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Abstract

While the question of misspecified objectives has gotten
much attention in recent years, most works in this area pri-
marily focus on the challenges related to the complexity of
the objective specification mechanism (for example, the use
of reward functions). However, the complexity of the objec-
tive specification mechanism is just one of many reasons why
the user may have misspecified their objective. A founda-
tional cause for misspecification that is being overlooked by
these works is the inherent asymmetry in human expectations
about the agent’s behavior and the behavior generated by the
agent for the specified objective. To address this, we pro-
pose a novel formulation for the objective misspecification
problem that builds on the human-aware planning literature,
which was originally introduced to support explanation and
explicable behavioral generation. Additionally, we propose a
first-of-its-kind interactive algorithm that is capable of using
information generated under incorrect beliefs about the agent
to determine the true underlying goal of the user.

Introduction
Value alignment, as presented in (Hadfield-Menell et al.
2016), is the problem of ensuring that an AI agent’s pur-
suit of its specified objectives will maximize or satisfy the
true underlying objective of its human user. Usually stud-
ied in the context of scenarios, where such misalignments
could have catastrophic consequences, the problem has been
widely argued to be one of the most important problems
related to AI safety (Christian 2020; Russell 2019). While
there is a general consensus that the primary cause of the
value misalignment problem is the user’s failure to correctly
anticipate the outcomes of their specification, current works
tend to focus on addressing only some aspects of the prob-
lem. In particular, most works within value alignment tend
to focus on decision-theoretic settings, where the objectives
are specified as reward functions and try to address prob-
lems closely connected to the nature of this representation
scheme (cf. (Hadfield-Menell et al. 2016; Leike et al. 2018;
Hadfield-Menell et al. 2017)).

We argue that, the extant literature on value alignment
overlooks the fundamental problem that any information
user provides to the system is going to be skewed by their
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Figure 1: An overview of the objective specification process
as contextualized in a generalized Human-aware AI frame-
work. Humans ascribe a domain model and initial state to
the agent, which may differ from the true model. Now the
human identifies a goal specification whose inclusion in the
agent’s model they believe will result in plans they would
prefer. Note that the human is generating the model updates
based on a potentially incorrect understanding of the sys-
tem’s model and using possibly faulty reasoning. The result-
ing outcomes from pursuing that goal using the robot model
could differ greatly from what the human expected.

beliefs about the agent model, which may be different from
the agent’s own model. Which in turn means that the user’s
expectation about the behavior the agent would exhibit in re-
sponse to a particular goal specification could be drastically
different from what might actually be followed. Arguably,
this asymmetry between the user’s expectations about agent
behavior and the agent’s true behavior is one of the main
factors that gives rise to the misalignment in the first place.
As such, for a system to correctly use any information pro-
vided by the user it must try to re-interpret it in the light of
this inherent difference between the user and the agent.

Thus in this paper, we will present a new formalization of
the value alignment problem that accounts for this asymme-
try between the user and the AI agent. We will do so by first
removing many of the extraneous parts of the problem that
are artifacts of the setting rather than the true nature of the
value misalignment problem. In fact, we will focus on one of
the most basic sequential decision-making setting, namely
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deterministic goal-directed planning. This setting will trans-
form the value alignment problem to a goal alignment prob-
lem, which will be specifically grounded in a scenario where
the user’s belief could be different from the agent model.
Please note that all problems studied and formalized in this
work are equally present in more complex settings, and we
hope that our initial framework can act as the foundation for
building solutions for such settings.

To achieve this, we will build on and generalize a frame-
work called Human-Aware AI (Sreedharan, Kulkarni, and
Kambhampati 2022), which was originally introduced to
generate explainable behavior. The framework uses psycho-
logical concepts of mental models (Premack and Woodruff
1978) to model and understand human-AI interaction. Fig-
ure 1 shows how we could build on the human-aware AI
framework to understand how goal misspecification may
arise. As clearly illustrated, the human is specifying a goal
to an agent to elicit a behavior they would deem desirable.
However, if their beliefs about the agent model are different
from the true agent model or if their reasoning process is
faulty, it could lead to the human providing goals that may
result in completely unexpected behaviors. This also means
that if the agent hopes to identify and try to satisfy the true
objectives of the user, it must identify the existing differ-
ences between the user’s beliefs and the agent model and use
this difference to reason about the intended behavior. We in-
troduce an approach to performing such reasoning that only
uses assumptions made in either value-alignment or human-
aware AI literature.

In summary, the primary contributions of this paper are as
follows:
• We formalize and define the problem of Human-aware

goal alignment; a formulation of the value alignment
problem that explicitly accounts for the asymmetry be-
tween the user’s expectations and the agent’s decisions.

• We establish the lower bound complexity of the human-
aware goal alignment problem.

• We introduce a first-of-its-kind interactive goal elicita-
tion algorithm that can use information generated from
incorrect model beliefs.

• We provide an empirical evaluation demonstrating the
computational characteristics of our algorithm.

Background
We will be focusing on deterministic goal-directed planning
problems. Such problems can be represented using a tuple
of the formM = ⟨D, I,G⟩ (Geffner and Bonet 2013). Un-
der this notation, D corresponds to the domain model of the
planning problem, which is further defined by using a tuple,
D = ⟨F,A⟩, where F is a set of propositional fluents that
are used to define the state space of the planning problem
and A provides the set of actions that can be executed by the
agent. Each state possible under the given planning problem
can be uniquely identified by the set of fluents that are true
in that state, thus the total number of possible states is equal
to 2|F |. Finally, I corresponds to the start state and G cap-
tures the partial goal specification, such that any state s ⊇ G
is considered a valid goal state.

Now each action a ∈ A is further defined by the tuple,
a = ⟨pre+(a), add(a), del(a)⟩, where pre+ are the precon-
ditions that need to be satisfied to execute a, while add and
del denote the add and delete effects related to the action.
We will use T to capture the effects of executing an action
at a given state T (a, s,D) defined as:

=

{
(s \ del(a)) ∪ add(a), if pre+(a) ⊆ s

undefined otherwise

Overloading the notations a little bit, we will also use T to
capture the consequence of executing a sequence of actions
< a1, a2, .., ak >, i.e.,

T (< a1, a2, .., ak >, s,D) =

T (a1, T (< a2, a3, .., ak >, s,D), D).

A solution to a planning problem takes the form of a plan,
where a plan is a sequence of actions whose execution in the
initial state would result in a goal state, i.e., π = ⟨a1, ..., ak⟩
is a plan if T (π, IM, DM) ⊇ GM. We can additionally,
associate a cost with each action, however, to keep the for-
mulation simple we will simply assume that each action has
a unit cost and C(π) = |π|. We will refer to a plan π as being
optimal if there exist no other valid plans with cost ≤ C(π).

Related Work
The recognition of potential dangers of misspecification of
agent objectives has a long history within AI (Turing 1996;
Wiener 1960), and builds on ideas from even earlier philoso-
phers. However, the modern form of the problem was effec-
tively established by (Hadfield-Menell et al. 2016), where
they formalize the notion of assistive games to help opti-
mize for the human’s unspecified objective. Apart from the
formalization, one of the core technical contributions of the
paper was the development of an algorithm to help gener-
ate more informative traces. However, as we will see such
information would be influenced by not only their inabil-
ity to perform correct introspection (commonly acknowl-
edged in the literature), but also their misunderstandings
about the agent itself. Other prominent works in this direc-
tion include works on reward design (Hadfield-Menell et al.
2017), works that try to query the human about preferred
behavior (Leike et al. 2018) and other works on generating
informative traces (Fisac et al. 2017). There are also works
that investigated the moral aspects of value alignment (Pe-
terson 2019; Leike 2022), however, we will treat the prob-
lem of developing moral agents as being orthogonal to the
problem of aligning objectives.

None of these works explicitly try to model the role
played by the human and agent asymmetries in causing this
misalignment in the first place. Human-aware AI (Sreedha-
ran, Kulkarni, and Kambhampati 2022) was originally de-
veloped to generate explainable behavior and built on ear-
lier efforts to use theory-of-mind in the context of human-
AI interaction (Devin and Alami 2016). The framework hy-
pothesizes that potential asymmetries between the human
and the AI agent can cause a mismatch between the deci-
sions chosen by the system and what the human would have
expected. Such mismatches would cause the human to be
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confused as to why the agent may be following a particular
action, which in turn would require the agent to explain its
current decisions to the user. In general, these works identify
three broad classes of asymmetries between the user and the
agent (Sreedharan 2022), namely asymmetry in knowledge
about the task, asymmetry in inferential capabilities, and
asymmetry in vocabulary. The explanation methods devel-
oped under the aegis of human-aware AI (cf. (Sreedharan,
Chakraborti, and Kambhampati 2021; Sreedharan, Srivas-
tava, and Kambhampati 2021; Sreedharan et al. 2022)) tend
to focus on identifying and addressing these asymmetries so
that the agent and the user can reconcile their differences
in expectations about the right course of action for a given
problem. In many ways, the goal of this work is to invert
the process. We are trying to identify and leverage asymme-
tries to reconstruct and then try to meet the original expec-
tations the human had, from the information they provide.
In this sense, our work is also closely related to a method
called explicable planning (Zhang et al. 2017), where the
system tries to generate behavior that matches user expecta-
tions. However, in explicable planning, the final goal is usu-
ally provided and the objective of the planning process is to
generate plans that closely match behaviors that the human
expected. In our case, we will not try to match the generated
behavior with what the human expects, but rather focus only
on ensuring that the outcomes we generate satisfy what the
user expected (the behavior that generates that outcome may
look nothing like what the user expected).

A parallel thread of work in value alignment that is or-
thogonal our paper is that of formulating the set of values
that the agent needs to be imbued with (cf. (Lera-Leri et al.
2022; Serramia et al. 2021; Montes and Sierra 2022) ). These
works build on notions of values as determined in the wider
psychological and social sciences literature (Schwartz 2012;
Gouldner 1975). Our method is completely compatible with
these efforts, as our objective is to ensure how these values,
once identified, can be enforced in the agent. Our framework
as of right now makes no commitments as to what goals or
objectives are specified by the user.

Another closely related set of works is that of model
elicitation (Grover, Smith, and Kambhampati 2020; Aineto
et al. 2019), preference elicitation (Mantik, Li, and Porte-
ous 2022; Chen and Pu 2004), resolving reward uncertainty
(Zhang, Durfee, and Singh 2017; Wilson, Fern, and Tade-
palli 2012), goal refinement (Mohajeriparizi, Sileno, and van
Engers 2022) and the technique of knowledge tracing (Cor-
bett and Anderson 1994) as applied in the context of intel-
ligent tutoring systems. All these works are trying to solve
a closely related problem, in that they are trying to acquire
some model information from a user or another agent. How-
ever, such works are fundamentally incompatible with our
setting as none of the works in these areas currently allow
the system to leverage information generated by users under
potentially incorrect beliefs about the system.

Motivating Example
Consider an intelligent robotic assistant that is being used
to help in daily household chores of its users. The robot is
expected to take task specification, along with any optional

guidance from its users and is expected to fulfill the user’s
requirements. Let us assume that in this case, the robot is
aware that the goals that the user may specify may be in-
complete. As a specific example, consider a case where the
user asks the robot to prepare a cup of tea. If the robot were
to simply opt for the optimal plan, it would have simply
reached out to the tea leaves closest to it and made tea with
it. Which in this case turns out to be some low-quality tea
leaves left at the bottom of the kitchen cupboard. However,
if the robot was to follow this plan, the prepared tea wouldn’t
have satisfied the user’s expectations since when asking for a
cup of tea the user was actually hoping to get tea made with
good quality tea-leaves. The user may have just forgotten to
specify the quality or overlooked the possibility that the tea
could have been made with poor quality tea-leaves.

Now the robot on its own can’t come up with what the
human may have really wanted, and querying them about all
other possibilities might be extremely difficult. Thankfully,
in this case the human may have or is willing to provide
additional instructions about the task. Let’s assume the sim-
plest case where the human provides an entire plan on how
to make the tea. Let’s assume that the plan provided involves
the robot fetching a ladder, putting it next to the cupboard,
climbing on the ladder and fetching good quality tea leaves,
then making the tea. This is not a plan the robot can exe-
cute on its own, since unbeknownst to the user, the robot
can’t climb ladders. However, assuming this plan, at least
in the human model, captures what they really want could
give the robot clues about the true human goal. Once this is
determined, the robot can independently figure out how to
achieve the goal.

Specifically, if it knew the human’s belief about the robot,
it could try to simulate the plan in the human model and see
what state they expect and try to see what fluents that are true
in the goal state may additionally be part of the true human
goal. Now in this case, this could involve the fluent regarding
the use of high quality tea leaves, but also fluents about the
position of the ladder and whether the robot used it. Now
one of the central challenges involved with this setting is to
come up with a method wherein the robot finds a plan that
is guaranteed to satisfy the unspecified human goal while
minimizing the number of times the human is queried to get
more information.

Goal Alignment Problem
Our setting consists of a robot (we use the term robot as
a stand-in for any autonomous agent) that is expected to
perform a task assigned to it by a human. Now we will
start by denoting the domain model used by the robot as
DR = ⟨F,AR⟩, and the initial state as captured by the robot
as IR. Now, keeping with the conventions from human-
aware AI, the human who assigns the task may have dif-
ferent beliefs about the robot’s model and the current state.
Such differences could reflect their potential biases about the
robot and their own incorrect and limited understanding of
the task. Let us denote the human’s beliefs about the robot
model asMH = ⟨DH , IH , GH⟩, where DH = ⟨F,AH⟩ is
domain model human ascribes to the robot, IH the human
belief about the initial state and GH is the goal specified by
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the human. The human would have come up with this goal
specification while keeping in mind their belief about the
robot’s capability and the human’s own preferences about
the expected outcome. In our earlier example, GH would
just include the fact that tea has to be made. The assumption
that both the human and the robot share fluents is a common
assumption made throughout human-aware planning prob-
lems (cf. (Sreedharan, Kulkarni, and Kambhampati 2022)),
and we can leverage methods like (Sreedharan et al. 2022)
to easily relax this assumption. The value alignment prob-
lem arises when optimization of the specific robot objective
doesn’t necessarily maximize the underlying human reward.
In our setting, this translates to the possibility that a plan that
achieves the specified goal need not achieve the underlying
human goal. Going back to our example, the goal specifica-
tion that a tea needs to be made is misaligned because there
are plans that are valid to that goal and which do not satisfy
other considerations the human could have, like the fact that
the tea needs to be made with high-quality tea leaves. More
formally, we will define the goal-misalignment problem as:

Definition 1. A goal specification GH is said to be mis-
aligned with the human goal G∗ for a robot domain model
DR and initial state IR, if there exists an action sequence
π = ⟨a1, ..., ak⟩ such that T (π, IR, DR) ⊇ GH , but
T (π, IR, DR) ̸⊇ G∗

Traditionally one of the main sources of information used
to address value alignment problems (cf. the setting pre-
sented by (2016)), are potential traces provided by humans
that satisfy their underlying objectives. The use of such in-
formation generally entails the assumption that, while the
human may not be able to correctly specify their objectives,
they can still recognize when a state that satisfies their ob-
jectives is reached and potentially reason about how to reach
such states. In our case, this information is contained within
the human-specified plan πH , that the human believes the
robot can follow to achieve the goal1. In our example, this
would correspond to the plan provided by the user involving
the use of ladders.

In theory, the simplicity of the setting dissipates almost
all of the traditional challenges that are identified by current
solutions to the value alignment problem. For one, goals are
a much simpler structure to specify objectives than rewards
are. The complexity of rewards as a specification mechanism
is the primary focus of many approaches like (Hadfield-
Menell et al. 2017) and (Leike et al. 2018), and there is em-
pirical evidence showing people are bad at specifying effec-
tive reward functions (Booth et al. 2023). On the other hand,
there is psychological evidence that argues that people tend
to perform planning in terms of goals and subgoals (Simon
1977). As such, people would have a much easier time spec-
ifying goals than rewards. Similarly, for a deterministic task,
a single plan is sufficient to reach the goal. Unlike (Hadfield-

1Equivalently, we could also consider cases where the human
may provide a plan they could execute themselves to achieve the
goal. In such case, the remaining problem definition and solution
approach remain the same except that we will be using the human
model of themselves (DH ) instead of their model of the robot (DR)
to analyze the plan.

Menell et al. 2016), we need not worry about using inverse-
reinforcement learning algorithms to identify the more gen-
eral reward function that may be implied by the trace.

However, the clarity of the setting also affords us the op-
portunity to see the more foundational problems that are fre-
quently shrouded by the complexity of the setting. First off,
even in this rather simple setting, the human’s ability to ef-
fectively specify objectives depend on their correct under-
standing of the robot’s capabilities and their ability to cor-
rectly anticipate the kind of plans that the robot may come
up with in response to this new goal. This could even include
cases where the limitations of the inferential capabilities of
the human prevent them from correctly anticipating the ef-
fects. This inability to correctly model the robot lies at the
heart of all value alignment problems.

Now coming back to the plan πH , even if we allow for
the possibility that in the human mental model that the plan
could achieve the true goal, there is no reason to believe that
the robot can execute it or even that executing it will result
in the same goal state. In our running example, the robot
can’t execute the specified plan as it will not be able to ex-
ecute the climb ladder action. However, since the objective
is to achieve the human’s expected goal state, it can try to
recreate the final state expected by the human, rather than
try to follow the exact plan. Here again, we run into a new
problem, as the robot may not be exactly able to generate the
state that results from executing the plan in the human men-
tal model. In our running example, let’s assume there are flu-
ents corresponding to what tools the robot used. In this case,
it will not be able to exactly replicate the final state as it can’t
climb the ladder and thus can’t turn the fluent related to the
ladder being used true. Note that this is completely consis-
tent with cases where the human may have trajectory level
constraints, as they can be compiled down into goal state flu-
ents (cf. (Baier, Bacchus, and McIlraith 2009)). Now let the
unknown goal the human has, be G∗ and they only partially
specified it to the robot, i.e., GH ⊆ G∗. Thus, the central
challenge is to determine if the agent can achieve G∗, and if
so to come up with a plan that satisfies the goal G∗.

However, the fact that the human provided the robot
with a plan gives us information about what G∗. For one,
we can assert that G∗ must be a subset of what the hu-
man believes would have resulted from executing the plan
(T (πH , IH , DH)). The problem is now to identify the exact
subset. The fact that goals are an intuitive structure for hu-
mans means that we can directly query humans about them.
Unfortunately, queries designed to directly get G∗ (say by
asking, ‘are you sure you only need me to achieve GH?’)
are bound to fail. This is because the difference between GH

and G∗, is not just a result of them forgetting some fluents,
but a reflection of their beliefs about the task. For example,
in the tea-making task, the human would never remember
to specify that the tea needs to be made with water because
they would never be able to imagine doing it in any other
way. However, the robot could on the other hand ask the hu-
man whether they care about any given fluent (for example,
’would you mind if the tea was not made with water?’). Thus
we will introduce a function OG∗

: F → [0, 1] that will re-
turn 1 if a given fluent is part of G∗. Note that the central
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computational challenge we have is to find plans that will
achieve the goal while minimizing the queries to humans.
Now with all the components specified, we are ready to for-
mally define the central problem.

Definition 2. A human-aware goal align-
ment (HAGL) is specified by the tuple H =
⟨DR, IR, GH , DH , IH , πH ,OG∗⟩, where there exists
an unknown goal G∗, such that T (πH , IH , DH) ⊇ G∗

and GH ⊆ G∗ and ∀, f ∈ F,OG∗
(f) = 1, if and only if

f ∈ G∗. Now the goal of the robot is to find πR such that
T (πR, IR, DR) ⊇ G∗, if one exists, while minimizing the
queries to OG∗

As with many human-aware planning works, we will as-
sume access to DH and IH . Note that the solution we pro-
pose to find a plan that results in a superset of G∗ is still
consistent with cases where the human may want to avoid
undesirable side effects. This can be achieved by adding new
fluents that correspond to negations of existing fluents (sim-
ilarly, the model could be updated to ensure that the original
fluent and the new fluent will always carry complementary
values in every reachable state). Our current formulation can
capture cases where a fluent corresponds to an undesirable
side-effect by adding the fluent corresponding to the nega-
tion of the undesirable fluent into the goal specification G∗.

Now just to see the complexity of the specified problem,
we can compare it against planning and see that it is at the
very least as hard as solving classical planning problems,
i.e., it is at least PSPACE-Hard.

Theorem 1. A decision-version of HAGL, i.e, the problem of
establishing whether there exists a plan for a given a HAGL
problem H that satisfies G∗ with just K queries to OG∗

, is
at least PSPACE-Hard.

Proof Sketch. We can establish this by showing that a plan
existence problem for a model M = ⟨D, I,G⟩ (which is
known to be PSPACE-Complete (Bylander 1994)) can be
compiled into a HAGL problem. Specifically, one where G∗

is the same as G, the robot domain model and initial state
are the same as those that are part of the original planning
problem and the human model contains an action aG with
an empty precondition that sets the G true. Here the human
plan is given as πH = ⟨aG⟩ and we can additionally set
K = |F |. Now the original planning problem is solvable if
and only if there exists a plan for the HAGL problem.

This further highlights our argument that even when one
removes many of the traditional complexities associated
with value alignment, we still find a complex and challeng-
ing computational problem at the heart of the goal-alignment
problem. One that could have clear implications on everyday
interactions humans could have with AI systems.

One of the big advantages that this formulation has over
the traditional ones is the fact that T (πH , IH , DH) already
gives you an upper bound on possible things the human goal
may contain. In fact, if the robot can already achieve a state
that is a superset of T (πH , IH , DH), then that plan is guar-
anteed to be a plan that satisfies the true human goal. This
is only possible because the robot is maintaining an explicit

model of the human’s belief about the robot model. How-
ever, this is only one way in which modeling human beliefs
can help the robot in finding plans that satisfy the true hu-
man goal. As we will see in the next section, we can further
leverage the human model to get better estimates on which
of these goal fluents the human may have actually intended
to achieve (as opposed to mere unintended side-effects).

A Solution for Goal Alignment Problem
In addition to introducing a new version of the value align-
ment problem, we will also propose a solution for the goal
alignment problem as described earlier. In particular, we
will approximate the value of information related to query-
ing each fluent and then iteratively query the ones with the
highest value. We will only use this procedure if GH is
achievable, but the robot can’t achieve all the fluents that
were made true by the human plan in the human model
(T (πH , IH , DH)). We will calculate the value associated
with querying about each fluent, as

VQ(f) = p(f ∈ G∗)× V (f ∈ G∗)+

(1− p(f ∈ G∗))× V (f ̸∈ G∗)

Where p(f ∈ G∗) is the probability that fluent is part of the
goal and V (f ∈ G∗), respective values of knowing whether
f is part of the goal or not. Let SH

G∗ represent the state that
results from executing the plan πH in the human model (i.e.,
SH
G∗ = T (πH , IH , DH)) and let F̂ ⊆ SH

G∗ be the set of flu-
ents in the goal state that the robot cannot achieve in its true
model together. Now to calculate the probability, we will
employ a strategy similar to the ones used in goal recogni-
tion (Ramı́rez and Geffner 2010). Namely to detect whether
the suboptimality of the plan specified by the human may be
explained by a given fluent. That is if the inclusion of a flu-
ent f in the goal set (i.e., GH∪{f}), makes the optimal plan
for the new goal in the human model closer to the cost of the
specified plan, then you will assign a higher probability to
that fluent. Keeping with the conventions used by (Ramı́rez
and Geffner 2010), we can formalize this as

p(f ∈ G∗) ∝ e−1×β×|C(πH)−C(π̂∗
f )|

Where π̂∗
f is a plan that is optimal in the human model

for the goal GH ∪ f , where β is usually referred to as a
rationality parameter and controls the randomness of the
decision-maker. Note that this approach assumes that the hu-
man follows a noisy rational decision-making process, an as-
sumption that has been shown to have psychological validity
(Jeon, Milli, and Dragan 2020).

The value function we are interested in should reflect the
certainty the robot has regarding the achievability of the goal
state. If the robot knows for certain that it can be achieved or
cannot be achieved, then it will be set to 1. More formally,
the value will be equal to the sum of the probability that the
G∗ is unachievable and the probability there exists a single
plan that achieves G∗ (these two terms are mutually exclu-
sive). Now we can find a lower bound on this true value by
just using the probability that the goal is unachievable.

V (f ∈ G∗) ≥
∑
Ḡf

P (G∗ = Ḡf )× δ(Ḡ not solvable)
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Where Ḡf is any subset of SH
G∗ containing GH that sat-

isfy f ∈ G∗ (i.e., GH ⊆ Ḡ ⊆ SH
G∗ and f ∈ Ḡf ),

P (G∗ = Ḡ) probability that the true goal is the same as
Ḡ and δ(Ḡ not solvable) is an indicator function that eval-
uates to true if Ḡ is unsolvable. We can similarly define
V (f ̸∈ G∗), but now we will only consider subsets of goal
state that don’t contain f .

Exactly calculating this lower bound on true value can
still be computationally expensive, as it would require effec-
tively testing the achievability of every subset that satisfies
the condition discussed above (and calculating the probabil-
ity as well). However, we can further find a lower bound for
this lower bound by setting the value to be the probability of
all the remaining fluents in F̂ being part of the goal (which
we approximate by multiplying the individual probabilities).
This is a lower bound of the above equation because the set
of all Ĝf is a superset of all possible goal candidates where
F̂ is present. Specifically, we set the approximation as

Ṽ (f ∈ G∗) =

{
1 if f is not achievable∏

f̂∈F̂ p(f̂ ∈ G∗) Otherwise

In the case of Ṽ (f ̸∈ G∗) the value is always given as
Ṽ (f ̸∈ G∗) =

∏
f̂∈F̂\{f} p(f̂ ∈ G∗). Now we can show

that this formulation result in a lower bound when the re-
maining fluents are independent given the goal specification:

Proposition 1. For a given HAGL problem for an f ∈ SH
G∗ ,

we will have V (f ∈ G∗) ≥ Ṽ (f ∈ G∗) and V (f ̸∈ G∗) ≥
Ṽ (f ̸∈ G∗), provided the probabilities P (fi ∈ G∗) and
P (fi ̸∈ G∗) is independent of other fluents n F̂

Proof Sketch. This follows from two facts (a)∑
Ḡf

P (G∗ = Ḡf ) = P (f ∈ G∗) for any f ∈ F̂

and Ḡf are all sets that satisfy the condition specified
above, and (b) the set of Ḡf contains all subsets that satisfy
F̂ . When Ṽ (f ∈ G∗) = 1, then V (f ∈ G∗) must equal one
since all possible goals are with f in it are unachievable. For
the second case, we know that we can’t achieve any state
that includes F̂ . These terms are already part of the set Ḡf ,
and hence summing of probabilities over all unreachable Ḡ

must be greater than the probability of G∗ = F̂ . For cases
where they are independent, the probability G∗ = F̂ will be
equal to

∏
f̂∈F̂\{f} p(f̂ ∈ G∗). This proves the first part;

we can use a similar kind of reasoning to show the relation
also exists between V (f ̸∈ G∗) and Ṽ (f ̸∈ G∗).

Now that we have a value associated with each fluent. We
will start by querying them in the order of their value. We
will end the query process under one of the three conditions

1. The human says yes to a fluent that cannot be achieved
2. The current subset of fluents the human has said yes to

cannot be achieved along with the goal
3. There exists a plan that can achieve the current subset of

fluents the human has said yes to can be achieved along
with GH and any unqueried fluent.

Algorithm 1: An approximation-based algorithm to find a
solution to a HAGL

Input:H = ⟨DR, IR, GH , πH ,OG∗⟩
SH
G∗ = T (πH , IH , DH)

if ⟨DR, IR, GH⟩ not solvable then
return No plan exists

end if
if ⟨DR, IR, SH

G∗⟩ is solvable then
return Return a valid plan for ⟨DR, IR, SH

G∗⟩
end if
Q ← A queue of fluents from the set SH

G∗ \ GH ordered
by VQ

C← ∅
while Q is not empty do
f ← Q.pop()
if OG∗

(f) == 1 then
C = C ∪ {f}
if ⟨DR, IR, GH ∪ C⟩ not solvable then

return No plan exists
end if

else
Ĝ = GH ∪ C ∪Q
if ⟨DR, IR, Ĝ⟩ is solvable then

return Return a valid plan for ⟨DR, IR, Ĝ⟩
end if

end if
end while
if ⟨DR, IR, GH ∪ C⟩ not solvable then

return No plan exists
else

return Return a valid plan for ⟨DR, IR, GH ∪ C⟩
end if

The first two conditions correspond to cases where the robot
can’t achieve the expected goal and the latter where the robot
can achieve a superset of G∗ and thus that plan would be ac-
ceptable to the human. Algorithm 1 presents the pseudocode
for the overall procedure.

Proposition 2. Algorithm 1 is complete for any given HAGL
problem, i.e., it will always find a solution if one exists.

This result follows from the fact that in the worst case, it
would ask about every fluent that is part of SH

G∗ and will be
able to determine if a plan exists or not.

In the case of the running example, the F̂ only consists
of the fluent corresponding to the use of the ladder. The flu-
ents corresponding to the use of the ladder and the use of the
high-quality tea leaves will be assigned the highest proba-
bility. In this case, the proposed algorithm generates a plan
that achieves the remaining goal fluents once the human is
queried about whether the ladder used is part of the goal. Av-
eraged across ten runs, we found that for the running exam-
ple, our algorithm will query 4.2 times (with the maximum
number of queries being 8).
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Empirical Evaluation

For evaluation, we ran our method on a set of problems
selected from standard IPC benchmark problems (Interna-
tional Planning Competition 2011). Our primary motivation
was to test the effectiveness of our method in reducing the
number of times the user would need to be queried before
the true goal is found. Since we are unaware of any exist-
ing methods we can directly apply in this setting, we will
compare the number of queries generated against a simple
baseline that would query the user about all potential goal
predicates. Specifically, the hypothesis we will test will be

Hypothesis 1. The average number of queries generated by
our algorithm will be lower than the naive upper bound on
the number of queries, which is equal to |SH

G∗ \GH |.

In particular, we considered five domains, namely,
Blocksworld, Driverlog, Elevators, Rover and Logistics. For
each domain, we selected five instances that were used in
previous competitions. The true goal in this case consisted
of the goal that was specified as part of the original prob-
lem, while we created the goal specification provided to the
robot by randomly deleting a predicate from the goal speci-
fication. The human model was formed by randomly delet-
ing preconditions and deletes from the original domain de-
scription and we used the original domain description as the
robot model. All plans were generated using FastDownward
planner (Helmert 2006) and we used A-star search with LM-
cut heuristic (Helmert and Domshlak 2009) and set β to one
for probability calculation. All experiments were run on a
linux AlmaLinux 8.9 machine with 32GB ram and 16 In-
tel(R) Xeon(R) 2.60GHz CPUs. We ran our algorithm on
each problem instance ten times and the results from our
evaluation are provided in Table 1. The second column in
Table 1, provides the baseline upper bound on the number
of queries and the second and third columns list the average
number of queries generated and the average time taken by
our algorithm (along with their standard deviations).

The most striking result is that, apart from the
blocksworld domain, we see a significant drop in the num-
ber of queries in almost all domains. In fact, for many
problems, the algorithm doesn’t even need to generate a
single query to identify a plan guaranteed to satisfy the
user’s hidden goal. This means that for these problems, our
method was able to find a plan that could achieve a super-
set of the goal state expected by the user with no queries.
The cases where the gains are less marked, particularly in
Blocksworld, seem to correspond to ones where the num-
ber of fluents in the goal states are small. This indicates
that our method will be most effective in problems with a
larger fluent set and by extension a larger state space. This
is a particularly useful property, as a naive querying strat-
egy will not be viable in such problems. Also note that
the time taken to complete the whole interaction is short
and within an acceptable bounds for real-time interaction
with users. The code for the experiments can be found at:
https://github.com/HAPILab/GoalAlignment.

Problem |SH
G∗ \GH | No of Queries Time (secs)

Instance Mean Std Mean std

Blocks

7 6.4 1.1 5.08 0.37
3 2.6 0.52 2.72 0.2
7 5.9 1.1 4.9 0.37
4 3.8 0 3.37 0.1
8 7.3 1.1 5.6 0.24

Driverlog

21 0 0 0.81 0.03
24 0 0 1 0.02
26 0 0 0.83 0.01
23 0 0 0.9 0.01
23 14.1 4.8 20.32 1.17

Elevator

25 0 0 0.71 0.02
24 0 0 0.73 0.04
25 14 4.16 13.30 1.04
25 0 0 0.70 0.03
24 6.7 4.35 11.07 1.05

Logistics

12 10.8 1.4 8.7 0.55
13 0 0 0.78 0.03
13 0 0 0.78 0.03
12 9.8 2.2 8.63 0.48
12 10.3 1.34 8.5 0.33

Rover

46 0 0 1.1 0.08
42 0 0 1.07 0.05
55 0 0 1.13 0.05
55 29.3 11.88 34.72 3.4
69 0 0 4.74 0.07

Table 1: A summary of the number of queries generated
time-taken by our method on standard IPC problems.

Conclusion and Discussion

In this paper, we present a reformulation of the value align-
ment problem, which explicitly accounts for an often over-
looked aspect of the problem, namely the asymmetry be-
tween the human’s belief and the agent’s true model. Even in
this setting, we see that the goal alignment problem remains
a challenging one. We also see how we could leverage the
human mental models to possibly generate better ways to
query the human to find more information about their un-
derlying objectives. Our initial empirical evaluation shows
that even this approximate algorithm helps reduce the num-
ber of queries we would need to ask the human before the
system can come up with a plan that is guaranteed to sat-
isfy the true human goal. There are multiple ways this work
could be extended. One possibility would be to extend the
work to support more complex decision-making settings in-
cluding decision-theoretic ones. Another one would be to
look at the use of alternate decision-making models for hu-
mans and also relax assumptions about access to the human
mental model of the robot. While the value alignment prob-
lem is generally discussed in the context of AI safety, such
misspecification and misalignment could affect every pos-
sible interaction between a human and AI agent. As such,
we hope more researchers working in the area of human-
AI interaction would try to account for such misalignment
problems when designing their systems.
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