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Abstract
Multimodal Sentiment Analysis (MSA) has attracted
widespread research attention recently. Most MSA studies
are based on the assumption of modality completeness. How-
ever, many inevitable factors in real-world scenarios lead to
uncertain missing modalities, which invalidate the fixed mul-
timodal fusion approaches. To this end, we propose a Unified
multimodal Missing modality self-Distillation Framework
(UMDF) to handle the problem of uncertain missing modal-
ities in MSA. Specifically, a unified self-distillation mech-
anism in UMDF drives a single network to automatically
learn robust inherent representations from the consistent dis-
tribution of multimodal data. Moreover, we present a multi-
grained crossmodal interaction module to deeply mine the
complementary semantics among modalities through coarse-
and fine-grained crossmodal attention. Eventually, a dynamic
feature integration module is introduced to enhance the ben-
eficial semantics in incomplete modalities while filtering the
redundant information therein to obtain a refined and robust
multimodal representation. Comprehensive experiments on
three datasets demonstrate that our framework significantly
improves MSA performance under both uncertain missing-
modality and complete-modality testing conditions.

Introduction
As an important part of human-computer interaction, Mul-
timodal Sentiment Analysis (MSA) is becoming a hot re-
search area, which aims to understand and interpret human
sentiments through multiple forms of human expressions
(e.g., language content, voice tone, and facial behavior).
Previous studies have shown that more effective and valu-
able joint multimodal representations can be obtained by
combining complementary features in different modalities
(Shraga et al. 2020; Springstein, Müller-Budack, and Ewerth
2021), benefiting from the evolution of learning-based tech-
niques (Yang et al. 2023c; Chen et al. 2024; Li, Yang, and
Zhang 2023; Yang et al. 2023d). Most MSA works (Haz-
arika, Zimmermann, and Poria 2020; Yu et al. 2021; Yang
et al. 2022a,d, 2023b, 2022b; Li, Wang, and Cui 2023) are
based on the assumptions that all modalities are available
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during the training and testing phases. In real applications,
the assumption will not hold due to many inevitable factors,
such as privacy, device, or security constraints, resulting in
significant degradation of model performance.

Recently, several efforts focus on solving the problem of
uncertain missing modalities in MSA, which can be broadly
divided into two groups: (i) joint learning methods (Pham
et al. 2019; Wang et al. 2020; Zhao, Li, and Jin 2021; Zeng,
Liu, and Zhou 2022; Liu et al. 2024), which try to learn inte-
grated representations based on the relations among differ-
ent modalities; (ii) generative methods (Du et al. 2018; Ma
et al. 2021; Luo, Xu, and Lai 2023; Lian et al. 2023), which
reconstruct missing modalities utilizing available modali-
ties. However, these methods suffer from the following lim-
itations: 1) only perform interactions between fixed modal-
ity missing cases and fail to address stochastic real-world
scenarios; 2) focus only on coarse-grained and localized in-
teractions in missing modalities, leading to non-robust joint
representations and invalid elemental correlations; 3) ignore
redundant semantics in multimodal representations, result-
ing in performance bottlenecks.

To address the above issues, we propose a Unified
multimodal Missing modality self-Distillation Framework
(UMDF) for the MSA task under uncertain missing modal-
ities. UMDF has the following three core contributions. (i)
We design a unified self-distillation mechanism in UMDF to
automatically learn robust inherent representations from the
consistent distribution of multimodal data representations by
bidirectional knowledge transfer within a single network.
The bidirectional knowledge transfer pathway can super-
vise the model to maintain similar feature distributions and
logits distributions between heterogeneous modality miss-
ing cases. This effective pathway inhibits the unidirectional
reliance on the learned features (Morcos et al. 2018) and is
beneficial in two ways: the knowledge transfer from more
to fewer modalities facilitates the recovery of lost informa-
tion of the missing modalities, while in the opposite direc-
tion, enhances modality-specific features. (ii) We propose a
multi-grained crossmodal interaction module that progres-
sively performs coarse- and fine-grained crossmodal atten-
tion on missing modalities. It can hierarchically capture the
inter-modality interactions and intra-modality dynamics to
complement and reproduce the semantics of missing ele-
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Figure 1: The overall framework of the proposed UMDF, consists of core components: the unified self-distillation mechanism,
multi-grained crossmodal interaction module, and dynamic feature integration module.

ments of modalities. (iii) We introduce a dynamic feature in-
tegration module to further enhance the beneficial semantics
and filter the redundant features through frame-level self-
enhancement and selective filtering strategies to yield more
refined representations. Based on these components, UMDF
significantly improves the MSA performance under uncer-
tain missing-modality and complete-modality testing condi-
tions on three multimodal benchmarks.

Related Work
Multimodal Sentiment Analysis
MSA is a multimodal task that perceives and processes
heterogeneous data, such as language, audio, and visual,
to understand and analyze human sentiments (Yang et al.
2022c, 2023a; Lei et al. 2023). Mainstream works (Zadeh
et al. 2017, 2018a; Tsai et al. 2019; Hazarika, Zimmermann,
and Poria 2020; Han, Chen, and Poria 2021) enhanced the
MSA performance by designing complex structures, interac-
tion mechanisms, or fusion paradigms. For instance, MMIM
(Han, Chen, and Poria 2021) improved multimodal fusion
efficiency by hierarchically maximizing mutual information
in unimodal input pairs. However, these methods are based
on the assumption of complete data and cannot be applied to
missing modality scenarios. Recently, several works (Tran
et al. 2017; Pham et al. 2019; Zhao, Li, and Jin 2021; Zeng,
Liu, and Zhou 2022; Zeng, Zhou, and Liu 2022) have fo-
cused on solving the missing modality problem in MSA. For
instance, TATE (Zeng, Liu, and Zhou 2022) presented a tag
encoding module to guide the network to focus on missing
modalities. However, the modality missing samples during
training in the above methods are fixed and cannot be gen-
eralized to complex situations in real-world applications. In
contrast, we randomly generate two heterogeneous modality
missing versions for each sample in the training process.

Knowledge Distillation
Knowledge distillation utilizes additional supervised infor-
mation from pre-trained teacher models to assist in training
student models (Hinton, Vinyals, and Dean 2015). For mul-
timodal tasks with missing modalities, many studies trans-

fer drak knowledge from the complete-modality teacher net-
work to the missing-modality student network through co-
training (Cho et al. 2021; Hu et al. 2020; Wang et al. 2021).
Despite the promising results achieved by these methods,
some limitations remain: 1) during co-training, the teacher
network incurs a non-negligible memory overhead; 2) there
is only fixed unidirectional supervision from the complete
modalities to the missing modalities, failing to exploit and
transfer the beneficial common semantics shared by the dif-
ferent missing-modality situations. To this end, we propose
a unified self-distillation mechanism that drives a single net-
work to learn more valuable joint multimodal representa-
tions bidirectionally from heterogeneous modality missing
versions of the samples with low overhead.

Methodology
Framework Overview
Given a multimodal video segment with three modalities
as S = [XL,XA,XV ], where XL ∈ RTL×dL ,XA ∈
RTA×dA , and XV ∈ RTV ×dV denote language, audio, and
visual modalities, respectively. Tm is the sequence length
and dm is the embedding dimension, where m ∈ {L,A, V }.
The incomplete modality is denoted as X ′

m. We define two
missing modality cases to simulate the holistic challenges in
real-world scenarios: 1) intra-modality missingness, which
indicates that some frame-level features in the modality se-
quence are missing; 2) inter-modality missingness, which
denotes some modalities are entirely missing. Our goal is
to recognize the utterance-level sentiments by utilizing the
multimodal data with missing modalities.

As shown in Figure 1, the main workflow of the pro-
posed UMDF is as follows: given a video segment sample
S = [XL,XA,XV ], two heterogeneous modality missing
versions Sa and Sb are generated. Sa and Sb are fed into the
multi-grained crossmodal interaction module to obtain the
joint multimodal representations Ha and Hb. Then, these
two multimodal representations go through two branches:
1) achieving consistent supervision at the feature-level and
logits-level through a self-distillation mechanism to ade-
quately learn robust inherent representations among modal-
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Figure 2: The architecture of the proposed (a) MCIM and (b) DFIM. FFN represents the feed-forward layer. ⊙ denotes the
Hadamard product. ⊕ denotes the element-wise sum. ⊘ denotes the concatenation operation. σ denotes the sigmoid activation.

ities; 2) using a dynamic feature integration module to en-
hance and filter features to obtain a refined representation
H . Ultimately, H is fed into the task-specific fully con-
nected layers to implement the sentiment prediction. In the
inference phase, we clone a copy of the testing sample and
use them together as a two-stream input to the model for
multimodal sentiment analysis.

Unified Self-distillation Mechanism
Traditional knowledge distillation approaches for modal-
ity missing aim to supervise the learning of missing-
modality student networks with complete-modality teacher
networks. It suffers from multiple limitations, such as high-
performance requirements of the teacher network, expensive
training costs, and fixed information transfer direction (Anil
et al. 2018; Cho et al. 2021; Hu et al. 2020; Wang et al.
2021). Self-distillation is a fully-supervised pattern that ex-
ploits the potential capability of a single network from la-
beled data only without auxiliary models. The proposed uni-
fied self-distillation mechanism transfers knowledge bidi-
rectionally between heterogeneous modality-missing ver-
sions of samples within a single network via soft labels. The
soft labels contain more complete structured information
than the ground-truth labels. The mutual knowledge transfer
guides the model to enhance available semantics and restore
missing semantics to yield more valuable inherent represen-
tations. In practice, for each mini-batch, we randomly gener-
ate two heterogeneous modality-missing versions (including
the modality-complete case) based on each sample therein
and encourage them to obtain consistent semantic features
(i.e., feature distribution consistency and logits distribution
consistency) through the shared network.

Feature Distillation. We adopt Maximum Mean Discrep-
ancy (MMD) (Gretton et al. 2012) as a nonparametric met-
ric to measure the discrepancy between two feature distri-
butions, i.e., Ha and Hb. MMD has been widely used in
domain adaptation to estimate the discrepancy between two
domains (Long et al. 2015), and it has good robustness and
efficiency in computation and optimization. MMD is a ker-

nel two-sample test that accepts or rejects the null hypothe-
sis p = q depending on the observed samples. Formally, the
MMD defines the following discrepancy measures:

DH(p, q) ≜ ∥Ep [ϕ (Sa)]−Eq [ϕ (Sb)]∥2H , (1)

where H is the Reproducing Kernel Hilbert Space (RKHS)
with characteristic kernel k. The kernel k is represented as
k(Sa,Sb) = ⟨ϕ(Sa), ϕ(Sb)⟩, where ϕ(·) denotes some fea-
ture mapping that maps the original samples to RKHS. The
core theory of MMD is that hypothesis p = q holds when
and only when DH(p, q) = 0. In practice, the unbiased es-
timator of MMD can be computed as:

D̂H(p, q) =

∥∥∥∥∥ 1

n

n∑
i=1

ϕ (Sa)−
1

n

n∑
i=1

ϕ (Sb)

∥∥∥∥∥
2

H

, (2)

where n is the number of samples in a mini-batch. The fea-
ture distillation loss is represented as:

Lfea =
1

n

n∑
i=1

D̂H(ha,hb), (3)

where ha and hb denote the last elements of joint multi-
modal representations Ha and Hb.

Logits Distillation. To minimize the discrepancy in the
distribution between both logits, we construct soft labels to
supervise the learning. Notably, our proposed unified self-
distillation mechanism can be applied to both regression and
classification tasks with high scalability.

For the classification task, we use the Jensen-Shanno (JS)
divergence as a discrepancy measure, which solves the prob-
lem of Kullback-Leible (KL) divergence asymmetry and can
better measure the discrepancy between distributions. The
KL divergence is represented as:

DKL (pb∥pa) = − 1

n

n∑
i=1

p (xb) log
p (xa)

p (xb)
, (4)

where pb is the target probabilities as soft labels to super-
vise the learning of the predicted probabilities pa. fy is a
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fully-connected layer for computing the logits. The logits
distillation loss is denoted as:

Llogits = DJS(fy(ha)||fy(hb)),

=
1

2
(DKL(fy(ha)||M)) +DKL(fy(hb)||M)),

(5)

where M is the average distribution of fy(ha) and fy(hb).
For the regression task, the Mean Square Error (MSE)

is applied to estimate the discrepancy between both logits,
which facilitates network convergence and penalizes large
prediction errors. The logits distillation loss is expressed as:

Llogits = DMSE =
1

n

n∑
i=1

(fy(ha)− fy(hb))
2. (6)

Multi-grained Crossmodal Interaction Module
The modality heterogeneity normally leads to the distri-
bution gap and information redundancy in multimodal fu-
sion, resulting in task-irrelevant semantic and ambiguous
multimodal joint representations. Additionally, the modality
missing poses a greater challenge to the fusion and mod-
eling of multimodal sequences. Although previous studies
have made some advances in MSA with missing modali-
ties (Pham et al. 2019; Wang et al. 2020), they only con-
sider pairwise directional interactions among independent
modalities, leading to non-robust joint representations and
invalid elemental correlations. To tackle this problem, we
propose a Multi-grained Crossmodal Interaction Module
(MCIM) to thoroughly explore natural correlations among
elements of missing modalities by simultaneously model-
ing inter-modality interactions and intra-modality dynamics.
Specifically, MCIM sequentially performs coarse- and fine-
grained crossmodal interactions. This hierarchical interac-
tion paradigm stimulates the potential of incomplete modal-
ities to reconstruct missing semantics progressively.

Figure 2(a) illustrates the architecture of MCIM, con-
sisting of several muti-head crossmodal attention layers,
Layer-Normalization (LN) layers, and Feed-Forward Net-
works (FFN). We define the source modality as Xs with
s ∈ {L,A, V } and the target modality as Xt with t ∈
{L,A, V }. We embed the target modality as Qt = XtWQt

with WQt
∈ Rdt×dk , and the source modality as Ks =

XsWKs
with WKs

∈ Rds×dk and Vs = XsWVs
with

WVs
∈ Rds×dv . The latent adaptation from Xs to Xt is

presented as the Crossmodal Attention (CA):

Xs→t = CA(Xs,Xt) = softmax(
XtWQtW

⊤
Ks

X⊤
s√

dk
)XsWVs ,

(7)
where scaled softmax function computes the score matrix.
Subsequently, the process of the forward computation is rep-
resented as Xt = LN(Xt +Xs→t).

We introduce MCIM with the example of using language
modality as the target modality. Firstly, we input the incom-
plete modality X ′

m ∈ RTm×dm with m ∈ {L,A, V } into
a 1D temporal convolutional layer with kernel size 3 × 3
to make them project to the same dimension, denoted as
X̂ ′

m = W3×3(X
′
m). Then, we augment the positional em-

bedding (Vaswani et al. 2017) to X̂ ′
m to obtain the low-level

representations Zm ∈ RTm×d. The representations Zm

are concatenated to obtain a coarse-grained representation
ZLAV = [ZL,ZA,ZV ] ∈ R(TL+TA+TV )×d, and two fine-
grained representations as ZLA = [ZL,ZA] ∈ R(TL+TA)×d

and ZLV = [ZL,ZV ] ∈ R(TL+TV )×d. The coarse- and fine-
grained crossmodal interactions are denoted as:

Zc
L = LN(CA(ZLAV ,ZL) +ZL), (8)

Zf
L = LN(CA(ZLA,Z

c
L) +Zc

L) + LN(CA(ZLV ,Zc
L) +Zc

L).
(9)

The Ks and Vs of CA are splices of two modalities or three
modalities, neither of which is a zero vector. Ultimately,
Zf

L is fed into a FFN Fθ(·) with the LN layer to obtain
Zh

L, which is represented as Zh
L = LN(Fθ(Z

f
L) + Zf

L. In
practice, we stack D-layers of MCIM to gradually comple-
ment and enrich the sentiment semantics of modal represen-
tations. Ultimately, Zh

L, Zh
A, and Zh

V are concatenated and
feed into a transformer encoder to achieve further interac-
tions, yielding Hk ∈ RTm×3d with k ∈ {a, b}.

Dynamic Feature Integration Module
The modality missing blurs the valuable sentiment seman-
tics of the samples, leading to redundant joint multimodal
representations. To this end, we propose a Dynamic Feature
Integration Module (DFIM) to achieve adaptive information
integration of two heterogeneous missing modality repre-
sentations. The core philosophy is retaining and enhancing
the beneficial semantics in the incomplete modalities and fil-
tering the redundant information.

From Figure 2(b), DFIM receives joint multimodal rep-
resentations Hk ∈ RTm×3d with k ∈ {a, b} and m ∈
{L,A, V } generated from heterogeneous modality missing
versions of samples as inputs. Firstly, the frame-level self-
enhancement strategy is utilized to enhance the joint multi-
modal representations, which includes the following steps:
1) dimension adjustment of Hk via a fully connected layer,
denoted as Ĥk = Fk(Hk;Wθ) ∈ RTm×1, where Wθ

are network parameters. 2) The softmax function is applied
to Ĥk to obtain the score matrix Mk, denoted as Mk =
softmax(Ĥk), and its i-th entry denotes the importance of
i-th frame of Ĥk. 3) Matrix multiplication of Mk with Hk

yields the self-enhanced representation H̃k. Subsequently,
a selective filtering mechanism is proposed to filter the re-
dundant information in the joint multimodal representation
while retaining the sentiment semantics, denoted as:

µ = σ
(
W3×3([H̃a; H̃b])

)
, (10)

He = µ⊙ H̃a + (1− µ)⊙ H̃b, (11)
where σ is the sigmoid function. The integrated representa-
tion He feeds into a transformer encoder to achieve further
interactions, yielding H . The last element of H is used to
make predictions to obtain ŷ through fully-connected layers.

Training Objective The overall training objective Ltotal

is expressed as Ltotal = Ltask+λ1Lfea+λ2Llogits, where
Ltask is the task loss, λ1 and λ2 are the corresponding
weights. For the classification and regression tasks, we use
cross-entropy and MSE loss as the task losses, respectively.
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Figure 3: Comparison results of various missing rates on (a) MOSI and (b) MOSEI. We report the MAE and F1 score metrics.
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Figure 4: Comparison results of various missing rates on IEMOCAP. We comprehensively report the F1 score metrics for the
happy, sad, angry, and neutral categories.

Experiments
Datasets and Evaluation Metrics
We conduct experiments on three standard MSA datasets,
including MOSI (Zadeh et al. 2016), MOSEI (Zadeh et al.
2018b), and IEMOCAP (Busso et al. 2008). MOSI is a re-
alistic dataset consisting of 2,199 opinion video clips. There
are 1,284, 229, and 686 video clips in train, valid, and test
data, respectively. MOSEI is a dataset made up of 22,856
movie review video clips, which has 16,326, 1,871, and
4,659 samples in train, valid, and test data. Each sample
of MOSI and MOSEI is labeled by human annotators with
a sentiment score of -3 (strongly negative) to +3 (strongly
positive). On the MOSI and MOSEI datasets, we utilize
two evaluation metrics, including the Mean Absolute Error
(MAE) and F1 score computed for positive/negative classifi-
cation results. The IEMOCAP dataset contains conversation
videos. As recommended by (Wang et al. 2019), four emo-
tions (i.e., happy, sad, angry, and neutral) are selected for
emotion recognition. The F1 score is used as the metric.

Implementation Details
Feature Extraction. For the language modality, we con-
vert the transcripts of the video into pre-trained Glove word
embedding (Pennington, Socher, and Manning 2014) to ob-
tain a 300-dimensional vector. For the audio modality, we
employ the COVAREP toolkit (Degottex et al. 2014) to ex-
tract 74-dimensional low-level acoustic features, such as
12 Mel-frequency cepstral coefficients (MFCCs) and glottal
source parameters. For the visual modality, we use the Facet
(Baltrušaitis, Robinson, and Morency 2016) to indicate 35
facial action units, recording facial muscle movement to rep-
resent emotions.

Experimental Setup. All models are built on the Pytorch
toolbox with NVIDIA Tesla V100 GPUs. The Adam opti-
mizer (Kingma and Ba 2014) is employed for network op-

timization. For MOSI, MOSEI, and IEMOCAP, the detailed
hyper-parameter settings are as follows: the batch sizes are
{128, 16, 32}, the learning rates are {1e−3, 1e−3, 2e−3},
the epoch counts are {100, 30, 40}, and the attention heads
are {10, 8, 10}. The feature size and MCIM layer count are
40 and 4 on all three datasets. The hyper-parameters are
determined via the validation set. The raw features at the
modality missing positions are replaced by zero vectors.
For a fair comparison, we re-implement the SOTA methods
based on the public codebase and combine them with our ex-
perimental paradigms. The results are the average of several
experiments using five different random seeds.

Comparison with State-of-the-Art Methods
We compare UMDF with six representative and re-
producible state-of-the-art (SOTA) methods, including
complete-modality methods: Self-MM (Yu et al. 2021) and
CubeMLP (Sun et al. 2022), and missing-modality methods:
1) joint learning methods (i.e., MCTN (Pham et al. 2019)
and TransM (Wang et al. 2020)), and 2) generative methods
(i.e., SMIL (Ma et al. 2021) and GCNet (Lian et al. 2023)).
The comprehensive experiments aim to thoroughly evaluate
the robustness and effectiveness of UMDF in the cases of
intra-modality and inter-modality missingness.
Robustness to Intra-modality Missingness. Here, we
adopt a random missing strategy where frame-level fea-
tures are randomly dropped with probability p to imple-
ment the case of intra-modality missingness. Figures 3 and
4 show the model performance curves to visually evaluate
the models’ robustness. We have the following key observa-
tions. (i) The performance of all models decreases with in-
creasing the missing rate p, which shows that intra-modality
missingness loses numerous valuable sentiment semantics,
leading to blurred joint multimodal representations. (ii) The
superior performance of UMDF under complete-modality
testing condition (i.e., p = 0) is reflected in two aspects:
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Datasets Models
Testing Conditions

{l} {a} {v} {l, a} {l, v} {a, v} Avg. {l, a, v}
MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE F1

MOSI

Self-MM (Yu et al. 2021) 1.008 67.80 1.396 40.95 1.452 38.52 0.993 69.81 0.961 74.97 1.331 47.12 1.190 56.53 0.725 84.64
CubeMLP (Sun et al. 2022) 1.036 64.15 1.421 38.91 1.396 43.24 1.079 63.76 1.042 65.12 1.350 47.92 1.221 53.85 0.779 84.57
MCTN (Pham et al. 2019) 0.913 75.21 1.138 59.25 1.137 58.57 0.875 77.81 0.895 74.82 1.064 64.21 1.004 68.31 0.891 80.12
TransM (Wang et al. 2020) 0.870 77.64 1.106 63.57 1.153 56.48 0.817 82.07 0.853 80.90 1.035 67.24 0.972 71.32 0.825 82.57

SMIL (Ma et al. 2021) 0.894 78.26 1.067 67.69 1.112 59.67 0.866 79.82 0.859 79.15 1.019 71.24 0.970 72.64 0.818 82.85
GCNet (Lian et al. 2023) 0.853 80.91 1.071 65.07 1.135 58.70 0.792 84.73 0.810 83.58 0.994 70.02 0.943 73.84 0.796 83.20

UMDF (Ours) 0.832 82.92 1.056 67.80 1.117 59.92 0.775 85.63 0.816 84.09 0.973 72.98 0.928 75.56 0.782 83.36

MOSEI

Self-MM (Yu et al. 2021) 0.723 71.53 1.308 43.57 1.367 37.61 0.701 75.91 0.717 74.62 1.278 49.52 1.016 58.79 0.548 83.69
CubeMLP (Sun et al. 2022) 0.768 67.52 1.353 39.54 1.428 32.58 0.725 71.69 0.750 70.06 1.301 48.54 1.054 54.99 0.540 83.17
MCTN (Pham et al. 2019) 0.654 75.50 1.125 62.72 1.138 59.46 0.668 76.64 0.654 77.13 1.080 64.84 0.887 69.38 0.607 81.75
TransM (Wang et al. 2020) 0.661 77.98 1.107 63.68 1.160 58.67 0.630 80.46 0.651 78.61 1.102 62.24 0.885 70.27 0.577 81.48

SMIL (Ma et al. 2021) 0.627 76.57 1.089 65.96 1.122 60.57 0.606 77.68 0.617 76.24 1.063 66.87 0.854 70.65 0.568 80.74
GCNet (Lian et al. 2023) 0.602 80.52 1.064 66.54 1.107 61.83 0.586 81.96 0.597 81.15 1.016 69.21 0.829 73.54 0.545 82.35

UMDF (Ours) 0.582 81.57 1.050 67.42 1.112 61.57 0.564 83.25 0.573 82.14 1.023 69.48 0.817 74.24 0.556 82.16

Table 1: Performance comparison under different testing conditions of inter-modality missingness on MOSI and MOSEI.

Models Metrics Testing Conditions

{l} {a} {v} {l, a} {l, v} {a, v} Avg. {l, a, v}

Self-MM (Yu et al. 2021)

Happy 66.9 52.2 50.1 69.9 68.3 56.3 60.6 90.8
Sad 68.7 51.9 54.8 71.3 69.5 57.5 62.3 86.7

Angry 65.4 53.0 51.9 69.5 67.7 56.6 60.7 88.4
Neutral 55.8 48.2 50.4 58.1 56.5 52.8 53.6 72.7

CubeMLP (Sun et al. 2022)

Happy 68.9 54.3 51.4 72.1 69.8 60.6 62.9 89.0
Sad 65.3 54.8 53.2 70.3 68.7 58.1 61.7 88.5

Angry 65.8 53.1 50.4 69.5 69.0 54.8 60.4 87.2
Neutral 53.5 50.8 48.7 57.3 54.5 51.8 52.8 71.8

MCTN (Pham et al. 2019)

Happy 76.9 63.4 60.8 79.6 77.6 66.9 70.9 83.1
Sad 76.7 64.4 60.4 78.9 77.1 68.6 71.0 82.8

Angry 77.1 61.0 56.7 81.6 80.4 58.9 69.3 84.6
Neutral 60.1 51.9 50.4 64.7 62.4 54.9 57.4 67.7

TransM (Wang et al. 2020)

Happy 78.4 64.5 61.1 81.6 80.2 66.5 72.1 85.5
Sad 79.5 63.2 58.9 82.4 80.5 64.4 71.5 84.0

Angry 81.0 65.0 60.7 83.9 81.7 66.9 73.2 86.1
Neutral 60.2 49.9 50.7 65.2 62.4 52.4 56.8 67.1

SMIL (Ma et al. 2021)

Happy 80.5 66.5 63.8 83.1 81.8 68.2 74.0 86.8
Sad 78.9 65.2 62.2 82.4 79.6 68.2 72.8 85.2

Angry 79.6 67.2 61.8 83.1 82.0 67.8 73.6 84.9
Neutral 60.2 50.4 48.8 65.4 62.2 52.6 56.6 68.9

GCNet (Lian et al. 2023)

Happy 81.9 67.3 66.6 83.7 82.5 69.8 75.3 87.7
Sad 80.5 69.4 66.1 83.8 81.9 70.4 75.4 86.9

Angry 80.1 66.2 64.2 82.5 81.6 68.1 73.8 85.2
Neutral 61.8 51.1 49.6 66.2 63.5 53.3 57.6 71.1

UMDF (Ours)
Happy 82.4 68.6 67.2 85.9 84.2 69.1 76.2 87.9

Sad 81.2 70.7 67.1 83.6 82.2 71.9 76.1 86.5
Angry 81.6 67.0 64.8 83.9 82.5 67.9 74.6 85.8
Neutral 64.3 53.2 50.9 67.2 65.3 55.0 59.3 70.5

Table 2: Performance comparison under different testing conditions of inter-modality missingness on IEMOCAP.

1) UMDF outperforms previous missing-modality methods
(i.e., MCTN, TransM, SMIL, and GCNet) in all datasets. 2)
UMDF achieves competitive results with complete-modality
methods (i.e., Self-MM and CubeMLP). (iii) In the case of

intra-modality missingness (i.e., 0 < p < 1), the missing-
modality methods are superior to the complete-modality
ones because their training paradigms focus on capturing
valuable semantics and complementing multimodal repre-
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Figure 5: Ablation results of various missing rates on MOSI.

Models Testing Conditions

{l} {a} {v} {l, a} {l, v} {a, v} Avg. {l, a, v}

UMDF 82.92 67.80 59.92 85.63 84.09 72.98 75.56 83.36
w/o Lfea 80.84 65.75 58.08 83.79 82.02 70.54 73.50 82.76

w/o Llogits 81.05 66.04 58.63 83.98 82.47 71.08 73.88 82.53
w/o MCIM 81.76 66.53 59.02 84.24 83.01 71.79 74.39 83.09
w/o DFIM 82.03 67.12 59.18 84.85 83.86 72.16 74.87 82.73

Table 3: Ablation results for the testing conditions of inter-
modality missingness on MOSI.

sentations from incomplete data. Benefiting from the pro-
posed self-distillation mechanism, UMDF achieves missing
features reconstruction and bidirectional knowledge trans-
fer, resulting in the strongest robustness among all models.
Robustness to Inter-modality Missingness. Furthermore,
we show the performance under the case of inter-modality
missingness. In Tables 1&2, “{l}” means only the language
modality is available, while audio and visual modalities are
missing. “{l, a, v}” denotes the complete-modality testing
condition where all modalities are available. “Avg.” indi-
cates the average performance in all six missing-modality
testing conditions. We have the following key observa-
tions. (i) Firstly, the performance of UMDF in the case
of inter-modality missingness is mostly worse than that
of the full modality, illustrating that the sentiment seman-
tics contained in the joint representation is enriched by
combining complementary information from heterogeneous
modalities. (ii) Among all models, UMDF works best, and
its advantages derive from the multi-granularity fusion of
cross-modality knowledge and the adaptive enhancement of
modality-specific features. (iii) In the bimodal missing test-
ing conditions, UMDF achieves comparable performance
with the language modality as with the complete modali-
ties. In the unimodal missing testing conditions, the com-
bination of language and audio modalities performs best,
even outperforming the complete modality input in indi-
vidual metrics. These observations imply that the language
modality contains the most informative sentiment clues and
contributes indispensably to recovering missing semantics.

Ablation Studies
To validate the necessity of the different components, we
conduct comprehensive ablation studies under two miss-
ing modality cases on the MOSI dataset. The results are
presented in Figure 5 and Table 3. (i) Firstly, Lfea and

(a) CubeMLP (b) TransM

(c) SMIL (d) UMDF

Figure 6: Visualization of the joint multimodal representa-
tions. Red, blue, and green markers indicate negative, posi-
tive, and neutral sentiment samples, respectively.

Llogits are removed from the self-distillation mechanism,
and the decreased performance indicates that the bidirec-
tional knowledge transfer plays a crucial role in the recovery
of the missing element semantics. (ii) Moreover, we substi-
tute self-attention layers for all crossmodal attention layers
in MICM. The degraded performance indicates that it is im-
perative to hierarchically model inter-modal interactions and
intra-modal dynamics to reproduce the missing semantics
progressively. (iii) Eventually, DFIM is replaced by a sim-
ple concatenation operation. The worse performance reveal-
ing that adaptively enhancing and filtering the semantics in
distinct modalities benefits the model performance decently.

Qualitative Analysis

To intuitively show the robustness of UMDF against modal-
ity missingness, we visualize the distribution of joint rep-
resentations from UMDF and other methods on the MOSI
dataset. The testing condition is set to only language modal-
ity available and p = 0.5. In Figure 6(a), joint represen-
tations with different emotion categories are heavily con-
founded, causing unsatisfactory performance. This finding
implies that the complete-modality CubeMLP fails to tackle
the missing modality challenge. In Figure 6(b)&(c), The
missing modality methods TransM and SMIL mitigate indis-
tinguishable sentiment semantics, which appropriately sep-
arates positive and negative categories. In contrast, UMDF
has the most robust discrimination, as it effectively decou-
ples the distinct sentiment representations in Figure 6(d).

Conclusion
In this paper, we propose the UMDF framework to tackle the
missing modality dilemma in the MSA task. UMDF yields
robust joint multimodal representations through distillation-
based distribution supervision and attention-based multi-
grained interactions. Numerous experiments demonstrate
the effectiveness of our framework under uncertain missing-
modality and complete-modality testing conditions.
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