,

(7)
where θj is the parameter associated with each likelihood,
and |θj | denotes the dimension of the parameter. xij denotes
the data point of brain region Xi at time j. The BIC score
enables us to identify the optimal brain EC that best aligns
with the fMRI time series data, which leads to improved per-
formance of the EC network. Therefore, the reward can be
described as:

reward(G) = −[SBIC(G) + λA(G)], (8)

where λ ≥ 0 is a parameter that controls the sparsity of
brain EC networks and A(G) is the sparse penalty function
as A(G) = ∥G∥1. SBIC denotes the score for the action
(brain EC network). By utilizing three fully connected lay-
ers, the critic network can effectively capture the intricate
relationship between actions and rewards. At the same time,
the output of the critic network provides a loss Lcritic for
the actor that trains actor network to produce more highly
rewarded actions (brain EC networks).

Meta-critic
In this section, we introduce a meta-critic framework to en-
hance the basic EC learning methods. The framework pro-
vides an additional loss to guide the learning process of the
primary actor and critic networks and a meta-critic network
that acts as a higher-level agent that observes the policy and
outcomes of actor and critic models. Based on this observa-
tion, the meta-critic network provides feedback and guides
the algorithm to obtain maximum learning efficiency in high
noise and small sample fMRI data.

In contrast to the primary critic, the meta-critic is trained
in a meta-learning way to expedite the learning process
rather than solely calculating the action-value function. Gen-
erally, the actor is trained by both critic and meta-critic-
provided losses, The critic is trained as usual, and crucially,
the meta-critic is trained online to generate maximum learn-
ing progress in the actor. It is worth noting that the meta-
critic can be effectively learned online within a single task,
which differs from the prevailing meta-learning paradigm.

The input of the meta-critic network is the actor encoder
output (state) and decoder output (action). The basic idea is
similar to the feature extractor in supervised learning, the
actor needs to analyze and extract information from fMRI
time series data for decision-making. We divide this process
into two steps: feature extraction and decision-making (i.e.,
the actor encoder and decoder). The meta-critic network pro-
vides a loss Lmcritic to evaluate the output of both processes
simultaneously as follows.

Lmcritic (dtrn;ϕ) =
1

m

m∑
i=1

fω (si, ai) , (9)

where dtrn is a batch m sampled from fMRI time series data
X , ϕ denotes the parameters of the actor network, and si and
ai denote the state and action, respectively. To minimize un-
necessary computations, we use a 3-layer feed-forward neu-
ral network with a ReLU activation function as fω , which
is similar to the critic network. The higher Lmcritic for the
state and action is, the better the actor is learned.

Then, we give the meta-loss definition as follows, which
aims to measure whether the meta-critic improves the per-
formance of the actor compared to the primary critic.

ϕold =ϕ− η
∂Lcritic (dtrn)

∂ϕ
,

ϕnew =ϕ− η
∂Lcritic (dtrn)

∂ϕ
− η

∂Lmcritic
ω (dtrn)

∂ϕ
,

Lmeta =tanh
(
Lcritic (dval;ϕnew)− Lcritic (dval;ϕold)

)
,

(10)
where η denotes the learning rate. dval are the different
batches sampled from fMRI time series data X , dtrn is
for training and dval is for validation of online learning.
Lcritic denotes the loss provided by the primary critic. The
tanh function ensures that the meta-loss range is always
distributed in (−1, 1) and caps the magnitude of the meta-
gradient. ϕold, ϕnew denotes the parameters of the actor op-
timized only by Lcritic and both two losses, respectively. If
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meta-critic provided a beneficial source of loss, ϕnew should
be a better parameter than ϕ and, in particular, a better pa-
rameter than ϕold.

Estimating EC by MetaRLEC
Above all, the MetaRLEC algorithm mainly consists of three
phases: the initialization phase, meta-training phase, and
meta-online testing phase. The algorithm is formally stated
in Algorithm 1.

In the initialization phase, MetaRLEC performs actor,
critic and meta-critic model initialization and sets some
basic parameters. The optimization process of MetaRLEC
can be seen as a bi-level optimization problem. The meta-
training phase corresponds to inner-level optimization, and
the meta-online testing phase corresponds to outer-level op-
timization. Specifically, in the meta-training phase, for R
outer loops, MetaRLEC first samples a mini-batch dtrn from
X and employs the actor network to generate the state and
action. Then, the algorithm utilizes the critic network to ob-
serve the reward of the action. Finally, MetaRLEC calculates
the basic critic loss and the meta-critic loss from the state,
action and reward and performs the first update on the actor
and critic networks. In the meta-online testing phase, this
algorithm first resamples a batch of fMRI data dval and ob-
tains the corresponding state and action for calculating the
meta-loss. Then, MetaRLEC provides a second update to
the actor network to ensure that the actor network can train
faster and learn a more accurate brain EC network. Finally,
the algorithm outputs the brain EC network with the highest
reward and post processes it by thresholding.

Experiments
To assess the effectiveness of MetaRLEC, we first con-
duct a comparative experiment with other state-of-the-art
methods using simulated fMRI data from known ground-
truth networks. Then, we demonstrate the practical appli-
cation of our proposed method by applying MetaRLEC to
publicly available real fMRI data. The code is available at
https://github.com/layzoom/MetaRLEC.

Data Description
Benchmark Simulation Dataset The benchmark simula-
tion datasets 1 we used are supported by Smith et al. (Smith
et al. 2011), which are generated by dynamic causal models
(DCM). We selected 4 kinds of typical simulation cases to
test the performance of the MetaRLEC algorithm, including
Sim1 (5 nodes, 5 arcs), Sim2 (5 nodes, 7 arcs), Sim3 (10
nodes, 11 arcs), Sim4 (15 nodes, 19 arcs). Each simulation
case consists of 50 subjects, with each session lasting for
600 seconds, closely resembling real-world scenarios. The
time repetition (TR) is set at 3.0 seconds, resulting in a pre-
processed time series length of 200 data points, which can
be considered a relatively small sample size.

Real fMRI Dataset The real fMRI time-series dataset 2

used in this paper is resting-state fMRI data. The resting-

1https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
2https://github.com/shahpreya/MTlnet

Algorithm 1: MetaRLEC
Input: Original fMRI time-series data.
Output: Brain EC network.

1: Initialization:
2: Initialize actor, critic, meta-critic network
3: Parameters of actor encoder and decoder, critic, meta-

critic: ϕen, ϕde, θ and ω.
4: fMRI time-series data X .
5: for R iterations do
6: Meta training:
7: Sample training batch dtrn from X ;
8: Get state by ϕen and select action by ϕde;
9: Observe the reward by eq.8;

10: Calculate the basic critic loss Lcritic and meta-critic
loss Lmcritic by eq.9;

11: Update actorold and critic according to Lcritic only
as ϕold = ϕ− η∇ϕL

critic;
12: Update actornew by Lcritic and Lmcritic as ϕnew =

ϕold − η∇ϕL
mcritic;

13: Online meta testing:
14: Sample testing batch dval from X ;
15: Get state and action by ϕold and ϕnew, respectively;
16: Calculate meta loss by eq.10;
17: Update actor and meta-critic parameters;
18: end for
19: Obtain brain EC network with the highest reward;
20: Post-process;
21: Return: Brain EC network G.

state fMRI data for 23 human subjects are acquired at a TR
is 1.0 seconds, 7 min fMRI sessions for each subject, result-
ing in 421 data points of the fMRI time series. We consider
the following seven regions of interest (ROIs) from the me-
dial temporal lobe, which is referred to in (Shah et al. 2018),
including CA1 (Cornu Ammonis1), CA23DG (Cornu Am-
monis2,3 and Dentate Gyrus), SUB (Subiculum), ERC (En-
torhinal Cortex), BA35 (Brodmann Areas 35), BA36 (Brod-
mann Areas 36) and PHC (Parahippocampal Cortex). We
use the numerical sequence 1 to 7 to represent them respec-
tively.

Baseline Methods
To test and verify the competitiveness of MetaRLEC, we
compare MetaRLEC with the other 8 brain EC learning
methods, including classical machine learning methods and
state-of-the-art deep learning methods which are Patel (Pa-
tel, Bowman, and Rilling 2006), pwLiNGAM (Hyvarinen
2010), lsGC (DSouza et al. 2017), Two-Step (Sanchez-
Romero et al. 2019), EC-RGAN (Ji et al. 2021a), RL-EC (Lu
et al. 2022), CR-VAE (Li, Yu, and Principe 2023), and Dif-
fAN (Sanchez et al. 2023). The parameters of the algorithms
under comparison are selected according to the existing lit-
erature and we fine-tune 10 subjects to select the optimal
parameters. We use the most common graph metrics (Zhang
et al. 2021) to evaluate the performance of those methods,
including Precision, Recall, Structural Hamming Distance
(SHD), and F1 score (F1).
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Data Metrics Methods
Patel pwLiNGAM lsGC Two-Step EC-RGAN RL-EC CR-VAE DiffAN MetaRLEC

Sim1 Precision 0.40±0.09 0.34±0.10 0.36±0.20 0.56±0.16 0.32±0.11 0.35±0.36 0.22±0.09 0.40±0.25 0.62±0.16
Recall 0.60±0.20 0.77±0.21 0.37±0.21 0.73±0.23 0.60±0.27 0.30±0.25 0.41±0.22 0.35±0.18 0.65±0.19
SHD 2.92±1.30 5.35±1.30 4.94±1.65 1.60±1.27 4.86±1.41 3.58±1.30 6.32±1.26 3.40±1.00 2.28±1.03
F1 0.46±0.10 0.47±0.13 0.35±0.17 0.62±0.17 0.40±0.15 0.35±0.28 0.28±0.12 0.40±0.20 0.63±0.17

Sim2 Precision 0.36±0.08 0.24±0.14 0.23±0.18 0.40±0.18 0.41±0.11 0.44±0.30 0.26±0.12 0.46±0.28 0.59±0.24
Recall 0.57±0.19 0.63±0.21 0.37±0.21 0.50±0.21 0.48±0.25 0.22±0.16 0.73±0.18 0.29±0.18 0.55±0.28
SHD 4.04±1.54 5.29±1.74 5.88±1.44 3.74±1.56 5.20±1.39 5.58±1.29 4.68±1.24 5.30±1.55 3.70±2.13
F1 0.46±0.10 0.45±0.14 0.35±0.17 0.49±0.17 0.41±0.17 0.29±0.21 0.45±0.09 0.35±0.22 0.57±0.26

Sim3 Precision 0.28±0.08 0.18±0.03 0.24±0.11 0.44±0.11 0.14±0.02 0.50±0.10 0.12±0.02 0.52±0.18 0.54±0.14
Recall 0.51±0.16 0.72±0.13 0.34±0.16 0.76±0.15 0.82±0.13 0.37±0.12 0.80±0.15 0.36±0.12 0.58±0.16
SHD 10.38±2.76 28.49±3.43 14.78±3.17 6.62±3.06 32.44±2.21 7.02±1.40 33.74±1.92 7.40±1.51 6.32±2.20
F1 0.35±0.07 0.29±0.05 0.27±0.10 0.55±0.12 0.24±0.03 0.42±0.11 0.21±0.03 0.42±0.14 0.56±0.15

Sim4 Precision 0.23±0.07 0.17±0.03 0.21±0.08 0.41±0.07 0.11±0.01 0.50±0.19 0.09±0.01 0.49±0.14 0.51±0.14
Recall 0.40±0.11 0.74±0.10 0.29±0.12 0.68±0.12 0.91±0.05 0.22±0.11 0.80±0.10 0.31±0.10 0.51±0.14
SHD 21.31±4.50 58.10±7.53 26.90±5.66 14.58±3.67 79.86±3.07 15.12±2.13 86.04±2.59 14.34±2.01 13.44±3.41
F1 0.28±0.06 0.27±0.04 0.23±0.07 0.51±0.08 0.20±0.01 0.30±0.13 0.16±0.02 0.38±0.11 0.51±0.14

Table 1: The mean and the standard deviation results of 9 methods on Smith simulated dataset using single subject data.

Figure 2: Averaged performance of 9 algorithms on the
Smith dataset. A: Patel; B: pwLiNGAM; C: lsGC; D: Two-
Step; E: EC-RGAN; F: RL-EC; G: CR-VAE; H: DiffAN; I:
MetaRLEC

Ablation Study
We conduct ablation experiments on transformer-based en-
coder (noTE), BiLSTM-based decoder (noBD), and meta-
critic network (noMC) on the Sim1 dataset. We briefly
demonstrate the results of ablation on F1 metrics (noTE:
0.55±0.13, noBD:0.47±0.21, noMC: 0.44±0.15, MetaR-
LEC: 0.63± 0.17). The meta-critic network has the greatest
impact on the results.

Experimental Results
Results and Discussion
To test the performance of each method on a small sam-
ple size of fMRI data, we run the 8 baseline methods and

Methods Precision Recall SHD F1
Patel 1.58E − 42 1.35E − 02 2.07E − 06 8.04E − 25

pwLiNGAM 1.15E − 58 1.74E − 14 4.48E − 23 3.94E − 27
lsGC 6.10E − 44 2.56E − 27 1.04E − 16 1.08E − 42

Two-Step 2.04E − 08 1.95E − 17 8.65E − 01 6.04E − 01
EC-RGAN 1.10E − 55 1.03E − 08 1.82E − 22 7.29E − 40

RL-EC 1.79E − 04 1.20E − 40 4.88E − 03 3.19E − 26
CR-VAE 4.25E − 76 1.16E − 40 4.24E − 22 2.68E − 41
DiffAN 1.74E − 04 5.58E − 34 1.47E − 02 1.59E − 20

Table 2: T test of MetaRLEC and other 8 methods on Preci-
sion, Recall, SHD, and F1.

MetaRLEC on 4 Smith benchmark simulation datasets in
the experiments. We perform individual analyses on every
subject and present the mean µ and the standard deviation σ
across all subjects. We evaluate these 9 learning methods on
Precision, Recall, SHD and F1. In particular, an algorithm
performs well when it obtains higher values of Precision,
Recall, and F1 and a lower SHD. The results on simulation
datasets are shown in Table 1 and Figure 2. The height of
each bar indicates the mean value and the error bar denotes
the standard deviation. We can see that MetaRLEC achieves
optimal or near-optimal results.

To clearly show the significant differences between these
algorithms, we use the Friedman test and T test to attest to
the significant difference between these algorithms. If the p-
value obtained from the test is less than 0.05, we consider
that a significant difference exists in the corresponding ex-
perimental results. In detail, we first perform the Friedman
test on the results of each method for each subject on sim-
ulated data. The Friedman test indicates a significant differ-
ence between the nine algorithms (p-value < 0.05). Further-
more, we perform the T test on the results of MetaRLEC and
other methods, which are described in Table 2. From Table 1
and 2, we can find the MetaRLEC has significant difference
(better performance) compared to most other methods.

Generally, deep learning methods are capable of extract-
ing deep features from fMRI data, allowing for more ac-
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a Patel b pwLiNGAM c lsGC

f RL-ECd Two-Step e EC-RGAN

g CR-VAE h DiffAN i MetaRLEC

Figure 3: The EC network inferred by 9 methods on real fMRI data. Red lines: important connections between brain regions;
Black lines: incorrect or spurious connections; Blue lines: missing connections.

curate and precise results. In contrast, traditional machine
learning methods often struggle to overcome the inherent
limitations and defects of fMRI data, leading to poorer per-
formance. Overall, the findings suggest that MetaRLEC has
significant potential for applications in small sample and
high noise fMRI data analysis and may provide more reli-
able and accurate insights into brain EC.

Results on Real fMRI Dataset
Different from the simulated data, we do not have the fully
defined ground-truth to exactly assess the performance of
different causal search algorithm methods from real fMRI.
Instead, we have partial knowledge about the presence of
EC between brain regions on the medial temporal lobe from
current work (Sanchez-Romero et al. 2019).

For the real fMRI data, we run MetaRLEC on every in-
dividual subject for the seven medial temporal lobe ROIs
of the left and right hemispheres separately. We define the
EC between two brain regions as actually discovered when
we consider edges that appear in 35% of the 23 individ-
ual subjects (more than 8 subjects). Figure 3 illustrates the
EC networks inferred by 9 methods from the left and right
lobe. In Figure 3 (i), we can see that the EC networks of
the left hemisphere medial temporal lobe are closely simi-
lar to the right and have some differences. These differences
are mainly caused by the connections of CA1, CA23DG,
SUB, ERC, and BA35, 36.

Compared with previous studies (Sanchez-Romero et al.
2019), overall, the EC network of the left hemisphere me-
dial temporal lobe learned by MetaRLEC is similar to the
EC networks estimated by Sanchez-Romero et al. (Sanchez-
Romero et al. 2019) and has some differences. We only
find one-way connections between CA1 and CA23DG
(CA23DG ↔ CA1), SUB and ERC (ERC ↔ SUB),
ERC and PHC (PHC ↔ ERC), and ERC and BA35
(BA35 ↔ ERC). One possible explanation is that the BIC

reward motivates the actor to generate a directed acyclic
graph, which may limit the model’s ability to discover cyclic
dependencies between brain regions.

In addition, as suggested by Lavenex and Amaral
(Lavenex and Amaral 2000), the flow of information from
the medial temporal lobe cortices (BA35, BA36, PHC)
directly into the entorhinal cortex (ERC) and travel to
CA23DG to CA1, this (ERC → CA23DG) is the main
pathway connecting the medial temporal lobe cortices with
the hippocampus. It is worth noting that MetaRLEC infers
the EC ERC → CA23DG in the left hemisphere. How-
ever, we also discovered reversal of some important brain
ECs, such as the one-way connection CA23DG ↔ SUB,
SUB ↔ BA35 and CA1 ↔ BA36. In contrast to other
brain EC estimating methods, MetaRLEC estimates all brain
EC, although some connections were one-way or reversed.
Therefore, the new MetaRLEC method can provide a reli-
able perspective for the analysis of brain EC networks.

Conclusion
Estimating brain EC from high-noise small-sample fMRI
time-series data is a challenging problem in the study of
the brain connectome. In this paper, we propose a novel
EC discovery method based on meta-reinforcement learn-
ing, called MetaRLEC. MetaRLEC first employs an actor to
extract the features of brain regions and discover the brain
EC network. Then, it utilizes a critic to evaluate the brain EC
network and provide feedback. Finally, it leverages meta-
critic to guide the actor to obtain maximum learning effi-
ciency in high noise and small sample fMRI data. Experi-
mental results on both synthetic and real datasets show that
MetaRLEC performs well compared to the state-of-the-art
methods, which shows that the meta-reinforcement learn-
ing approach has great development potential in brain EC
discovery. In the future, we consider extending this work to
learning large-scale brain EC networks.
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