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Abstract

Origin-destination (OD) crowd flow, if more accurately in-
ferred at a fine-grained level, can potentially enhance the ef-
ficacy of various urban applications. In practice, for mining
OD crowd flow with effect, the problem of spatially inter-
polating OD crowd flow occurs because of the ineluctable
missing values. This problem is further complicated by the
inherent scarcity and noise nature of OD crowd flow data.
In this paper, we propose an uncertainty-aware interpolative
and explainable framework, namely UApex, for realizing re-
liable and trustworthy OD crowd flow interpolation. Specif-
ically, we first design a Variational Multi-modal Recurrent
Graph Auto-Encoder (VMR-GAE) for uncertainty-aware OD
crowd flow interpolation. A key idea here is to formulate
the problem as semi-supervised learning on directed graphs.
Next, to mitigate the data scarcity, we incorporate a dis-
tribution alignment mechanism to introduce supplementary
modals into variational inference. Then, a dedicated decoder
with a Poisson prior is proposed for the task. Moreover, to
make VMR-GAE more trustworthy, we develop an efficient
and uncertainty-aware explainer that can explain spatiotem-
poral topology via the Shapley value. Extensive experiments
on two real-world datasets validate that VMR-GAE outper-
forms the state-of-the-art baselines. Also, an exploratory em-
pirical study shows that the proposed explainer can generate
meaningful spatiotemporal explanations.

Introduction
Inferring human mobility at a more fine-grained level, i.e.,
origin-destination (OD) crowd flow, can benefit various new
applications in the urban computing area. For example,
with the cross-region OD crowd flow rather than the in-
coming/out-going flow in a region, the decision-making for
alleviating traffic jams can be more efficient by focusing on
the problematic OD pairs without excessive traffic restric-
tions. Therefore, it is the importance of OD crowd flow that
has attracted attention from both academia and industry.

For instance, (Xu et al. 2023; Lin et al. 2023; Huang et al.
2022; Zhang et al. 2021b) were devoted to overcoming the
sparsity in OD crowd flow prediction. (Wang et al. 2019c)
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(a) Citywide OD crowd flow shows high sparsity (compared to the
aggregated in/out-flow) with varying patterns at different times.

(b) The crowd flow from region
190 to 193 show great deviation
on different days.

(c) Great deviations exist in
crowd flow observed between
different OD pairs.

Figure 1: The citywide OD crowd flow usually depicts not
only sparsity but also uncertainty.

proposed a sparsity-aware multi-task framework for OD ma-
trix prediction. To predict OD-based ride-hailing demands,
DiDi (Ke et al. 2021) evades the sparsity in OD matrix
by directly modeling correlations between OD pairs. How-
ever, these works neglect the noise and uncertainty in OD
crowd flow data. Some researchers have paid attention to
the uncertainty-aware OD prediction. For example, (Li et al.
2022) leveraged the Bayesian approximation to quantify the
uncertainty in OD demand, whereas, the proposed approach
can hardly extrapolate unseen OD demands.

As the crowd flow data becomes more fine-grained, more
data quality issues come to light. As shown in Fig. 1(a),
the citywide OD crowd flow is sparse most of the time
compared to the aggregated in/out-flow observed within re-
gions. Hence, the innate data scarcity makes it challenging
to learn effective representations without enough context.
Meanwhile, Fig. 1(b) and 1(c) show that the crowd flow is
highly uncertain temporally and spatially. Thus, it is critical
to quantify the uncertainty of OD crowd flow.

Since the advancement in spatiotemporal data mining
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techniques (Zhang et al. 2019; Miao et al. 2023), we could
have drawn more insights from SOTA models to enhance the
OD crowd flow prediction/analytics. However, it is precisely
due to the data issues of OD crowd flow that the progress
in relevant research has been limited. Hence, we suggest a
two-stage approach to the research. In the first stage, our fo-
cus lies in resolving the data issues through OD crowd flow
interpolation. In the second stage, we can subsequently em-
ploy the latest methods for accurate OD crowd flow analyt-
ics. In this thought, the key is how to realize reliable and
trustworthy OD crowd flow interpolation regarding the in-
herent data scarcity and noise nature. Moreover, although
we can adopt uncertainty quantification to reduce the risk of
interpolative errors (Zhou et al. 2021), the black-box model
can be brittle and unfair (Li et al. 2023; Ali et al. 2023), and
can harm the critical downstream tasks like signal control
and autonomous driving.

To this end, we propose an uncertainty-aware
interpolative and explainable framework (UApex), which
includes an interpolator and its corresponding explainer. For
the interpolator, we propose a Variational Multi-modal Re-
current Graph Auto-Encoder (VMR-GAE) by incorporating
contextual information into Bayesian deep learning with
uncertainty quantification. Specifically, we first formulate
OD crowd flow as a dynamic directed graph where the
edges encode the flow values. Then, we build the diffusion
GCN (Atwood and Towsley 2016) with a recurrent structure
to study the spatiotemporal dependency at each time step.
To enrich the representation of OD crowd flow, we exploit
additional contexts into our VMR-GAE by proposing a
prior distribution alignment method. Next, we reconstruct
the graph of OD crowd flow at the target time step through
the deep decoder with a Poisson prior. Moreover, we derive
an uncertainty-aware spatiotemporal explainer to equip
VMR-GAE with explainability based on the Shapley value,
which discovers the most important subgraph structures
from the spatiotemporal topology perspective. Given the
explainer, we further propose an efficient explanation
generation algorithm encouraged by the characteristics of
urban structure. To sum up, our contributions are as follows:

• We advocate investigating OD crowd flow interpolation
to address the data issues, thereby enabling the insights of
SOTA spatiotemporal models and emphasizing intrinsic
OD crowd flow characteristics.

• We propose a Variational Multi-modal Recurrent Graph
Auto-Encoder, which can incorporate multi-modals and
uncertainty quantification for OD crowd flow interpola-
tion to overcome the sparsity and noise issues.

• We derive an uncertainty-aware spatiotemporal explainer
and its efficient exploration process to enhance interpo-
lation outcomes’ credibility further.

Related Work
Origin-Destination Crowd Flow. Human mobility model-
ing and crowd flow prediction have been paid much attention
to. Recently, the interest in OD crowd flow has been gain-
ing momentum. Some traditional methods, like Matrix Fac-
torization (MF) and Collaborative Filtering (CF), have been

explored for OD crowd/traffic flow prediction (Deng et al.
2016; Gu et al. 2020; Ros-Roca et al. 2022). With the pow-
erful expressive capability, graph neural networks (GNNs)
have been applied to incorporate spatial dependencies in OD
representation (Wang et al. 2019c; Rong et al. 2021; Xu et al.
2023; Huang et al. 2023; Shi et al. 2020; Feng et al. 2021).
However, none focuses on noise issues or the uncertainty of
prediction results.
Trustworthy Graph Neural Network. Uncertainty quan-
tification has become a common practice to support criti-
cal decision-making in risk-aware applications (Wang et al.
2019a; Kong, Sun, and Zhang 2020; Gal and Ghahramani
2016; Lakshminarayanan, Pritzel, and Blundell 2017). In ur-
ban computing, some traffic prediction methods (Zhou et al.
2020, 2021; Wang et al. 2023a), including OD crowd flow
infernece(Pitombeira-Neto, Loureiro, and Carvalho 2020;
Jeong and Park 2021; Wang et al. 2023b), have been encour-
aged to help in understanding the model behavior through
uncertainty quantification. Still, these works can hardly be
applied to the OD matrix with high sparsity.

Because of the significance of explainability (Xie et al.
2020), there have been studies on this topic (Li et al. 2016;
Lundberg and Lee 2017; Cheng et al. 2020). To investi-
gate GNN explainability, several explainers (Ying et al.
2019; Luo et al. 2020; Yuan et al. 2021, 2020) that focus
on identifying important components related to a graph have
achieved success. Especially, (Zhang et al. 2021a) leverage
the Shapley value from game theory to capture the subgraph
importance, which inspired us to deliberate the contributions
of structural information in the urban environment. Despite
the above pioneer studies on explainability, how to develop
an efficient algorithm to make the explainer more practical
in real-world applications is still an open question.

Preliminaries
Definitions and Problem Statements
Definition 1 (OD Crowd Flow) OD crowd flow involves a
user set U and a region pair ⟨ri, rj⟩ (i ̸= j) that U move
from ri to rj in a period of time [t0, t] (t0 < t), which is

denoted by τ (t0:t)i,j : ri, t0
U−→ rj , t. τ

(t0:t)
i,j can be simplified

as τ (t)i,j to denote the crowd flow observed at time step t.

Definition 2 (OD Matrix) Given a region set R =
{r1, · · · , rnt

}, an OD matrix A(t) ∈ Rnt×nt records the
OD crowd flow between each pair of regions in R, i.e.
A

(t)
i,j = τ

(t)
i,j , 1 ≤ i, j ≤ nt.

Definition 3 (OD Graph) An OD graph is a dynamic di-
rected graph that evolves over time, which is denoted by
G = {G(1), G(2), · · · , G(T )}, where G(t) = (V, E(t)) is
an OD graph at time step t with V and E(T ) being the corre-
sponding node and directed edge sets, respectively. The set
E(T ) reflects the paired OD crowd flow, and A(t) ∈ Rnt×nt

is the adjacency matrix of G(t). The region/station features
of nodes in V are stored in X(t) ∈ Rnt×m.

Then, we introduce the context modal that differs from
the target OD crowd flow as supplementary knowledge.
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Figure 2: Framework overview of UApex.

Definition 4 (Context Modal) The context modal C is an-
other set of city data correlated to the target OD crowd flow.
Via a specific deep learning architecture, the input of C can
be mapped to a regional representation of time step t, de-
noted as Z̃(t) ∈ Rn×d.

Due to the data from urban sensors often having missing
values, we take the OD graph G as well as the context modal
C (if available) as input to interpolate the missing values in
A(T ). Formally, we have the following problem statement:

Problem 1 (OD Crowd Flow Interpolation) Given a dy-
namic OD graph G, learn a function F(·) that takes A(≤T )

and X(≤T ) as input. If available, F(·) can take additional
contexts C as input. Then, we infer a spatial interpolated OD
matrix Â(T ) of the last time step T :

{A(≤T ),X(≤T ), C} F(·)−−−→ Â(T ). (1)

We further study the explanation problem for OD crowd
flow interpolation. In common practice, we derive the hid-
den state representation h(T−1) given the input G(<T ).
Therefore, we suggest to consider G(T ) at time T , and the
hidden state h(T−1) at time T − 1 for yielding concise ex-
planations. Formally, we have another problem statement:

Problem 2 (Explainer of OD Crowd Flow Interpolation)
Given a trained OD crowd flow interpolation model F , the
explainer generatesG⋆ and h⋆ for outcomes Â(T )

i,j ∈ Â(T )),
where G⋆ is a subgraph of G(T ) and h⋆ is a subset of
h(T−1). More precisely, the generated explanations are the
subgraph of G(T ) and the subset of h(T−1) (denoted by
G′ ⊆ G(T ) and h′ ⊆ h(T−1), respectively) that maximize
the contributions to the interpolation:

G⋆,h⋆ = argmax
G′⊆G(T ),h′⊆h(T−1)

S(F , G′,h′), (2)

where S(·) is the score function to measure the contribution.

Framework Overview
Fig. 2 depicts the overview of UApex that consists of two
stages, i.e., OD crowd flow interpolation and explanation

exploration. In the first stage, UApex takes the OD graph
as input, then estimates the prior and posterior distributions
of latent variables via Bayesian graph networks. If avail-
able, context modalities can be adopted to enrich the original
representations through prior distribution alignment. After-
ward, a deep decoder inputs the enriched representation and
implements the directed graph reconstruction. In the second
stage, we develop an uncertainty-aware explainer for pro-
ducing explanations of VMR-GAE , in which a score func-
tion based on the Shapley value is proposed.

Methodology
OD Crowd Flow Interpolation
VMR-GAE employs the encoder-decoder architecture com-
prising three components that require detailed exposition.

Variational Recurrent Graph Encoder The variational
graph recurrent neural network (VGRNN) proposed by (Ha-
jiramezanali et al. 2019) learns the prior distribution param-
eters based on the historical data to capture dependencies
within the graph evolution process. To further modify this
uncertainty-aware spatiotemporal model for the directed OD
graph, we incorporate diffusion convolution gate recurrent
units (Li et al. 2018) to capture hidden states h1∼(T−1)

from historical OD crowd flow (A<t,X<t). Also, we stack
diffusion graph convolution layers as our encoder, denoted
as φ(·), for directed OD graph representation learning. For-
mally, the prior and posterior distributions of encoded repre-
sentation Z(t) at time step t as follows,

p(Zt|A<t,X<t) =
n∏

i=1

N (µt
i,pr, diag((σ

t
i,pr)

2)),

q(Zt|At,Xt,ht−1) =
n∏

i=1

N (µt
i,en, diag((σ

t
i,en)

2)),

(3)

where µt
pr and σt

pr denote the parameters of the condi-
tional prior distribution, derived from hidden states ht−1 af-
ter passing through a set of fully connected layers. µt

en and
σt
en denote the parameters of the approximated posterior,

derived by the encoder as follows,

µt
en = φµ(A

t, [Xt,ht−1]),

σt
en = φσ(A

t, [Xt,ht−1]),
(4)

where [·, ·] means concatenation in the feature dimension,
φµ and φσ are encoders, respectively. Thereafter, we can
capture the dependencies of the OD graph evolution by min-
imizing the difference between the prior and posterior.

Multi-modal Distribution Alignment It has been proven
that incorporating information from other modals can opti-
mize the empirical risk and improve the latent representa-
tion quality (Huang et al. 2021). Thus, multi-modal data is
exactly what we need for enhancing the robustness of OD
crowd flow interpolation. Since early fusion could hardly
work due to the data gaps, e.g., the different lengths of time
steps, we suggest to incorporate context modals after rep-
resentation learning. While, this is challenging because of
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Figure 3: The decoder architecture of VMR-GAE.

the nature of our variational encoder, which implies that the
representations of a context modal Z̃(t) should follow spe-
cific distributions. In practice, the prior of Z̃(t) can be arbi-
trary, while most practitioners adopt the standard Gaussian
distribution (Kipf and Welling 2016). However, this might
be deficient when the cross-domain gap is considerable. In
transfer learning, domain adaptation (Long et al. 2016; Ka-
math, Liu, and Whitaker 2019) is often used to minimize the
difference between the target and source domains via max-
imum mean discrepancy (MMD) loss. Inspired by this, we
propose a simple but effective distribution alignment mech-
anism to align the representation distributions of the context
modal with the prior distributions in Eq. (3) as follows.

p(Z̃t) = p(Zt|A<t,X<t). (5)

Note we discard the gradient of Eq. (5) when using back-
propagation for training to avoid cross-modal data corrup-
tion. Accordingly, we can concatenate the representations of
multi-modals along the feature dimension without worrying
about the distribution differences in the latent space.

Decoder for Graph Reconstruction Inner production as
a common method (Hajiramezanali et al. 2019; Bonner et al.
2019) for relation reconstruction proves insufficient in cap-
turing the dynamics of OD crowd flow. We need more pow-
erful operators to enhance the graph reconstruction perfor-
mance (Kipf and Welling 2016; Hajiramezanali et al. 2019).
As illustrated in Fig. 3, we stack the multi-layer perceptron
(MLP) for OD graph reconstruction.

First, we reparameterize the representation distributions
and concatenate the multi-modal representations. The out-
comes are fed into f Zin

and f Zout
, respectively.

Zt
in = f Zin

([Zt, Z̃t]), Zt
out = f Zout

([Zt, Z̃t]). (6)

In Eq. (6), the weights of f Zin
and f Zout

are shared
across all nodes and time steps. Afterward, we concatenate
each pair of node-wise in-flow and out-flow features, i.e.,
Zt

OD,i,j = [Zt
out,i,Z

t
in,j ]. Then, Zt

OD is fed into the MLP
where the weights are shared among OD pairs, such that
VMR-GAE can generalize to the unseen OD pairs for OD
crowd flow interpolation.

Finally, the loss function of VMR-GAE is derived from
the negative logarithm of the evidence lower bound.

L =−
T∑

t=1

(
EZt∼q(Zt|At,Xt,ht−1)

EZ̃t∼q(Z̃t|Ãt) log p(A
t|Zt, Z̃t)

+ KL(q(Z̃t|Ãt)||p(Zt|A<t,X<t))

+ KL(q(Zt|At,Xt,ht−1)||p(Zt|A<t,X<t))
)
.

(7)

Since we can regard a regional trip as an event that occurred,
the OD crowd flow can be approximated with a Poisson dis-
tribution (Gu et al. 2020). In practice, we pre-define the pos-
terior distribution p(At|Zt, Z̃t) as Poisson distribution.

Explanations for OD Interpolation
Spatiotemporal Explainer Post hoc explanation tech-
niques can help us understand black box models without
in-process interpolation overhead. Traditional GNN expla-
nation methods (Ying et al. 2019; Luo et al. 2020) mainly
examine the individual importance of nodes/edges while ig-
noring the subset importance, such that the complex entirety
of urban crowd flow, such as the living circle effect, cannot
be well studied. Inspired by SubgraphX (Yuan et al. 2021)
which addresses subgraph importance, we propose to apply
Shapley value (Kuhn and Tucker 1953) for the urban topol-
ogy importance evaluation. However, this approach encoun-
ters a challenge when applied to spatiotemporal models.

To realize it, we derive a spatiotemporal explainer and de-
sign a score function S with the Shapley value in Eq. (2)
for the set (G′,h′). Specifically, given a set combining
VT and hT−1, i.e., {v1, · · · , vn,h1, · · · ,hn}, we have
(G′,h′) = {v1, · · · , vn1 ,h1, · · · ,hn2} (0 < n1, n2 <
n). Then, the set of all players is denoted by P =
{(G′,h′), vn1+1, · · · , vn,hn2+1, · · · ,hn}, and the Shapley
value ψ(F , G′,h′) omitting model F can be calculated as,

ψ(G′,h′) =
∑

S⊆{P \(G′,h′)}

{ (|P | − |S| − 1)!|S|!
|P |!

× [C(S ∪ (G′,h′))− C(S)]
}
,

(8)

where S = (GS ,hS) is an arbitrary coalition set of play-
ers, and C(·) is defined to derive the contribution given F .
The lack of important information can result in uncertain
interpolation. In other words, the contribution is negatively
correlated with the outcome deviation. As the variational
model F quantifies the uncertainty along with the interpo-
lation, we adopt the outcome deviation plus the confidence
error to measure the contribution accordingly. Formally, the
contribution function C is as follows,

C(F ,S ∪ (G′,h′)) = e−β(Â
(T )
i,j −A

(T )
i,j )2 − σ̂i,j , (9)

where β is the controlling weight, σ̂ is the interpolation de-
viation, or regarded as the uncertainty.

Explanations Exploration Due to the high complexity of
Eq. (8), we aim to propose an efficient exploration method.
Regarding properties of the Shapley value to our problem,
we have the variant of Linearity axiom (Zhang et al. 2020):
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Theorem 1 If two independent games (u and v) can be
merged into one game (w), then the Shapley value of the new
game can also be merged, i.e., ∀(G′,h′) ⊆ (G(T ),h(T−1)),
ψw(G

′,h′) = ψu(G
′,h′) + ψv(G

′,h′).

Accordingly, we derive the split spatiotemporal explainer
from Eq. (2) by jointly using Eq. (8) and Theorem 1. The
Problem 2 can be rewritten as follows.

G⋆,h⋆ = argmax
G′⊆G(T ),h′⊆h(T−1)

ψ(G′,h′)

= argmax
G′⊆G(T ),h′⊆h(T−1)

(ψu(G
′,h′) + ψv(G

′,h′))

= argmax
G′⊆G(T )

ψu(G
′) + argmax

h′⊆h(T−1)

ψv(h
′).

(10)

Therefore, we can reduce the time overhead by half with
parallel exploration. While, the time complexity is still up to
O(n2 · 2n), n is the number of regions.

To explain the OD interpolation efficiently, we suggest to
carefully examine the urban environment as shown in the
Fig. 2 bottom half. First, because human mobility adheres to
certain constraints, such as geographical distance, it is wise
to initialize G′ with the nodes only close to the target origin
and destination. Besides, we can consider the connectivity as
the criteria to filter out trivial nodes. Moreover, we leverage
the Monte Carlo sampling to approximate the calculation of
Eq. (8). With the above steps, we develop an approximated
exploration process with complexity O(k1k2MC), where k1
and k2 are two integers to be set for initial exploration space
(0 < k1, k2 ≪ n), and MC is the number of steps in Monte
Carlo sampling. Finally, we apply the same procedure to his-
torical explanations exploration. Thanks to parallel explo-
ration, the overall time complexity remains O(k1k2MC).

Experiments
Experimental Setups
Datasets. 1) The Beijing dataset was collected via an
anonymized navigation application. 2) NYC dataset was
generated from NYC taxicab data published by NYC TLC1.
The basic statistics of Beijing and NYC datasets can be
found in Table 3. Besides, the rush hours were defined as
8:00 – 10:00 and 16:00 – 18:00 for both Beijing and NYC;
the off-peak hours were 12:00 – 13:00 and 22:00 – 23:00 for
Beijing, and 12:00 – 14:00 and 22:00 – 00:00 for NYC.
Baselines. We compare VMR-GAE with SOTAs for
flow interpolation, i.e., a Matrix Factorization (MF) model
(i.e., SVD (Ma, Sun, and Qin 2017)), deep graph mod-
els (i.e., GAE (Kipf and Welling 2016), 2D-GCN (Shi
et al. 2020), NGCF (Wang et al. 2019b), and T-NGCF),
and uncertainty-aware deep models (i.e., VGAE (Kipf and
Welling 2016), VDGNN (Zhou et al. 2020), DropOut
BNN (Gal and Ghahramani 2016), and DeepEnsem-
bles (Lakshminarayanan, Pritzel, and Blundell 2017)).
Implementation details. The unit time step is 1h in Bei-
jing and 2h in NYC datasets. We consider all OD pairs with
non-zeros across ≤ T time slices to form a set of (unique)

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

OD pairs. Then, we perform a random 7:1:2 division to cre-
ate the training, validation, and test sets. During training,
we mask the flow values of OD pairs in the validation/test
sets to zero. During validation/testing, we interpolate the
values of masked OD pairs and compare them with ground
truths. Each method’s performance is reported via the aver-
aged scores of 10 runs in terms of MAE, RMSE, and MAPE.

Performance Evaluation

We report the overall performance comparison for OD
crowd flow interpolation on Beijing and NYC datasets in
Tables 1 and 2, respectively. We can generally observe that
VMR-GAE outperforms baselines consistently, especially
in rush hours and holidays. To explain this, we find OD flow
often exhibit larger volumes in rush-hours and higher un-
certainty in holidays, which leads to the most remarkable
performance improvements. On the other hand, uncertainty
quantification would like to produce conservative outcomes,
which may sacrifice the improvement w.r.t. RMSE.

To be specific, we then elaborate the comparison results
as follows: 1) Traditional MF model (SVD) cannot fit the
nonlinear region relationships in OD crowd flow sufficiently.
2) 2D-GCN is limited by the fixed network structure, thus
can only achieve better performances than some traditional
methods. 3) NGCF that combines the deep architecture and
GNNs into collaborative filtering performs better than 2D-
GCN. However, T-NGCF (a variant of NGCF) that captures
temporal dependency has little improvement. One possible
reason is that the temporal dependency is hard to capture
due to the instability of OD crowd flow. 4) VGAE performs
similarly to GAE since their representation power is insuf-
ficient. 5) VDGNN outperforms VGAE with modeling tem-
poral dependency, while it can hardly beat other uncertainty-
aware methods due to the deficiency of inner product de-
coder. 6) The results of the other two uncertainty-aware
methods (which use NGCF or T-NGCF as basis) are simi-
lar, DeepEnsembles is the second-best in both two datasets,
validating the effectiveness of uncertainty quantification. 7)
VMR-GAE outperforms DropOut BNN and DeepEnsem-
bles, which validates the effectiveness of supplementary in-
formation for OD crowd flow interpolation.

Effectiveness of uncertainty quantification We ran-
domly selected two OD pairs from the Beijing testing set
and examined the outcomes with uncertainty quantification.
As depicted in Fig. 4, VMR-GAE can give the correspond-
ing confidence interval to cover the ground truths, such as
12:00-13:00 in the left figure and 18:00-19:00 in the right
figure. Also, we can see that the OD flows in these two cases
are highly deviated, but VMR-GAE still makes stable in-
terpolation due to the stochastic factors modeling. Specifi-
cally, there are many educational institutions in region 132,
such that obvious uncertainties can be found after school.
In contrast, more commercial, residential and entertainment
facilities exist in region 104, which result in high uncertain-
ties at midnight and rush hours. These results verify VMR-
GAE can discover the correct uncertainty in OD pairs.
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Method Weekday Rush Hour Weekday Off-Peak Holiday Rush Hour Holiday Off-Peak
SVD 53.229/68.947/1.613 49.633/63.378/1.474 54.791/71.092/1.724 51.533/66.121/1.531

GAE* 38.303/52.934/1.546 36.488/50.811/1.426 39.328/53.905/1.582 36.829/50.748/1.444
2D-GCN 42.084/57.740/1.052 42.450/57.622/1.029 43.835/59.663/1.112 43.550/58.830/1.075
NGCF 30.998/42.152/0.838 30.021/41.220/0.766 32.494/44.017/0.863 30.991/42.197/0.807

T-NGCF 35.531/48.205/0.799 34.549/46.580/0.748 36.924/48.959/0.876 35.260/48.091/0.770
VGAE* 43.911/59.595/1.059 42.320/56.818/1.060 44.016/60.635/1.012 42.008/56.976/1.048

VDGNN* 42.327/57.771/1.079 38.588/52.820/0.896 40.481/55.838/1.081 39.980/54.630/0.996
DropOut BNN 31.065/42.305/0.830 30.031/41.213/0.773 32.485/44.035/0.866 31.244/42.479/0.803

DeepEnsembles 29.450/ 40.482/ 0.782 28.537/ 39.726/ 0.715 30.910/ 42.328/ 0.807 29.571/ 40.644/ 0.763

VMR-GAE 27.400/40.455/0.674 26.644/38.673/0.696 25.535/38.501/0.661 26.637/40.115/0.728
-6.96%/-0.01%/-13.8% -6.63%/-2.65%/-2.66% -17.4%/-9.04%/-18.1% -9.92%/-1.30%/-4.59%

Table 1: Performance comparisons in terms of MAE, RMSE, and MAPE on Beijing dataset.

Method Weekday Rush Hour Weekday Off-Peak Holiday Rush Hour Holiday Off-Peak
SVD 12.056/21.097/1.062 7.723/13.286/0.751 10.220/16.967/0.923 8.887/15.107/0.772

GAE* 10.046/20.683/0.897 7.523/14.629/0.899 9.116/17.194/0.894 8.854/16.756/0.899
2D-GCN 10.009/19.163/0.724 7.490/13.472/0.696 8.507/14.760/0.678 8.787/15.256/0.762
NGCF 9.030/17.665/0.694 6.211/11.572/0.561 7.851/13.709/0.683 7.310/12.927/0.598

T-NGCF 9.677/19.193/0.683 7.627/14.289/0.590 8.467/15.189/0.652 8.211/14.822/0.625
VGAE* 10.786/18.167/0.936 8.176/13.052/0.816 9.503/14.860/0.886 9.215/14.779/0.832

VDGNN* 10.382/18.114/0.690 7.657/12.982/0.619 10.042/17.240/0.657 9.057/15.262/0.627
DropOut BNN 9.649/19.175/0.676 6.544/12.432/0.533 8.484/15.352/0.646 7.739/13.981/0.595

DeepEnsembles 8.358/ 16.281/ 0.624 6.162/ 11.401/ 0.529 7.382/ 13.290/ 0.625 7.116/ 12.872/ 0.579

VMR-GAE 8.152/16.211/0.570 6.092/11.344/0.504 6.932/12.472/0.548 7.091/12.572/0.576
-2.46%/-0.43%/-8.65% -1.14%/-0.50%/-4.91% -6.10%/-6.16%/-12.3% -0.35%/-2.33%/-0.52%

Table 2: Performance comparisons in terms of MAE, RMSE, and MAPE on NYC dataset.

Dataset Beijing NYC
Time interval 1 hour 2 hours
#Nodes (#Regions) 213 263
Avg. #edges in OD graph 19949.50 1625.86
Avg. edge weight in OD graph 201.33 8.78
Avg. #edges in context graph 202.79 951.50
Avg. edge weight in context graph 1255.37 1.89

Table 3: Dataset description.

Figure 4: Interpolation results with uncertainty quantifica-
tion for two OD pairs in Beijing on April 12, 2019.

Ablation Study

Effectiveness of deep decoder To investigate the effect of
deep decoder, we construct a simplified model that employs
the inner product decoder instead. We show the results w.r.t.
RMSE in Table 4. As can be seen, the simplified model per-
forms worse than VMR-GAE, since the deep decoder can
effectively model the complex patterns of OD crowd flow.

Figure 5: Parameter sensitivity analysis.

Method Beijing NYC
w/o deep decoder 45.425 12.556

w/o multi-modal inputs 47.449 12.987
w/o alignment 42.308 11.211

VMR-GAE 39.437 11.137

Table 4: Ablation study given by RMSE. ’w/o deep decoder’
is the variant that uses inner product decoder instead. ’w/o
multi-modal’ does not use context graph. ’w/o alignment’
omits distribution alignment in data fusion.

Effectiveness of multi-modal To verify the effect of con-
text information, we compare the variants without contex-
tual inputs and without distribution alignment in Table 4.
The RMSE of the variant VMR-GAE w/o context graph de-
creases a lot, especially on the Beijing dataset. Since the sup-
plementary information used in the NYC dataset (i.e. Green
Taxi) is highly sparse, the error increase is smaller. Besides,
the lack of distribution alignment also indicates the effec-
tiveness of our assumption in the latent space.
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Figure 6: The spatial importance at different times derived from the overall spatiotemporal explanations on April 17, 2019.

Figure 7: Case study on explanations yielded by UApex.
Case A: 9:00 4/13/2019; Case B: 17:00 4/17/2019.

Parameter Sensitivity
In Fig. 5, we report the parameter sensitivity analysis on Bei-
jing dataset w.r.t. two hyperparameters, i.e., the number of
input snapshots (controlling the temporal dependency) and
the length of diffusion step in the encoder (controlling the
spatial dependency). We can observe that both testing er-
rors first decrease along the available information grows up.
When the parameters are large enough, performance shows
volatility since a larger number of input snapshots or longer
diffusion steps will augment the training intricacy. There-
fore, we choose the number of input snapshots T as 6 and
set the diffusion step to be 2 in this work.

Case Study on OD Explanations
We randomly selected two testing OD pairs in Beijing
dataset and visualize explanations accordingly. In case A of
Fig. 7, the crowd travels from a college and residential area
to a commercial area on the weekend morning. In particu-
lar, from historical explanations, we observe that the high-
lighted regions close to the origin contain many shopping
malls, which are similar to the destination. Around the des-

tination, some residential areas show importance since they
also provide many flow to the destination. In current expla-
nations, the northern neighbor region of the origin is a com-
mercial district that attracts most of the surrounding crowd
flow. On the other hand, case B in Fig. 7 shows the crowd
flow from a business area to a residential area in the evening
rush hour. Many busy downtown regions are highlighted in
historical and current explanations, i.e., the leisure places af-
ter work can also explain this OD crowd flow.

Exploratory Analysis of Explanations
We summarize the yielded spatiotemporal explanations by
counting the occurrence of explainable regions at different
times. Basically, the historical explanation reflects the long-
term region influence, while the current explanation depicts
the instant crowd preference. As shown in Fig. 6, Beijing
downtown is always the most popular area, but in the long
run, other districts show their importance. Besides, regard-
ing current explanations, the informative regions spread out
from morning to sunset, which is in accordance with peo-
ple’s mobility patterns on weekdays. In contrast, the impor-
tant regions in historical explanations are more scattered,
suggesting other developing areas besides the downtown.

Conclusion
In this paper, we proposed UApex for reliable and trust-
worthy OD crowd flow interpolation, including VMR-GAE
and its explainer. Notably, we devised distribution align-
ment to integrate supplementary modals in VMR-GAE for
mitigating the data scarcity. A deep decoder with a Pois-
son prior was proposed to reveal the complex relationships
between OD pairs. Moreover, we developed an uncertainty-
aware explainer to effectively explain VMR-GAE from the
spatiotemporal topology perspective with the Shapley value.
Extensive empirical studies on two real-world datasets vali-
date the superiority and effectiveness of UApex.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9428



Acknowledgments
This research is supported in part by the National Natural
Science Foundation of China (Grant No.62072235).

References
Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.;
Alonso-Moral, J. M.; Confalonieri, R.; Guidotti, R.; Del Ser,
J.; Dı́az-Rodrı́guez, N.; and Herrera, F. 2023. Explainable
Artificial Intelligence (XAI): What we know and what is left
to attain Trustworthy Artificial Intelligence. Information Fu-
sion, 99: 101805.
Atwood, J.; and Towsley, D. 2016. Diffusion-convolutional
neural networks. In Advances in neural information process-
ing systems, 1993–2001.
Bonner, S.; Atapour-Abarghouei, A.; Jackson, P. T.; Bren-
nan, J.; Kureshi, I.; Theodoropoulos, G.; McGough, A. S.;
and Obara, B. 2019. Temporal neighbourhood aggrega-
tion: Predicting future links in temporal graphs via recurrent
variational graph convolutions. In 2019 IEEE International
Conference on Big Data (Big Data), 5336–5345. IEEE.
Cheng, X.; Rao, Z.; Chen, Y.; and Zhang, Q. 2020. Explain-
ing knowledge distillation by quantifying the knowledge. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 12925–12935.
Deng, D.; Shahabi, C.; Demiryurek, U.; Zhu, L.; Yu, R.; and
Liu, Y. 2016. Latent space model for road networks to pre-
dict time-varying traffic. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1525–1534.
Feng, S.; Ke, J.; Yang, H.; and Ye, J. 2021. A Multi-Task
Matrix Factorized Graph Neural Network for Co-Prediction
of Zone-Based and OD-Based Ride-Hailing Demand. IEEE
Transactions on Intelligent Transportation Systems.
Gal, Y.; and Ghahramani, Z. 2016. Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, 1050–
1059. PMLR.
Gu, J.; Zhou, Q.; Yang, J.; Liu, Y.; Zhuang, F.; Zhao, Y.; and
Xiong, H. 2020. Exploiting interpretable patterns for flow
prediction in dockless bike sharing systems. IEEE Transac-
tions on Knowledge and Data Engineering.
Hajiramezanali, E.; Hasanzadeh, A.; Narayanan, K.;
Duffield, N.; Zhou, M.; and Qian, X. 2019. Variational
Graph Recurrent Neural Networks. Advances in Neural In-
formation Processing Systems, 32: 10701–10711.
Huang, B.; Ruan, K.; Yu, W.; Xiao, J.; Xie, R.; and Huang, J.
2023. ODformer: Spatial–temporal transformers for long se-
quence Origin–Destination matrix forecasting against cross
application scenario. Expert Systems with Applications, 222:
119835.
Huang, Y.; Du, C.; Xue, Z.; Chen, X.; Zhao, H.; and Huang,
L. 2021. What Makes Multimodal Learning Better than Sin-
gle (Provably). arXiv preprint arXiv:2106.04538.
Huang, Z.; Zhang, W.; Wang, D.; and Yin, Y. 2022. A GAN
framework-based dynamic multi-graph convolutional net-
work for origin–destination-based ride-hailing demand pre-
diction. Information Sciences, 601: 129–146.

Jeong, I.-J.; and Park, D. 2021. Stochastic programming
approach for static origin–destination matrix reconstruc-
tion problem. Computers & Industrial Engineering, 157:
107373.
Kamath, U.; Liu, J.; and Whitaker, J. 2019. Transfer learn-
ing: Domain adaptation. In Deep learning for NLP and
speech recognition, 495–535. Springer.
Ke, J.; Qin, X.; Yang, H.; Zheng, Z.; Zhu, Z.; and Ye, J. 2021.
Predicting origin-destination ride-sourcing demand with a
spatio-temporal encoder-decoder residual multi-graph con-
volutional network. Transportation Research Part C:
Emerging Technologies, 122: 102858.
Kipf, T. N.; and Welling, M. 2016. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.
Kong, L.; Sun, J.; and Zhang, C. 2020. SDE-Net: Equipping
Deep Neural Networks with Uncertainty Estimates. In In-
ternational Conference on Machine Learning, 5405–5415.
PMLR.
Kuhn, H. W.; and Tucker, A. W. 1953. Contributions to the
Theory of Games, volume 2. Princeton University Press.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and Scalable Predictive Uncertainty Estimation us-
ing Deep Ensembles. Advances in neural information pro-
cessing systems, 30.
Li, B.; Qi, P.; Liu, B.; Di, S.; Liu, J.; Pei, J.; Yi, J.; and Zhou,
B. 2023. Trustworthy AI: From Principles to Practices. ACM
Comput. Surv., 55(9).
Li, C.; Bai, L.; Liu, W.; Yao, L.; and Waller, S. T. 2022.
Graph Neural Network for Robust Public Transit Demand
Prediction. IEEE Transactions on Intelligent Transportation
Systems, 23(5): 4086–4098.
Li, J.; Chen, X.; Hovy, E.; and Jurafsky, D. 2016. Visualizing
and Understanding Neural Models in NLP. In Proceedings
of NAACL-HLT, 681–691.
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2018. Diffusion Con-
volutional Recurrent Neural Network: Data-Driven Traffic
Forecasting. In International Conference on Learning Rep-
resentations.
Lin, Y.; Wan, H.; Hu, J.; Guo, S.; Yang, B.; Lin, Y.; and
Jensen, C. S. 2023. Origin-Destination Travel Time Oracle
for Map-based Services. Proceedings of the ACM on Man-
agement of Data, 1(3): 1–27.
Long, M.; Wang, J.; Cao, Y.; Sun, J.; and Philip, S. Y. 2016.
Deep learning of transferable representation for scalable do-
main adaptation. IEEE Transactions on Knowledge and
Data Engineering, 28(8): 2027–2040.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach to
interpreting model predictions. In Proceedings of the 31st
international conference on neural information processing
systems, 4768–4777.
Luo, D.; Cheng, W.; Xu, D.; Yu, W.; Zong, B.; Chen, H.; and
Zhang, X. 2020. Parameterized explainer for graph neural
network. arXiv preprint arXiv:2011.04573.
Ma, X.; Sun, P.; and Qin, G. 2017. Nonnegative matrix
factorization algorithms for link prediction in temporal net-
works using graph communicability. Pattern Recognition,
71: 361–374.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9429



Miao, H.; Shen, J.; Cao, J.; Xia, J.; and Wang, S. 2023.
MBA-STNet: Bayes-Enhanced Discriminative Multi-Task
Learning for Flow Prediction. IEEE Transactions on Knowl-
edge and Data Engineering, 35(7): 7164–7177.
Pitombeira-Neto, A. R.; Loureiro, C. F. G.; and Carvalho,
L. E. 2020. A dynamic hierarchical bayesian model for the
estimation of day-to-day origin-destination flows in trans-
portation networks. Networks and Spatial Economics, 20(2):
499–527.
Rong, C.; Li, T.; Feng, J.; Yang, H.; Geng, L.; and Li, Y.
2021. Inferring Origin-Destination Flows from Population
Distribution. IEEE Transactions on Knowledge and Data
Engineering.
Ros-Roca, X.; Montero, L.; Barceló, J.; Nökel, K.; and Gen-
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