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Abstract

Time-inconsistency is a characteristic of human behavior in
which people plan for long-term benefits but take actions that
differ from the plan due to conflicts with short-term benefits.
Such time-inconsistent behavior is believed to be caused by
present bias, a tendency to overestimate immediate rewards
and underestimate future rewards. It is essential in the re-
search community of behavior economics to investigate the
relationship between present bias and time-inconsistency. In
this paper, we propose a model for analyzing agent behav-
ior with present bias in tasks to make progress toward a goal
over a period. Unlike previous models, the state sequence of
the agent can be described analytically in our model. Based
on this property, we analyze three crucial problems related
to agents under present bias: task abandonment, optimal goal
setting, and optimal reward scheduling. Extensive analysis re-
veals how present bias affects the condition under which task
abandonment occurs and optimal intervention strategies. Our
findings are meaningful for preventing task abandonment and
intervening through incentives in the real world.

1 Introduction
People often do not achieve their goals because they change
their plans in the middle of a task, even when nothing unex-
pected happens. For instance, some people may plan to stick
to a diet for a month but end up indulging on the weekend.
Similarly, a student may plan to do their assignments every
day during vacation but procrastinate until the last day. Such
behavior is known as time-inconsistency, which is a topic of
active research in behavioral economics.

Time-inconsistent behavior is often caused by present
bias (Frederick, Loewenstein, and O’donoghue 2002), a ten-
dency to overestimate the value of immediate rewards and
underestimate the value of future rewards. As an example,
when planning a diet, the individual may not give much
thought to treats on weekends, believing they can resist the
temptation. However, when the weekend arrives, the desire
for those treats becomes stronger, and the person may find it
difficult to stick to their diet plan.

Researchers have been utilizing mathematical models
to study the effects of present bias on human behavior,
and recently Kleinberg and Oren (2014) proposed a new
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model which combines previous models. The Kleinberg–
Oren (KO) model is based on graph theory and simulates the
time-inconsistent behavior of a person affected by present
bias with an agent moving on a graph. The model repre-
sents a task with a directed acyclic graph whose vertices
correspond to the agent’s states. Each edge has a cost for
moving between vertices, and the goal vertex has a reward.
On each vertex, the agent evaluates the value of each path
to the goal and approaches the goal by following the path
that seems most valuable to it. The value of each path is
evaluated with a particular discounting scheme called quasi-
hyperbolic discounting (Laibson 1997), which introduces
present bias into the agent. The KO model effectively repro-
duces typical time-inconsistencies in behavioral economics,
such as procrastination, task abandonment, and choice re-
duction. The model is also highly expressive and can rep-
resent various real-world tasks. We could use this model to
predict undesirable future outcomes or determine interven-
tions for agents to achieve better outcomes.

However, the high flexibility of the model also makes it
challenging to analyze its properties. The agent’s future be-
havior in the KO model cannot be derived in a closed form;
simulation is necessary to determine the agent’s behavior.
Additionally, it is difficult to identify optimal interventions
for guiding the agent to the goal. Tang et al. (2017) and Al-
bers and Kraft (2019) considered intervention by adding in-
termediate rewards, while Albers and Kraft (2021) increased
the cost of edges. It is shown in both settings that finding
the optimal intervention is NP-hard, which demonstrates the
computational difficulty of the KO model.

We introduce a model that is easy to analyze and com-
pute while still being able to handle typical tasks in real life
based on the KO model. We limit tasks to increasing a real
number, which we refer to as progress, over a period. This
type of task is commonly encountered in daily life; for exam-
ple, completing a graduation thesis within six months (see
the beginning of Section 3 for more examples). Our model
shares the same assumptions on agent behavior as that of the
KO model but differs in three ways.

• The agent’s state is represented as a pair of time index
and progress rather than as a vertex of a graph.

• The agent can take (uncountably) infinite states as we re-
gard progress as a real number rather than as an integer.
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• The cost of an agent’s action is expressed as c(∆) with
a function c : R → R ∪ {+∞}, where ∆ denotes the
change in the progress between two adjacent time steps.

The main benefit of this model is that it simplifies its the-
oretical treatment. We demonstrate that for a specific class
of c, the trajectory of states taken by an agent can be de-
scribed analytically. This tractability is a significant advan-
tage not found in existing models and allows us to perform
further theoretical analyses, including finding optimal inter-
ventions. Based on such analytical descriptions, we analyze
three problems related to agents under present bias.

The first issue we examine is task abandonment, which
refers to when a person starts a long-term project but gives
up on it before completion, despite no change in the costs
or rewards associated with the project. We theoretically an-
alyze the conditions that lead to task abandonment in our
model. Our analysis shows that there is a threshold for the
strength of present bias, which plays an essential role in the
occurrence of task abandonment. Task abandonment never
occurs when the present bias is weaker than the threshold.
We further analyze the asymptotic behavior of the thresh-
old as the period’s length grows, obtaining analytical expres-
sions for it. These results provide new insights into the con-
ditions under which task abandonment occurs in real-world
tasks.

The second problem is goal optimization; the goal has
been fixed thus far, but from here, we control the goal to
intervene in the agent’s behavior. We consider the problem
of setting the goal to maximize the progress achieved by the
agent, given a period and reward amount. The crucial aspect
in solving this problem is whether to allow exploitative re-
wards, i.e., rewards that influence the agent’s behavior but
are not claimed because the agent cannot satisfy the condi-
tions for receiving the reward. Our analysis reveals the struc-
ture of the optimal solution in both cases of allowing and not
allowing exploitative rewards. It shows that exploitative re-
wards can increase the progress of agents with strong present
bias. This result suggests that people with strong present bias
are easily controlled and deceived by exploitative rewards.

The third problem is reward scheduling, a more advanced
intervention for the agent. Given a total period and reward
budget, the goal is to maximize final progress by appropri-
ately splitting the total period and setting goals and rewards
for each period. We propose an efficient algorithm for find-
ing the optimal solution and derive analytical optimal solu-
tions for special cases. Our analysis shows that the optimal
strategy depends on the strength of present bias. For agents
with weak present bias that can adequately evaluate rewards
and costs, offering rewards all at once is best. In contrast,
frequent intermediate rewards increase progress for agents
with strong present bias. This result indicates that we should
vary the reward scheduling plan depending on the strength
of the agents’ present bias.

Note that proofs are deferred to Section 8.

2 Related Work
The relationship between present bias and time-inconsistent
behavior has been a central topic in behavioral economics

for many years, both experimentally and theoretically (Fred-
erick, Loewenstein, and O’donoghue 2002; Camerer and
Loewenstein 2004; Wilkinson and Klaes 2017). In these
studies, a discounting scheme for future values plays a cru-
cial role. Classical economics used exponential discounting
(Samuelson 1937), which discounts value at a constant rate
but can only lead to time-consistent behavior. To resolve
this issue, hyperbolic discounting, in which the discount rate
decreases with time, was proposed and succeeded in ex-
plaining the time-inconsistent behavior of people (Ainslie
1975). Quasi-hyperbolic discounting (Laibson 1997; Phelps
and Pollak 1968) was proposed to relax the analytical in-
tractability of hyperbolic discounting and is widely used.
This study also utilizes quasi-hyperbolic discounting to in-
troduce present bias into the model.

Numerous studies have analyzed human behavior on the
basis of models with quasi-hyperbolic discounting. These
studies covered topics such as consumption-saving behav-
ior (Laibson 1997, 1998), addiction (O’Donoghue and Ra-
bin 1999; Gruber and Köszegi 2001), and decisions in infor-
mation acquisition (Carrillo and Mariotti 2000). Particularly
relevant to our study is the analysis of procrastination and
task abandonment in long-term projects by O’Donoghue and
Rabin (2008). This study is similar to ours in that it analyzes
the influence of present bias on long-term goal-achieving be-
havior. However, it differs from ours in that the model does
not allow for an analytical description of the agent’s state
sequences, nor does it deal with the optimization problem of
interventions.

As mentioned in Section 1, our model is inspired by the
work of Kleinberg and Oren (2014). They investigated the
graph-theoretic properties of the model, such as cost ratio,
possible paths, and minimal motivating subgraphs. How-
ever, they do not give the analytical description of agents’
action sequences and optimization algorithms for interven-
tions to guide agents. Although subsequent studies have
tackled the optimization problems of various interventions
(Albers and Kraft 2019, 2021; Tang et al. 2017), they show
the computational intractability of these problems and only
propose approximation algorithms. Our study succeeds in
analytically describing the agent’s behavior and finding op-
timal intervention strategies by restricting the types of tasks.

The KO model has been extended in various directions to
model real-world human behavior more accurately. Klein-
berg, Oren, and Raghavan (2016) introduced a sophisti-
cated agent in the model, which is an agent aware of its
present bias and its influence (in contrast, the KO model
assumes a naive agent unaware of its own present bias).
Kleinberg, Oren, and Raghavan (2017) introduced sunk-cost
bias (Arkes and Blumer 1985; Kahneman and Tversky 2013)
into the model, which is the tendency for people to con-
tinue investing in something they have already invested in,
even when it no longer makes rational sense. Gravin et al.
(2016) proposed a model that draws the present-bias param-
eter from a fixed distribution in each round. Our model does
not adopt such extensions and is based on the original KO
model. Developing analytically tractable models that reflect
these advanced factors will be future work.

Our model and reinforcement learning (Sutton and Barto
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2018) are deeply related. The assumption that agents max-
imize their gains with time discounting is a commonality
between reinforcement learning and our model. However,
reinforcement learning and our model have significantly dif-
ferent objectives. Reinforcement learning explores what ac-
tions an agent should take to maximize its gains in unknown
environments. In contrast, our model aims to gain insights
into how the agent behaves under present bias and what in-
terventions can improve the agent’s behavior.

3 Proposed Model
Our study deals with tasks that involve increasing a real
number, called progress, to reach a goal over a period. We
assume that the progress never decreases. The following
tasks fall into this category.

• Consider a person who sets a goal of exercising 30
hours in a month to improve his/her health condition.
In this case, the period corresponds to one month, and
the progress corresponds to the time spent exercising to
date.

• Consider a salesperson trying to achieve a sales target of
one million dollars in one year. In this case, the period
corresponds to one year, and the progress corresponds to
total sales so far.

• Consider a student who sets a goal to complete his/her
graduation thesis within six months. In this case, the pe-
riod corresponds to six months, and the progress corre-
sponds to the degree of completion of the graduation the-
sis.

We explain how to model the behavior of an agent dealing
with such a task under present bias.

3.1 Formulation
Let T ∈ Z>0, θ ∈ R≥0, and R ∈ R≥0 denote the period,
goal, and reward, respectively. Let a pair (t, x) denote the
state of an agent, where t ∈ {0, 1, . . . , T} is the time in-
dex, and x ∈ R≥0 represents the progress that the agent
has achieved at that time. The agent is initially in the state
(0, 0) and follows the sequence (1, x1), (2, x2), . . . , (T, xT )
as time passes. Transitioning from state (t, xt) to state
(t + 1, xt+1) involves a cost. The cost is expressed as
c(xt+1 − xt) with a cost function c : R → R ∪ {+∞}.

Let us explain how an agent decides which state to take
next. Suppose that the current state of the agent is (t −
1, xt−1) for t ≥ 1. The agent evaluates the cost to follow
the state sequence (t, yt), . . . , (T, yT ) by

Ct(yt, . . . , yT ) :=
1

β
c(yt − xt−1) +

T∑
i=t+1

c(yi − yi−1)

−R · 1[yT ≥ θ], (1)

where 1[yT ≥ θ] = 1 if yT ≥ θ, and 1[yT ≥ θ] = 0
otherwise. The first term of (1) represents the transition cost
from (t − 1, xt−1) to (t, yt), the second term represents the
cost at subsequent times, and the third term represents the
reward.

The first term is amplified by a coefficient of 1
β due to

present bias, where β ∈ (0, 1] is the present-bias param-
eter; the agent overestimates the cost currently faced be-
cause of present bias.1 This formulation of present bias is
called quasi-hyperbolic discounting (Laibson 1997) and is
also used in the KO model. The third term of (1) means that
the reward R is obtained if the final progress yT is greater
than or equal to θ. The reward has a negative sign because it
has the opposite effect on the cost.

The agent computes the state sequence
(t, y∗t ), . . . , (T, y

∗
T ) that minimizes the cost (1) and

transitions from state (t − 1, xt−1) to (t, y∗t ). Formally, the
agent’s state sequence is defined by x0 := 0 and

xt := argmin
yt∈R

min
yt+1,...,yT∈R

Ct(yt, . . . , yT ) (2)

for t = 1, . . . , T .
Let us verify that this model is a variant of the KO model.

A vertex of the graph in the KO model corresponds to a state
(t, x) in our model, and an edge of the graph corresponds
to a transition between two states (t, xt) and (t + 1, xt+1).
Under such correspondence, the rules of agent behavior are
perfectly consistent between the two models. Note that our
model differs from the KO model in that the possible state
of the agent is a continuous quantity rather than a discrete
quantity.

To make our model mathematically tractable, we assume
that the cost function c can be written as

c(∆) =

{
∆α if ∆ ≥ 0,
+∞ otherwise,

(3)

where α > 1 is a parameter. Because we focus on tasks
where the progress never decreases, we set c(∆) = +∞ for
∆ < 0. Although this function may appear limited initially,
it has the characteristics required for our desired modeling.

First, the cost function c should be convex. This is be-
cause tasks we deal with here are less labor-intensive if one
does them steadily over a long time rather than all at once
in a short time. For example, exercising one hour daily for
ten days is less demanding than exercising ten hours at a
time. Writing three pages of a graduation thesis per day over
ten days is less burdensome than writing 30 pages in one
day. The convexity of c expresses this property. Second, the
cost function c should satisfy the property that c(∆) = 0 if
and only if ∆ = 0. In the accumulation-type tasks consid-
ered in this paper, it is reasonable to suppose that there is no
progress without effort and vice versa. Our cost function in
(3) satisfies these two conditions and has α as a parameter,
which can be adjusted to approximate the cost function for
real-world tasks.

Note that our model assumes that the agent is naive.
Naivete and sophistication have been studied in relation
to procrastination (O’Donoghue and Rabin 1999a, 2001).
Naive agents plan for the future without considering that

1Note that a large present-bias parameter β means weak present
bias. Although this may seem confusing, we adopt this notation
in our paper for consistency with existing studies (Laibson 1997;
O’Donoghue and Rabin 2008; Kleinberg and Oren 2014).
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their future selves will be affected by present bias, while so-
phisticated agents make plans considering that present bias
will also affect their future selves. Naive models themselves
are crucial and have been extensively studied (Kleinberg and
Oren 2014; Gravin et al. 2016; Albers and Kraft 2021) be-
cause they will be the basis of complex models, including
sophisticated ones (Kleinberg, Oren, and Raghavan 2016,
2017). We assume naivete in this paper and leave extensions
to sophisticated models as future work.

3.2 Analytical Solution
To simplify the notation, let

pt :=
T − t

T − t+ β
1

α−1

. (4)

The following lemma gives a recursive formula for the state
sequence ((t, xt))

T
t=0 taken by the agent.

Lemma 1. The following holds for t = 1, 2, . . . , T :

xt =

{
θ + pt(xt−1 − θ) if xt−1 ≥ θ̃t,
xt−1 otherwise,

where θ̃t := θ −R
1
α

(
T − t+ β

1
α−1
)α−1

α .

Because θ̃t is increasing in t, Lemma 1 implies that there
exists t∗ ∈ {0, . . . , T} such that

xt =

{
θ + pt(xt−1 − θ) if t ≤ t∗,
xt−1 otherwise.

(5)

If t∗ = T , the agent achieves the goal θ without giving up;
otherwise, the agent gives up at time t∗. In particular, the
agent abandons the task in the middle if 1 ≤ t∗ < T . This
result indicates that our model can reproduce task abandon-
ment, in which an agent starts a task but gives up in the mid-
dle without any changes in underlying costs and rewards.

The following theorem characterizes the abandonment
time t∗ and gives an analytical formula for the sequence
((t, xt))

T
t=1 taken by the agent.

Theorem 1. The abandonment time t∗ is the smallest t ∈
{0, . . . , T − 1} such that(

T − t− 1 + β
1

α−1

)1−α t∏
i=1

pαi >
R

θα
(6)

if there exists such t; otherwise, t∗ = T . Moreover, the fol-
lowing holds for t = 1, . . . , T :

xt = θ

(
1−

min{t, t∗}∏
i=1

pi

)
. (7)

The analytical formula (7) is a major advantage of our
model over the KO model. Through the formula, we will in-
vestigate the properties of the agent’s behavior under present
bias in the following sections.

Figure 1 shows the agents’ state sequences computed by
(7) for α = 2, T = 10, and R = θ = 1. A very small β, say
β = 0.1, leads to task abandonment, i.e., giving up the task
without reaching the goal. When β is relatively small, say

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

x
t

β = 0.1

β = 0.3

β = 0.5

β = 0.7

β = 0.9

Figure 1: State sequences ((t, xt))
T
t=1 for α = 2, T = 10,

and R = θ = 1.

β = 0.3, progress starts slowly and grows rapidly toward the
end. This phenomenon can be interpreted as procrastination
induced by present bias. In contrast, if β is as large as 0.9,
the agent makes (nearly) constant progress over the whole
period.

4 Task Abandonment and Present Bias
The previous section showed that our model reproduces
task abandonment. This section analyzes the relationship be-
tween task abandonment and the present-bias parameter β.

4.1 Condition for Task Abandonment
Let us fix the period T . We introduce the concept of task-
abandonment inducing for the present-bias parameter.
Definition 1. The present-bias parameter β is said to be task-
abandonment inducing (TAI) if the abandonment time t∗ in
Theorem 1 satisfies 0 < t∗ < T for some θ,R ∈ R≥0.

An agent with a TAI β may abandon the task in the mid-
dle depending on the reward R or the goal θ. On the other
hand, an agent with non-TAI β never abandons the task, i.e.,
either gives up the goal from the beginning or achieves the
goal without giving up. Investigating the TAI condition on
β helps us understand the relationship between the strength
of present bias and the time-inconsistency of abandoning a
task in the middle. The model’s properties, including opti-
mal intervention strategies, are greatly affected by whether
or not β is TAI, as shown in Sections 5 and 6.

To simplify the notation, let qt denote the left-hand side
on condition (6):

qt :=
(
T − t− 1 + β

1
α−1

)1−α t∏
i=1

pαi . (8)

Theorem 1 implies that β is not TAI if and only if
max0≤t<T qt = q0. To check if β is TAI, let us observe
the properties of qt.
Lemma 2. The following hold:

(a) if β ≤ (1− 1
α )

α−1, then q0 < q1 < · · · < qT−1,
(b) if (1 − 1

α )
α−1 < β < (1 − 1

α )
α−1
2 , then there exists

t ∈ {0, . . . , T − 1} such that q0 ≥ q1 ≥ · · · ≥ qt and
qt < qt+1 < · · · < qT−1,
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(c) if β ≥ (1− 1
α )

α−1
2 , then q0 > q1 > · · · > qT−1.

A closer look at case (b) yields the following lemma.

Lemma 3. There exists (1 − 1
α )

α−1 < β0 < (1 − 1
α )

α−1
2

that depends only on T and α and satisfies the following:

(a) if (1− 1
α )

α−1 < β < β0, then q0 < qT−1,
(b) if β = β0, then q0 = qT−1,
(c) if β0 < β < (1− 1

α )
α−1
2 , then q0 > qT−1.

In the remaining part of the paper, let β0 denote the β0 in
Lemma 3. Since β is not TAI if and only if max0≤t<T qt =
q0, Lemmas 2 and 3 yield the following theorem.
Theorem 2. The parameter β is TAI if and only if β < β0.

Theorem 2 shows that if β is large, i.e., the present bias
is weak, the agent will accomplish the goal if it has decided
to achieve the goal at t = 0. If β is small, the agent may
abandon the task in the middle. These results are consistent
with the past findings on present bias and time-inconsistency
(Kleinberg and Oren 2014). The threshold β0 will be crucial
in the following sections.

As in Lemma 3, β0 is lower-bounded as β0 > (1 −
1
α )

α−1. At the same time, elementary calculus shows that
(1− 1

α )
α−1 > 1

e for all α > 1 and limα→∞(1− 1
α )

α−1 = 1
e ,

where e is Euler’s number. Therefore, a small β ≤ 1
e ≈

0.368 is consistently TAI in our model; interestingly, the
threshold involves Euler’s number.

4.2 Asymptotic Formula for β0
The following theorem gives an asymptotic formula for β0

when T → ∞.
Theorem 3. The following holds:

β0 =

(
1− 1

α

)α−1(
1 +

α log Γ(1− 1
α ) + log(1− 1

α )

log T

)
+ o

(
1

log T

)
,

where Γ is the gamma function. In particular, if α = 2, then

β0 =
1

2
+

log(π/2)

2 log T
+ o

(
1

log T

)
.

Theorem 3 gives several insights about the threshold β0.

• The threshold β0 converges to
(
1− 1

α

)α−1
as T → ∞.

The value
(
1− 1

α

)α−1
is equal to the lower bound on β0

given in Lemma 3.

• The convergence speed is slow as β0 −
(
1− 1

α

)α−1
=

Θ(1/ log T ).
• When α = 2, the asymptotic formula for β0 involves Pi,

interestingly.

5 Optimal Goal Setting
In this section, we consider the problem of setting a goal θ
to maximize the final progress xT :

max
θ≥0

xT , (9)

given the period T and reward R. This problem arises nat-
urally in real-world scenarios. For example, when a com-
pany’s CEO establishes a sales goal for an employee and
offers a bonus upon goal achievement. In this context, if the
CEO sets an excessively ambitious goal, the employee may
perceive them as unattainable and consequently lose moti-
vation, resulting in reduced overall sales performance. Con-
versely, if the goal is set too low, the employee may settle
for minimal sales to attain the rewards, leading to subopti-
mal sales outcomes. The question then arises: How should
the CEO set the goal to maximize attained sales?

The optimal solution to this problem varies depending on
whether exploitative rewards are allowed. Exploitative re-
wards are rewards placed to motivate the agent but are not
claimed because the agent never reaches the target. Note
that a biased agent may give up a task in the middle, but
even in that case, the agent has achieved a certain amount
of progress by then. Specifically, a biased agent may make
greater progress when we set an unreachable but high goal
(i.e., a goal with an exploitative reward) than when we set a
reachable but low goal. However, using exploitative rewards
can raise ethical concerns and decrease human motivation
in real-world scenarios, so they should be used cautiously.
The importance of considering whether to allow exploita-
tive reward in the KO model is highlighted in previous stud-
ies (Kleinberg and Oren 2014; Tang et al. 2017; Albers and
Kraft 2019), but has yet to be examined in goal-setting prob-
lems. This section will examine both scenarios where ex-
ploitative rewards are allowed and not allowed. We use the
notation below:

Λ(t) :=
(
T − t+ β

1
α−1

)α−1
α Γ(T − t+ 1)Γ(T + β

1
α−1 )

Γ(T )Γ(T − t+ 1 + β
1

α−1 )
.

5.1 Optimal Solutions
When β is not TAI, no reward setting can be exploitative. In
other words, the optimal solution remains the same whether
or not exploitative rewards are allowed. The following theo-
rem provides an explicit formula for the optimal solution.
Theorem 4. Suppose that β is not TAI. Regardless of
whether or not exploitative rewards are allowed, the optimal
solution to problem (9) is

θ = R
1
αΛ(1).

The optimal value is the same as θ.
When β is TAI, the optimal solution can vary depend-

ing on whether or not exploitative rewards are allowed. The
following theorem gives an explicit formula for when ex-
ploitative rewards are not allowed. For cases where they are
allowed, we can reduce the continuous optimization prob-
lem (9) to a discrete one, though the optimal solution is dif-
ficult to express in a closed form.
Theorem 5. Suppose that β is TAI.

(a) Suppose that exploitative rewards are not allowed.
Then the optimal solution to problem (9) is

θ = R
1
αΛ(T )

The optimal value is the same as θ.
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Figure 2: The plots of ut defined by (10) when α = 10,
T = 100, and R = 1.

(b) Suppose that exploitative rewards are allowed. If the
agent abandons the reward at time t ∈ {1, . . . , T}, the
maximum final progress is

ut := R
1
α

(
Λ(t)− T − t(

T − t+ β
1

α−1
)1/α

)
. (10)

Problem (9) is reduced to

max
t∈{1,...,T}

ut. (11)

For the optimal solution t∗ to problem (11), the optimal
solution to (9) is written by

θ = R
1
αΛ(t∗). (12)

As we can compute u1, . . . , uT in (11) in O(T ) time, the
optimal solution to problem (9) is obtained in O(T ) time
from Theorem 5(b) when exploitative rewards are allowed.

5.2 Discussion
Figure 2 shows ut defined by (10) when α = 10, T = 100,
and R = 1. We observe the following from Figure 2.

• Let t∗ = argmaxt∈{1,...,T} ut. Since ut represents the
maximum final progress when giving up at time t, it is
optimal not to use an exploitative reward when t∗ = T ,
and optimal to use it when t∗ ̸= T . Thus, using exploita-
tive rewards is optimal in all the settings of Figure 2.

• The smaller β is, the larger ut∗/uT is. Because ut∗ and
uT are the maximum values of final progress with and
without exploitative rewards, respectively, large ut∗/uT

means a significant effect of the exploitative rewards.
Thus, the smaller β is, the more significant the effect of
the exploitative rewards.

These observations indicate that exploitative rewards boost
the final progress of agents with strong present bias; they get
lured easily by exploitative rewards.

Comparison with the literature. Several studies have an-
alyzed optimal goal setting under present bias via math-
ematical models (Koch and Nafziger 2011; Koch et al.
2014; Hsiaw 2013). However, these studies have limited the
agent’s possible actions at each time step to a few discrete
options (e.g., binary choices like “perform a task” or “do not
perform a task”). In contrast, our model allows agents to se-
lect continuous progress at each time step. This study is the

𝑇! 𝑇" 𝑇#

𝜃!

𝜃"

𝜃#

Time

Progress

Presented reward: 𝑅!

Earned reward: 𝑅"

Scheduled reward: 𝑅#

Figure 3: An example of reward scheduling when k = 3.

first to consider the optimization problem of goal-setting in
continuous-state settings.

6 Optimal Reward Scheduling
Next, we consider a reward scheduling problem that aims to
maximize the agent’s progress when the reward can be pre-
sented multiple times. Our analysis will show that present-
ing rewards multiple times can increase the sum of progress
compared to presenting all rewards at once. We will also see
that optimal reward scheduling varies greatly depending on
the present-bias parameter β.

For the problem setup, we focus on the setting where ex-
ploitative rewards are not allowed to maintain the agent’s
motivation. Given the total period T ∈ Z>0 and the total re-
ward R ∈ R≥0, we divide them into k periods T1, . . . , Tk ∈
Z>0 and k rewards R1, . . . , Rk ∈ R≥0, where

∑k
i=1 Ti =

T ,
∑k

i=1 Ri = R, and k ∈ {1, . . . , T} is arbitrary. At the
beginning of the i-th period, the agent is offered the reward
Ri and works toward the reward. If the agent increases the
progress by θi ∈ R≥0 during the period, it receives the re-
ward Ri. Note that agents always earn their rewards since
exploitative rewards are not allowed. Note also that since a
reward Ri is offered only after the previous reward Ri−1 has
been earned, multiple rewards are never offered simultane-
ously. Our goal is to maximize the sum of progress over the
period under the constraint that the agent earns all rewards;
this constraint derives from the setting where exploitative re-
wards are not allowed. Note that the sum of progress equals
to
∑k

i=1 θi, because exploitative rewards are not allowed.
For this purpose, we seek optimal reward scheduling: k,
(Ti)

k
i=1, (Ri)

k
i=1, and (θi)

k
i=1. Figure 3 illustrates an exam-

ple of reward scheduling in this setting.

6.1 Optimal Solutions

The following theorems characterize the optimal solution.

Theorem 6. If β is not TAI, the optimal reward scheduling
is

k = 1, T1 = T, R1 = R, θ1 = R
1
α

(
T − 1 + β

1
α−1
)α−1

α
.
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Theorem 7. If β is TAI, the optimal reward scheduling is

k = k∗, Ti = T ∗
i , Ri = R

F (T ∗
i )∑k

j=1 F (T ∗
j )

,

θi = (βRi)
1
α

Γ(T ∗
i + β

1
α−1 )

Γ(T ∗
i )Γ(1 + β

1
α−1 )

,

where k∗ and (T ∗
i )

k∗

i=1 is the optimal solution of

max
k, (Ti)ki=1

k∑
i=1

F (Ti), s.t.
k∑

i=1

Ti = T (13)

and

F (x) :=

(
Γ(x+ β

1
α−1 )

Γ(x)

) α
α−1

.

Theorem 6 shows that with non-TAI β, it is optimal to
give the reward in a lump sum without splitting it. Theorem 7
indicates that we can obtain the optimal reward scheduling
by solving the problem (13). Although the problem (13) is
difficult to solve explicitly, we can compute the optimal so-
lution by the following algorithmic procedure.

Let vT be the optimal value of problem (13) and let
v0 := 0. Considering the case of T1 = 1, 2, . . . , T sepa-
rately yields a recursive formula:

vT = max
1≤t≤T

{F (t) + vT−t}. (14)

After computing v1, . . . , vT according to this formula, find
t ∈ {1, . . . , T} such that vT = F (t) + vT−t. Such t implies
that T1 = t in an optimal solution to problem (13), and thus
the problem size is reduced from T to T − t. Repeating this
reduction gives us the optimal solution to problem (13). The
above procedure can be performed in O(T 2) time.

We can also observe the effect of splitting the reward by
examining the two extreme cases: offering all rewards at
once (k = 1) and offering rewards every time (k = T ).
Theorem 8. Let P(k) be the maximum total progress
achieved by the agent when k is fixed. If β is TAI,

P(T )

P(1)
= Γ(1 + β

1
α−1 )T 1− 1

α−β
1

α−1
+O

(
T− 1

α−β
1

α−1 )
.

If the present-bias parameter β is as small as β ≤ (1 −
1
α )

α−1, this ratio diverges to infinity as T → ∞. The smaller
β, the faster the divergence. The results suggest that frequent
rewards are effective for agents with strong present bias.

6.2 Special Case: TAI β and α = 2

Assuming α = 2 enables us to analyze problem (13) in more
detail. For convenience, let F (0) := limx↘0 F (x) = 0.
Theorem 9. Suppose that α = 2.

(a) If 1
2 ≤ β < β0, the optimal reward scheduling is

k = 1, T1 = T, R1 = R, θ1 =
√
βR

Γ(T + β)

Γ(T )Γ(1 + β)
.

0.40 0.42 0.44 0.46 0.48 0.50
β

100

101

102

103

T
i

max1≤i≤k Ti
min1≤i≤k Ti

min {T, d β2

1−2βe}

Figure 4: Optimal reward interval with α = 2 and T =
1000. The markers indicate the maximum and minimum
lengths of the periods in the optimal solution (Ti)

k
i=1 com-

puted with (14). The green line shows the nearly optimal
reward interval (15) derived from the theoretical analysis.

(b) If β ≤
√
2− 1, the optimal reward scheduling is

k = T, T1 = · · · = Tk = 1,

R1 = · · · = Rk =
R

T
, θ1 = · · · = θk =

√
βR

T
.

The case of
√
2 − 1 < β < 1

2 is the most nontrivial.
The value G(x) := F (x)/x represents the increase in the
objective function value per unit of time when the reward
is placed at time x. Intuitively, placing a reward every x∗

units of time is expected to be nearly optimal, where x∗ is
x ∈ {1, . . . , T} that maximizes G(x), and we have

x∗ = min

{
T,

⌈
β2

1− 2β

⌉}
. (15)

Figure 4 compares the nearly optimal reward interval (15)
with the optimal reward interval computed with (14). It sug-
gests that the analytical approximate solution (15) agrees
with the exact solution.

6.3 Discussion
The results indicate that when the present-bias parameter β
is large, the agent’s progress can be maximized by giving
the reward in a lump sum, but when β is small, giving the
reward multiple times enhances the progress. This is because
agents with strong present bias are more likely to abandon
a task due to procrastination. Appropriate intermediate re-
wards can prevent them from abandoning the task and in-
crease their progress. This finding is also significant when
using incentives in the real world. It suggests that it is desir-
able to tailor the reward plan to each person’s present bias
rather than providing rewards uniformly to everyone.

Comparison with the literature. The relationship be-
tween present bias and rewards (or incentives) is one of
the critical topics in behavioral economics. For example,
O’Donoghue and Rabin (1999b) consider how rewards
should be set when agents are paid according to task com-
pletion time. However, only some studies have handled the
problem of appropriately allocating a predetermined amount
of rewards to help agents achieve their long-term goals. Tang
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et al. (2017); Albers and Kraft (2019) provide studies on this
problem based on the KO model to prove its NP-hardness.
We proposed a closed-form optimal solution to this problem
and a simple and exact optimization algorithm by applying
appropriate restrictions on the graph structure and cost func-
tion. Furthermore, we provide the first mathematical clarifi-
cation of the relationship between the effectiveness of inter-
mediate rewards and the present bias.

7 Conclusion
This paper proposed a model for understanding the goal-
achieving behavior of agents with present bias. Although
our model is restricted to tasks that accumulate progress, the
agent’s behavior can be solved analytically. Based on the
analytical solution, we analyzed three problems: task aban-
donment, goal optimization problem, and reward scheduling
problem. We obtained meaningful insights into the relation-
ship between the strength of present bias and these problems
and their application in the real world.

8 Proofs
Due to space limitations, only proofs related to the main re-
sults are provided. Please refer to the full version (Akagi,
Marumo, and Kurashima 2023) for the proof of Theorems 3,
8 and 9.

8.1 Proof of Lemma 1
Proof. For t = T , the desired result can be verified easily.
We assume that t < T below.

Let us consider the min-operation on (2). Assuming yT <
θ, the minimum is achieved at yt = yt+1 = · · · = yT . Oth-
erwise, the minimum is achieved when yT = θ. Therefore,
the minimum can be evaluated as

min
yt+1,...,yT∈R

Ct(yt, . . . , yT )

= min

{
0, min

yt+1,...,yT−1∈R
Ct(yt, . . . , yT−1, θ)

}
= min

{
0,

1

β
c(yt − xt−1) + (T − t)c

(θ − yt
T − t

)
−R

}
,

where we use Jensen’s inequality for the last equality. Fur-
thermore, we bound the second term as

1

β
c(yt − xt−1) + (T − t)c

(θ − yt
T − t

)
=

1

β
(yt − xt−1)

α + (T − t)1−α(θ − yt)
α

≥ (θ − xt−1)
α(β

1
α−1 + T − t)1−α,

where we have used (3) and Hölder’s inequality:

θ − xt−1 = (yt − xt−1) + (θ − yt)

≤
(
β

1
α−1 + (T − t)

)α−1
α

·
( 1
β
(yt − xt−1)

α + (T − t)1−α(θ − yt)
α
) 1

α

.

The equality holds when β
1

α−1 (T − t)1−α(θ − yt)
α
= (T −

t) 1β (yt − xt−1)
α, or equivalently

yt = θ + pt(xt−1 − θ). (16)

Hence, if (θ−xt−1)
α(β

1
α−1 +T − t)1−α−R ≤ 0, the min-

imum on (2) is achieved at (16). Otherwise, the minimum is
achieved at yt = xt−1, which completes the proof.

8.2 Proof of Theorem 1
Proof. The formula (7) follows from (5) by induction on t.
The t∗ is the smallest t ∈ {0, . . . , T − 1} such that xt <

θ−R
1
α (T−t−1+β

1
α−1 )

α−1
α if there exists such t. A simple

calculation shows with (7) show the equivalence between the
condition on t and (6).

8.3 Proof of Lemma 2
Proof. Let γ := β

1
α−1 . From definitions (4) and (8) of pt

and qt, we have

log

(
qt−1

qt

)
= (1− α) log

(
T − t+ γ

T − t− 1 + γ

)
− α log

(
T − t

T − t+ γ

)
= log

(
1 +

γ

T − t

)
+ (α− 1) log

(
1− 1− γ

T − t

)
= f(T − t),

where

f(x) := log
(
1 +

γ

x

)
+ (α− 1) log

(
1− 1− γ

x

)
.

Let us investigate the function f . We have

lim
x↘1−γ

f(x) = −∞, lim
x→+∞

f(x) = 0,

f ′(x) =
αγ(1− γ) + (α(1− γ)− 1)x

x(x+ γ)(x+ γ − 1)
.

Case (a): α(1− γ) ≥ 1, or equivalently β ≤ (1− 1
α )

α−1.
The function f(x) is increasing for x > 1 − γ. Hence,
f(x) < 0 for x ≥ 1, which yields Lemma 2(a).

Case (b): α(1 − γ) < 1 < α(1 − γ2), or equivalently
(1 − 1

α )
α−1 < β < (1 − 1

α )
α−1
2 . The function f(x) is

increasing for 1 − γ < x < αγ(1−γ)
1−α(1−γ) and is decreasing

for x > αγ(1−γ)
1−α(1−γ) . Hence, there exists a > 1 − γ such that

f(x) < 0 for x < a and f(x) ≥ 0 for x ≥ a, which yields
Lemma 2(b).

Case (c): α(1− γ2) ≤ 1, or equivalently β ≥ (1− 1
α )

α−1
2 .

A simple calculation shows that α(1−γ2) ≤ 1 is equivalent
to αγ(1−γ)

1−α(1−γ) ≤ 1, and thus f(x) is decreasing for x ≥ 1.
Hence, f(x) > 0 for x ≥ 1, which yields Lemma 2(c).
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8.4 Proof of Lemma 3
Proof. Let γ := β

1
α−1 . We have

qT−1

q0
=

(
1 +

T − 1

γ

)α−1 T−1∏
t=1

(
T − t

T − t+ γ

)α

,

and the value is decreasing in γ, or equivalently in β. We also
know from Lemma 2 that qT−1

q0
> 1 for β = (1 − 1

α )
α−1

and qT−1

q0
< 1 for β = (1 − 1

α )
α−1
2 , which completes the

proof.

8.5 Proof of Theorem 4
Proof. Remember that max0≤t<T qt = q0, as mentioned in
Section 4. From (6), if q0 > R

θα , then t∗ = 0, and therefore
xT = 0; otherwise, we have t∗ = T . Thus, the optimal
solution to problem (9) is the largest θ such that q0 ≤ R

θα ,
i.e., θ = (R/q0)

1
α = R

1
α (T − 1 + β

1
α−1 )

α−1
α .

8.6 Proof of Theorem 5
Proof of Theorem 5(a). The agent does not abandon the re-
ward if and only if qT−1 ≤ R

θα , since max0≤t<T qt = qT−1

as discussed in Section 4. Therefore, the optimal solution
to problem (9) is the largest θ such that qT−1 ≤ R

θα , i.e.,
θ = (R/qT−1)

1
α . A simple calculation with definitions (4)

and (8) of pt and qt leads to

θ = (R/qT−1)
1
α = (βR)

1
α

Γ(T + β
1

α−1 )

Γ(T )Γ(1 + β
1

α−1 )
.

Proof of Theorem 5(b). Fix the time t at which the agent
abandons the reward. Then Theorem 1 gives

qt−1 ≤ R

θα
< qt (17)

and xT = θ(1−∏t
i=1 pi). Thus, the optimal θ is the largest

θ that satisfies (17), i.e., θ = (R/qt−1)
1
α , and then

xT =

(
R

qt−1

) 1
α
(
1−

t∏
i=1

pi

)
= R

1
α

(
T − t+ β

1
α−1

)α−1
α

·
(
Γ(T − t+ 1)Γ(T + β

1
α−1 )

Γ(T )Γ(T − t+ 1 + β
1

α−1 )
− T − t

T − t+ β
1

α−1

)
.

Problem (9) is now reduced to (11). Eq. (12) follows from
θ = (R/qt−1)

1
α .

8.7 Proof of Theorem 6
Proof. From Theorem 4, the optimal θi is

θi = R
1
α
i

(
Ti − 1 + β

1
α−1

)α−1
α

, (18)

given Ri and Ti. Thus, the reward scheduling problem is
reduced to

max
k, (Ti)ki=1, (Ri)ki=1

k∑
i=1

R
1
α
i

(
Ti − 1 + β

1
α−1

)α−1
α

,

s.t.
k∑

i=1

Ti = T,
k∑

i=1

Ri = R.

(19)

Note that Ti ∈ Z>0 but Ri ∈ R≥0. Hölder’s inequality gives
an upper bound on the objective function of problem (19):

k∑
i=1

R
1
α
i

(
Ti − 1 + β

1
α−1

)α−1
α

≤
(

k∑
i=1

Ri

) 1
α
(

k∑
i=1

(
Ti − 1 + β

1
α−1

))α−1
α

= R
1
α

(
T − k

(
1− β

1
α−1

))α−1
α

≤ R
1
α

(
T − 1 + β

1
α−1

)α−1
α

,

and the upper bound is achieved when k = 1, T1 = T , and
R1 = R. Hence, the optimal solution is k = 1, T1 = T , and
R1 = R. The optimal θ is obtained from (18).

8.8 Proof of Theorem 7
Proof. From Theorem 5(a), the optimal θi is

θi = (βRi)
1
α

Γ(Ti + β
1

α−1 )

Γ(Ti)Γ(1 + β
1

α−1 )
,

given Ri and Ti. Thus, the reward scheduling problem is
reduced to

max
k, (Ti)ki=1, (Ri)ki=1

k∑
i=1

(βRi)
1
α

Γ(Ti + β
1

α−1 )

Γ(Ti)Γ(1 + β
1

α−1 )
,

s.t.
k∑

i=1

Ti = T,
k∑

i=1

Ri = R.

(20)

Let us first fix k and (Ti)
k
i=1. Then the optimal (Ri)

k
i=1 is

obtained as follows: Hölder’s inequality gives
k∑

i=1

R
1
α
i

Γ(Ti + β
1

α−1 )

Γ(Ti)

≤
(

k∑
i=1

Ri

) 1
α
(

k∑
i=1

(
Γ(Ti + β

1
α−1 )

Γ(Ti)

) α
α−1

)α−1
α

= R
1
α

(
k∑

i=1

F (Ti)

)α−1
α

,

where F (x) :=

(
Γ(x+β

1
α−1 )/Γ(x)

) α
α−1

, and the equality

holds when Ri = R ·
(
F (Ti)/

∑k
j=1 F (Tj)

)
for all 1 ≤

i ≤ k.
Next, we optimize k and (Ti)

k
i=1. Problem (20) is now

reduced to (13).
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