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Abstract

Performing person detection in super-high-resolution im-
ages has been a challenging task. For such a task, mod-
ern detectors, which usually encode a box using center and
width/height, struggle with accuracy due to two factors: 1)
Human characteristic: people come in various postures and
the center with high freedom is difficult to capture robust
visual pattern; 2) Image characteristic: due to vast scale di-
versity of input (gigapixel-level), distance regression (for
width and height) is hard to pinpoint, especially for a per-
son, with substantial scale, who is near the camera. To ad-
dress these challenges, we propose GigaHumanDet, an in-
novative solution aimed at further enhancing detection ac-
curacy for gigapixel-level images. GigaHumanDet employs
the corner modeling method to avoid the potential issues of a
high degree of freedom in center pinpointing. To better dis-
tinguish similar-looking persons and enforce instance consis-
tency of corner pairs, an instance-guided learning approach
is designed to capture discriminative individual semantics.
Further, we devise reliable shape-aware bodyness equipped
with a multi-precision strategy as the human corner match-
ing guidance to be appropriately adapted to the single-view
large scene. Experimental results on PANDA and STCrowd
datasets show the superiority and strong applicability of our
design. Notably, our model achieves 82.4% in term of AP,
outperforming current state-of-the-arts by more than 10%.

Introduction

Person detection is a fundamental and critical task for
human-centric visual analysis. Recently, the resolution has
reached gigapixel level (e.g., 25k x 14k pixels) (Wang et al.
2020), posing a challenge for object detectors to cover the
analysis at large-scale spatial range with clear local details.
Most modern detectors fall into the center-regression-
guided type (Cai and Vasconcelos 2018; Tian et al. 2019;
Hasan et al. 2021; Zhang et al. 2022), which locates ob-
jects via centers and prefers clear four boundaries to regress
width/height (see Figure 1 (d)). But for the human-centric
task in gigapixel images, it seems that the requirements of
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Figure 1: Part (b) shows a partial slice of the gigapixel-level
image. Compared to center-regression-guided detectors in
(d), our corner-semantic-guided model (e) enjoys the follow-
ing strengths. 1) Our model locates persons by matching the
top-left and bottom-right corners with low degrees of free-
dom, rather than centers, whose visual patterns are unstable
or even invisible due to the diverse postures of flexible per-
sons in (a). 2) Our model relies on a robust corner-matching
algorithm to construct a box, so that the box quality is not
affected by long-distance regression error in the single-view
large scene (c) where the sizes of persons change drastically.

the above methods cannot be perfectly met. Numerous in-
dividuals exhibit various postures, leading to the instability
of human center visual pattern (e.g., Figure 1 (a): the cen-
ter of the bending man lies on the ground while the center
of the standing woman is occluded), further making it harder
to determine four boundaries. Besides, because people are at
different distances from the gigacamera (Yuan et al. 2017),
there is vast variation in human size (e.g., Figure 1 (c): from
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Figure 2: Framework of GigaHumanDet. By discriminative
semantics and robust body embeddings, our model performs
gigapixel-level full-body detection by matching corner pairs.

125%336 to 602 x 1465). Thus, long-range regression errors
directly affect the quality of boxes produced by modern de-
tectors that regress width/height, and the box may even be
mistakenly considered a negative sample since IoU with the
ground truth is under threshold (e.g., yields a semi-finished
box that only covers half of the body in Figure 1(b)).

Instead of the above detectors, another is the corner-
semantic-guided type (Law and Deng 2018), which esti-
mates two corners of the box via boundary clues. We find
this type is more suitable for gigapixel-level human detec-
tion: As the best knowledge, the degree of freedom of de-
termining a corner is lower than that of a center (a perfect
center needs four borders while a corner only needs two),
and manually generating a human annotation box via two
corners is a strong prior knowledge for us. In Figure 1 (d)
(e), although the ideal center sample is occluded, each cor-
ner point can still be located by two clear boundary clues.
Further, the object representations of corner detectors do not
rely on distance regression, so they are robust to multi-scale
changes of the object and enjoy greater potential to generate
higher-quality boxes in such large-scale single-view scenes.

However, existing corner-semantic-guided methods de-
signed for common scenarios can not work well in the
extremely large-scale fully-body detection task, especially
their heuristic corner-matching algorithms. For example,
CornerNet (Law and Deng 2018) determines corner pairs by
local response similarity, which can cause severe confusion
in detecting humans with similar appearances in the large
spatial scale scene. CenterNet (Duan et al. 2019) predicts
one more center point to filter out the false positives (FP),
but it still can not perform well when applied to a gigapixel
image, because the central regions of numerous FPs often
cover the center point of a third person. Therefore, we may
ask: Can we devise a robust corner matching algorithm for
gigapixel-level full-body detection?

To answer the question and expand the applicability of
corner-semantic-guided detectors for full-body detection on
gigapixel-level images, we propose GigaHumanDet. Gi-
gaHumanDet predicts two decoupled corners of the bound-
ing box, each of which is expressed explicitly and requires
only two borders to be determined, improving the robustness
in gigapixel crowds with various postures. To acquire dis-
criminative corner semantics for similar-looking persons, we
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devise an instance-guided learning strategy as shown in Fig-
ure 2. For reliably matching corners, we devise shape-aware
bodyness which encodes the body shape embeddings at the
corresponding corner location. To further purify the body
shape embedding and make it more tolerant to the drastic
scale variation, a Gaussian-inspired multi-precision regres-
sion strategy is devised to alleviate the difficulty and inac-
curacy of once long-range regression. Note that the distance
regression is decoupled from the corner prediction, so the
corner pair can decode an accurate object box without be-
ing affected by the distance regression error. Equipped with
robust bodyness, GigaHumanDet can reap promising perfor-
mance by pairing corners with consistent body shapes.
Experimental results on gigapixel-level PANDA(Wang
et al. 2020) benchmark show GigaHumanDet yields a new
SOTA accuracy, in terms of 82.4% on AP35, boosting 60.8%
than CornerNet baseline and surpassing other methods by
more than 10%. Further, the competitive results on STCrowd
verify the applicability of our method to general pedestrian
detection. Our contributions can be summarized as follows:

* This paper unleashes the power of corner modeling ap-
proach on gigapixel-level full-body detection, and we
demonstrate that it is more suitable and robust than
center-regression-guided methods for this task.

* We design instance-guided learning and multi-precision

strategy to acquire discriminative corner semantics.

We propose shape-aware bodyness to provide reliable

corner-matching guidance for large-scale dense scenes.

GigaHumanDet achieves the SOTA accuracy on the gi-

gapixel level detection task and outperforms other ad-

vanced methods by 10%.

Related Work
Object Detection on High-Resolution Images

Object detection on large-scale HR images has become a
challenging task. A gigapixel-level human-centric PANDA
dataset(Wang et al. 2020) is published and its resolution has
reached 25,000 14,000. Due to wide FoV and high resolu-
tion, pedestrians have various postures as well as occlusions,
and drastic scale changes exist, which degrades the accuracy
of modern detectors developed on COCO(Lin et al. 2014).

Center-Guided and Corner-Guided Methods

The center-guided detectors utilize centers and width/height
to encode boxes. Most of them(He et al. 2017; Cai and Vas-
concelos 2018; Ge et al. 2021) take the center as a refer-
ence point and regress object size. Different from the above
methods, the corner-guided detector(Law and Deng 2018;
Duan et al. 2019) is proposed to estimate corners and match
them to compose the final box. But for gigapixel images, hu-
mans with similar appearances cause great confusion when
matching corners. Our GigaHumanDet employs the corner
modeling method and tackles the matching problem by set-
ting robust body-shape embedding for each corner.

Pedestrian Detection

The pedestrian detection task has been widely studied (Cai
et al. 2016). Some full body detectors try to lift the accu-
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Figure 3: The pipeline of GigaHumanDet. First, the features with discriminative semantics are obtained using instance-guided
learning. Then, the estimating head is responsible for outputting the top-left/bottom-right corner heatmaps. The matching head
predicts the body shape embedding at each corner location via Gaussian-inspired multi-precision strategy. Finally, by the mea-
surement of the shape-aware bodyness, a pair of corners with high affinity can be matched to yield the precise detection box.

racy using extra information (Mao et al. 2017; Brazil, Yin,
and Liu 2017) or attention mechanism (Lin et al. 2018; Pang
et al. 2019). Besides, several novel NMS algorithms(Huang
et al. 2020; Liu, Huang, and Wang 2019) are devised to
purify the dense boxes effectively. Note that the above
works are about small-scale images and generally follow the
center-regression-guided method. Different from them, we
focus on conquering gigapixel images and effectively per-
form full-body detection using corner pairs for the first time.

Proposed Method

Given a gigapixel image Z, a full-body detection system is
required to output the coordinates of all instance locations
GigaHumanDet predicts all top left corners {(z, ytH}m,
and bottom-right corners {( z ,yl ) =0 and match them
into full-body boxes {(xf, y!, xb" yb™)}™ . m is the total
number. Next, we will delve into each part of the model.

Instance-Guided Learning

The GigaHumanDet is required to efficiently obtain the dis-
criminative semantic features for numerous persons with
similar appearances in the single-view large scene, as illus-
trated in Figure 2. Therefore, we devise an instance-guided
learning strategy to provide more accurate individual repre-
sentations for the whole prediction process.

During training, the input image Z is fed into the back-
bone and corner pooling layers to obtain deep feature maps
with rich corner semantics, which is formulated as follows:

S = 6"D(T)], S8 = 6" [®(T)) (1)

where ® denotes the backbone network. §* and §°" are the
top-left and bottom-right corner pooling layers, respectively.
S* and S°" are the corresponding feature maps. Then, at
each corner location, we can extract i-th top-left/bottom-
right corner embedding ¢;/b; as follows:
t; =S" (=, yi"), bi =S8 (2", y!") @)
where (z!!,y!!) and (2", y?") are the ground-truth coor-
dinates of the corner pair. Then, we can get the collections
{t; } -y { b, }™, of corner embeddings for the m persons on
the input image. As shown in Figure 3, similar-looking per-
sons often co-occur in the visual space on the image. The
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embedding ¢,/b; can represent the identity of the i-th in-
stance. To purify each identity in the semantic space, the
embeddings pair ¢;/b; of the same instance is expected to be
very similar and effectively distinguishable from the other
embeddings of (m — 1) instances. To endow the vanilla cor-
ner embeddings with such discriminative power, we do so
through the contrastive loss.

{ra}i = {1 U {bi 1L 3)
The collection of overall corner representations is obtained
by Eq. 3. For each corner embedding r;, we constrain it by
making it similar to its paired one and minimizing similarity
to the remaining embeddings, which can be formulated as:

exp ((Ti,7p) /)
S50 exp (76, 75) /7)
where 7 denotes the temperature hyper-parameter and is
empirically set to 0.05. 7; is the /s normalized embedding
for a corner of the specific instance. T, is the corresponding
positive corner, i.e., the paired embedding of the same in-
stance. Therefore, instance-guided unique semantic features
are obtained and facilitate the subsequent prediction.

Lins = — log

“

Estimate Human Corners

The GigaHumanDet adopts corner pooling(Law and Deng
2018) to enhance corner semantics, which helps to deter-
mine the top-left (bottom-right) corner point by looking
along the top and left (bottom and right) boundary direc-
tions. Compared to the center prediction that requires all
four borders of instance, our GigaHumanDet focuses on the
corner that relies on just two boundaries, which is with lower
degrees of freedom and more meaningful to human detec-
tion where some body parts are often invisible (see Figure 2).
We utilize heatmaps to predict corner keypoints, i.e.,

ICtl _ \Iltl [Stl], ICbr _ \1le [Sb'r} (5)

where W and Wb are heatmap modules. K and ICb" are
the predicted keypoint heatmaps. During training, each cor-
ner is mapped into a Gaussian region to reduce the penalty
given to the negative samples near the true positive corner lo-
cation. The distance-penalty-aware Focal Loss is adopted as
the optimization objective, which is formulated as follows:
_ Z 1 —Pay) IOg(pzy) ifpey=1
fe= N, —Pay) (pZy) -log(1—pzy), otherwise
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Figure 4: Illustration of multi-precision regression strategy.
(a) is the Gaussian-inspired strategy. (b) is the uniform-
inspired strategy. The w/h represents full-body width/height.

where p,, is the predicted value at the coordinate (z,y) on
the heatmap and p,,, is the ground truth. The parameter o
is used to adjust the weights of easy and hard samples and
[ controls the distance penalty reduction (we render « to 2
and [ to 4 following CornerNet(Law and Deng 2018)).

Encode the Robust Body Shape Embedding to the
Corner via Multi-Precision Strategy

In previous works(Law and Deng 2018; Duan et al. 2019),
the self-supervised learned embeddings are used to deter-
mine whether a pair of corners belong to the same object,
which depends on local response and presents serious con-
founds when dealing with people with similar appearances.
Thus, we intend to encode the robust identity for the corner
via the body shape (i.e., width/height) embedding in a strong
supervision manner. Specifically, we need to regress (w, h)
at each top-left/bottom-right corner location. To alleviate the
error brought by the long-distance regression, we devise a
multi-precision strategy. In this case, the embeddings of hu-
man width/height can be formulated as follows:

w:(w%7w%..'w’}ll7w§”.w31,27..'7wf7wg..'w:{ld> (7)
= (B b BBy b ong o nEL ) ®)
st. nit+ne+---4ng+---+ng=N, k=1,2---d (9)

where w,h € RY. N is the dimension of width/height.
We intend to divide the N components into d groups, and
each group of ngy components is responsible for regressing
the different partial distances of width/height. As a result, a
single long-distance regression is transformed into a statistic
for a collection including more accurate shorter regressions.
As shown in Figure 4, two distribution-inspired strategies
are designed to obtain the collection of multi-precision re-
gressions. Both strategies imposes the following constraints
on body shape embedding w/h:

S e(h) =N [Putud +ub)— P (k-2 +ul )] 10
1=1

if(h‘f) = N-[Pulhd +1) = (g(h-2nd+1i7 )] an

where F,,/F}, is the cumulative distribution function (CDF)
of the corresponding probability distribution and £(-) de-
notes the Heaviside function. w /h¥ represents the partial
human width/height of k-th group. w?/h? corresponds to
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the starting point. In our experiments, we render d to 6 and
the settings that fit the specific distribution are as follows:

* Normal (p,0?): The number of components in each
group is assigned by the CDF of the Gaussian distribu-
tion. 1 and o2 are the mean and variance, respectively.

6
[wf]k € o, 20, 30, 4o, 5o, 60]
=1

oc=w/6,

* Uniform (a,b): The number of components in each
group is assigned by the CDF of the uniform distribution.
a and b are the two boundary values.

[wkr: e{b—a b—a b—a 2(b—a) 5(b—a) b

(12)
wd = w— 30

3727 3 7

0
w; = a

6 )

b—a=w,

Note that Equations 12 and 13 are detailed conditions for
human width embedding w, and those for height embedding
h can be obtained in the same way. As a result, the network
needs to produce two (top-left and bottom-right) regression
maps with a 2N-dimension (N-dimensional width and N-
dimensional height). For training, we employ the Smooth L1
Loss(Girshick 2015) to learn the body shape embedding at
ground-truth corner locations:

NP
1
Le=— SmoothL1Loss(log(w;), log(w,;
72 (og(wy) log(@,))

+ SmoothL1Loss(log(h;),log(h;)))

where N, denotes the head counts as well as the number
of persons. w; and hj are the predicted body width/height

embeddings, and w; and h; are the ground-truth ones. The
function log(-) maps the width/height into logarithmic space
to make the learning process easier.

After training, we can decode the final body width/height
by scaling their embeddings and obtaining the statistical
mean of them:

1 d mnp 1 d ng
szZZak-wf, hZNZZak-hf (15)

k=1 i=1 k=1 1i=1

where o is the factor by which each component is scaled

back to the corresponding width/height. Hence, the final
body shape is the statistical mean of the multi-precision re-
gression collection, which is shown in Figure 5. With this
cooperation of shorter and longer distance regressions, the
overall expected error decreases.

Notably, the regression of GigaHumanDet is very differ-
ent from the popular detectors that yield the box via regres-
sion. Because our regression is completely independent of
the quality of the detection box, it only enables the top-
left/bottom-right corner to perceive human shape and pro-
vides effective guidance for the later matching process.

Match Corners via Shape-Aware Bodyness

After obtaining the predicted top-left and bottom-right cor-
ner heatmaps, we need to measure the affinity between the
corner keypoints and match a pair to form a final detection
box. Hence, we devise shape-aware bodyness to execute the
corner-matching process. As shown in Figure 5, the key is
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Figure 5: Illustration of bodyness. The final body shape
(width/height) is the statistical mean of the multi-precision
collection. Then, the top-left/bottom-right body boxes are

decoded at corresponding corner locations. We devise body-
ness based on the IoU and purify it by a shape-aware factor.

that human width/height at corner locations can decode the
corresponding top-left/bottom-right body shape boxes and
we define the shape-sware bodyness as follows:

shape—aware term
body Nbody® "~ o oy
oody 1004y | —2.(1 = \s
body*t U body®b" exp(=2:(1 = A7)

ey

where body® and body®" denote the body boxes decoded
by w?/wb" and h**/hP" at corner locations. A, is the shape-
aware factor. Because the vanilla IoU is less sensitive to the
shape, a shape-aware term is added to bodyness. If the shape
similarity of two body boxes is small, then A will be small,
and the shape-aware term will help attenuate IoU. So the
total bodyness score will be low. After calculating the body-
ness of all estimated human corner pairs, those with higher
bodyness are more likely to belong to the same body and the
final precise detection box can be produced.

Bodyness= (16)

min(wt, wb") min(ht, ho7)

" max(ht, h')

a7

max(wt, wbr)

Experiments
Dataset and Evaluation Metrics

PANDA. We evaluate the proposed GigaHumanDet on
the gigapixel-level human-centric dataset — PANDA (Wang
et al. 2020). The images in PANDA cover various real-world
scenes, including streets, markets, campuses, etc. It provides
13 scenarios for training and 5 scenarios for testing. Each
scenario contains about 30 super high-resolution images and
the image size reaches about 25k x 14k.

STCrowd. STCrowd (Cong et al. 2022) is released re-
cently and the total number of pedestrians is 219 K. There
are 5263 and 2988 images with a size of 1280720 in the
training set and validation set, respectively.

Evaluation Metrics. We utilize AP (average precision)
with the 0.5 and 0.75 IoU thresholds as the accuracy evalu-
ation metric. The larger IoU threshold indicates that the de-
tector can output higher-quality boxes. Objects of different
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sizes are divided as follows, small (<96x96 pixels), mid-
dle (96x96 to 288 x 288 pixels), and large (>288x288 pix-
els). And we also report AR (average recall) calculated un-
der ten IoU thresholds (i.e., 0.5:0.05:0.95). We also report
#Pass (Fan et al. 2022), measuring the number of runs of the
detector during the inference on gigapixel images.

Implementation Details

Training details. To prepare PANDA data for training,
we downsample original gigapixel images by a factor of
4. Then, we decompose the down-sampled image using a
2,048x1,024 sliding window with a 0.25 overlap ratio. We
train our model on four RTX 3090 GPUs with 4x24 GB
RAM. The model with hourglass(Newell, Yang, and Deng
2016) or DLA-34(Yu et al. 2018) backbone is trained with a
batch size of 43 for 40k iterations. The learning rate is set to
0.001, dropping 10x at the 30k iteration.

Testing details. For PANDA, we also downsample the
original test gigapixel images and generate patches using the
sliding window. The output heatmaps are filtered by the sig-
moid function and 3x3 max pooling. Next, we decode the
bodyness and match the top-left/bottom-right corners that
belong to the same person. Finally, the results are performed
Soft-NMS to remove redundant boxes. We only keep the top
500 detection boxes for each PANDA image.

Results on Gigapixel PANDA Dataset

Quantitative results. Quantitative results are reported in
Table 1. Generally, GigaHumanDet achieves 82.4%, 51.8%,
80.9%, and 87.3% on APsq, APS,, AP}, and APL,, re-
spectively, under Hourglass-104 backbone in single-scale
testing, which is the state-of-the-art accuracy on the full
body detection benchmark of the PANDA dataset. GigaHu-
manDet explores the pedestrian locations through corner
keypoints with fewer degrees of freedom, rather than the
more problematic centers, and utilizes robust body shape
embeddings for effective corner matching. Therefore, Gi-
gaHumanDet lives up to expectations to enjoy a more
promising performance than other popular detectors.

GigaHumanDet vs. center-guided methods. Compared
with Cascade R-CNN(Cai and Vasconcelos 2018) which re-
gresses dense center-based anchors to cover the entire im-
age, GigaHumanDet lifts APS, by 29.1% (22.7% vs. 51.8%)
thanks to avoiding the difficultly in learning unstable cen-
tral visual features of humans with numerous postures. Even
compared to DINO(Zhang et al. 2022) which adopts the ad-
vanced transformer architecture, the accuracy of GigaHu-
manDet is still far ahead with a 14.4% increase (e.g., 68.0%
vs. 82.4% on APs5q). This further demonstrates the excel-
lence of the human corner estimating pipeline in such scenes
where the partial boundaries are frequently not visible, and
it is challenging to directly regress an accurate bounding box
from the center to the four borders of the instance.

GigaHumanDet vs. advanced pedestrian detectors. We
train some common pedestrian detectors on PANDA. CSP
detects pedestrians by predicting center points and regress-
ing scales, but it just reaches 61.5% on AP5( due to errors
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Method Backbone Feature | #Pass | APso APE, APy, APk,
Center-regression-guided:
Faster R-CNN (Ren et al. 2015) ResNet-101 FPN 13,620 - 19.0 55.2 74.4
Cascade R-CNN (Cai and Vasconcelos 2018) | ResNet-101 FPN - - 22.7 57.9 76.5
RetinaNet (Lin et al. 2017) ResNet-101 FPN - - 22.1 56.1 74.0
ATSS (Zhang et al. 2020) ResNet-101 FPN 4,935 67.4 16.7 60.1 81.1
YOLOX (Ge et al. 2021) CSPDarknet FPN 4,935 69.5 21.1 63.5 81.5
DINO (Zhang et al. 2022) ResNet-101 Encoder 4,935 68.0 18.0 63.0 79.6
ClusDet (Yang et al. 2019) ResNet-50 FPN 7,871 71.8 21.9 69.6 78.2
PAN (Fan et al. 2022) ResNet-50 FPN 3,671 71.5 25.6 71.9 76.8
CSP (Liu et al. 2019) ResNet-101 FPN 4,935 61.5 28.1 64.1 64.3
Pedestron (Hasan et al. 2021) HRNet FPN 4,935 69.9 224 67.1 78.8

Corner-semantic-guided:

CenterNet (Duan et al. 2019)
CentripetalNet (Dong et al. 2020)
CornerNet baseline (Law and Deng 2018)

GigaHumanDet (Ours) ResNet-50
GigaHumanDet (Ours) DLA-34
GigaHumanDet (Ours) Hourglass-52
GigaHumanDet (Ours) Hourglass-104

Hourglass-104
Hourglass-104
Hourglass-104

Single 4,935 26.0 6.7 20.7 334
Single 4,935 62.6 27.3 60.1 69.6
Single 4,935 21.6 1.2 13.8 324
Single 4,935 72.3 28.1 714 78.8
Single 4,935 78.2 41.4 76.8 84.2
Single 4,935 79.6 48.5 78.8 84.8
Single 4,935 82.4 51.8 80.9 87.3

Table 1: State-of-the-art comparisons in term of accuracy (%) on PANDA dataset. In this table, APZ,, AP} and APL, are for
small, middle, and large objects, respectively. Note that all results of GigaHumanDet are obtained under single-scale testing.

Detector Backbone APEY
Faster R-CNN ResNet-101 87.8
Cascade R-CNN ResNet-101 88.7
RetinaNet ResNet-101 88.8
DINO ResNet-101 90.6
Pedestron HRNet 90.5
CenterNet Hourglass-104 84.2
CornerNet baseline Hourglass-104 68.4
CentripetalNet Hourglass-104 88.7
GigaHumanDet (Ours) | Hourglass-104 90.7

Table 2: Comparisons on general-resolution STCrowd.

of its single scale regression in the giga image. Cascade R-
CNN with HRNet is an advanced baseline explored in Pede-
stron (Hasan et al. 2021). Nevertheless, under the same patch
generation settings, it lags behind our GigaHumanDet by
12.5% on APg, firmly proving the superiority of our model.

GigaHumanDet vs. corner-guided methods. As shown
in Table 1, CornerNet(Law and Deng 2018) has a poor AP35
of 21.6% because it is prone to mistakenly matching corners
of two persons with a similar appearance. The AP5q of Cen-
terNet(Duan et al. 2019) is stuck at 26.0% because its match-
ing algorithm has low applicability in this scenario. With the
robust body shape embedding and shape-aware bodyness,
GigaHumanDet fully demonstrates its kingly demeanor in
generating high-quality and high-reliability detection boxes,
and yields a significant improvement of 60.8% on AP5q
(from 21.6% to 82.4%) compared to the CornerNet baseline.
The indicators of 51.8%, 80.9%, and 87.3% on AP, AP},
and APL, for objects of different area are clearly superior to
other two corner-guided methods by large margins.

Visualization comparison. As shown in Figure 6, com-
pared to CornerNet baseline which has poor accuracy due to
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Backbone | IGL | APsy AP7s APZ, AP3y APL, AR
H-52 X | 791 473 458 719 842 575
H-52 v | 796 480 485 788 84.8 579

Table 3: Effectiveness of instance-guided learning (IGL).

numerous incorrect corner pairs, GigaHumanDet equipped
with robust bodyness showcases reliable corner-matching
results. Compared to center-guided YOLOX, DINO, and
Cascade R-CNN, which suffer from regression errors, Gi-
gaHumanDet yields higher-quality boxes by decoupling re-
gression from box encoding. Further, GigaHumanDet can
find the adult and child missed by the other three center-
visual-based methods, proving explicit corners with low de-
grees of freedom are more stable for gigapixel-level scenes.

Results on General STCrowd

To show the generalization ability of GigaHumanDet on the
common-resolution pedestrian detection task, we report the
results of STCrowd(Cong et al. 2022) in Table 2. With robust
corner-guided modeling, GigaHumanDet can still surpass
other popular methods in the occluded crowd. Compared
to CornerNet baseline, GigaHumanDet brings an AP5, im-
provement of 22.3% on STCrowd. All experimental results
show that our GigaHumanDet enjoys strong applicability
and can be a superior baseline model both in the gigapixel-
level image and general image for full-body detection.

Ablation Study

Effectiveness of instance-guided learning. We devise an
instance-guided learning (IGL) strategy to make corner se-
mantics more discriminative. To verify the effectiveness of
it, we retrain our model after removing the IGL loss (Eq.4).
As shown in Table 3, IGL lifts 0.7% on AP75 and brings
an impressive 2.7% increase on AP?O, proving that IGL can
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ornerNet baseline

Figure 6: Visualization on PANDA. For clearer details, we zoom in on the local region of gigapixel images. Detection boxes are
marked in yellow and green color. The red ellipses show that the object is missing or the box boundary is not precise enough.

Strategy | APso AP75 APZ, AP, APL, AR
s.t. Gaussian | 79.1 473 458 779 842 575
s.t. Uniform | 78.8 468 454 778 839 57.1

single reg 78.1 46.0 453 775 83.1 569

Table 4: Effect of different regression strategies. These re-
sults are obtained under the Hourglass-52 backbone.

APso AP;; APE, APY APL, AR
783 471 456 710 838 569
791 473 458 779 842 575

IoU shape-aware
v X
v v

Table 5: Effectiveness of the shape-aware term. These results
are obtained under the Hourglass-52 backbone.

help acquire higher-quality boxes by learning more precise
and distinguishable corners and body shape embeddings.
And more accurate point-level semantics further purify cor-
ner estimation and matching, particularly for small bodies.

Effect of strategy for body shape embedding. As de-
tailed in Section , two multi-precision strategies are pro-
posed to encode body shape (width/height) for the gigapixel
scene. Accordingly, we test the performance of GigaHuman-
Det when the regression collection is guided by the CDF of
Gaussian and uniform distributions, respectively. As shown
in Table 4, the model with the uniform-inspired strategy and
H-52 backbone can yield a decent AP5q of 78.8%. Inter-
estingly, we observe that the Gaussian-inspired strategy is
0.3% and 0.5% higher on AP5q and AP75 than the uniform-
inspired one. If we replace the Gaussian multi-precision
strategy with a common single-regression one, the accuracy
will decrease by 1% on AP5q. The results indicate that the
Gaussian-inspired one enjoys stronger robustness to match
human corners and the body shape provided by its statistic
of the collection is more precise. Therefore, the Gaussian-
inspired multi-precision strategy is a better choice.

Analysis on the shape-aware term of bodyness. During
matching human corner pairs using bodyness, we design a
shape-aware term to directly measure the shape of bodies
covered by two corners. As reported in Table 5, the pro-
posed shape-aware term improves AP5o and AR by 0.8%
and 0.6%, respectively. This demonstrates that shape-aware
design is effective and can help bodyness perform better.

Effect of the threshold for bodyness. One threshold is
required to keep these high-bodyness matching corner pairs
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Threshold
APsg

0.3
79.0

0.35
80.9

0.4
82.1

0.45
82.4

0.5
82.2

0.55
81.1

Table 6: Effect of different threshold values of bodyness.

Top-k | APsy AP;s AP3, APY, APL, AR
k=100 | 80.6 558 478 776 867 623
k=200 | 84 554 518 809 873 621
k=300 | 81.6 549 513 802 870 614
k=400 | 814 548 513 799 863 610
k=500 | 808 547 509 794  86.1 60.7

Table 7: Comparisons of various number of keypoints kept
on the predicted top-left/bottom-right heatmaps. These re-
sults are obtained under the Hourglass-104 backbone.

to produce raw detection boxes. As shown in Table 6, we
evaluate our method under the H-104 backbone by setting
6 different thresholds. And GigaHumanDet reaches the best
APs5q with the threshold 0.45. Hence, we render the thresh-
old of bodyness to 0.45 in all experiments.

Limitations for accuracy ceiling of GigaHumanDet. We
firmly believe that our GigaHumanDet owns a high accuracy
ceiling for the gigapixel-level human detection task. For ex-
ample, a simple improvement solution is to adjust the num-
ber of corner keypoints to be retained on the output heatmaps
and the results are shown in Table 7. As the number of re-
served human corners increases from 100 to 500, the accu-
racy first increases and then decreases due to the inhomo-
geneity of crowd density in the large-scale spatial scenario.
When the £ value is set to 200, GigaHumanDet can yield the
best AP5q of 82.4%, boosting of 1.8% than the case & =100.
Since we have made progress with this rough solution, this
fact shows that there is still a lot of room for optimization
combined with head-counting approaches.

Conclusion

In this paper, we propose the corner-guided GigaHumanDet
for human detection in gigapixel images and GigaHuman-
Det achieves state-of-the-art accuracy. The instance-guided
learning and multi-precision strategies are devised to ac-
quire discriminative body shape embeddings for each cor-
ner. Then, a reliable matching algorithm based on bodyness
for gigapixel images is designed to yield precise boxes. We
believe the proposed approaches enjoy promising potential
for the gigapixel-level human-centric task.
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