
UNEX-RL: Reinforcing Long-Term Rewards in Multi-Stage Recommender
Systems with UNidirectional EXecution

Gengrui Zhang1*, Yao Wang1*, Xiaoshuang Chen1*, Hongyi Qian2, Kaiqiao Zhan1, Ben Wang1†
1Kuaishou Technology, Beijing, China
2Beihang University, Beijing, China

{zhanggengrui, wangyiyan, chenxiaoshuang, zhankaiqiao, wangben}@kuaishou.com, qianhongyi@buaa.edu.cn

Abstract
In recent years, there has been a growing interest in uti-
lizing reinforcement learning (RL) to optimize long-term
rewards in recommender systems. Since industrial recom-
mender systems are typically designed as multi-stage sys-
tems, RL methods with a single agent face challenges when
optimizing multiple stages simultaneously. The reason is that
different stages have different observation spaces, and thus
cannot be modeled by a single agent. To address this issue,
we propose a novel UNidirectional-EXecution-based multi-
agent Reinforcement Learning (UNEX-RL) framework to re-
inforce the long-term rewards in multi-stage recommender
systems. We show that the unidirectional execution is a key
feature of multi-stage recommender systems, bringing new
challenges to the applications of multi-agent reinforcement
learning (MARL), namely the observation dependency and
the cascading effect. To tackle these challenges, we provide a
cascading information chain (CIC) method to separate the in-
dependent observations from action-dependent observations
and use CIC to train UNEX-RL effectively. We also discuss
practical variance reduction techniques for UNEX-RL. Fi-
nally, we show the effectiveness of UNEX-RL on both public
datasets and an online recommender system with over 100
million users. Specifically, UNEX-RL reveals a 0.558% in-
crease in users’ usage time compared with single-agent RL
algorithms in online A/B experiments, highlighting the effec-
tiveness of UNEX-RL in industrial recommender systems.

1 Introduction
Recent recommender systems have achieved great success
in optimizing immediate engagement, such as click-through
rates (Pi et al. 2020; Lian et al. 2018). However, in real-life
applications, it is also necessary to improve the long-term re-
ward, including the total watch time, the session length, the
users’ retention, etc. The long-term reward is more desir-
able than immediate engagement because it directly affects
some important operational metrics, e.g., daily active users
(DAUs) and dwell time (Cai et al. 2023a). Different from
the immediate engagement, which has been extensively in-
vestigated (Wang et al. 2021; Zhou et al. 2018, 2019; Pi et al.
2020; Lian et al. 2018), it is more challenging to improve the
long-term reward in recommender systems, since the long-
term reward is affected by users’ overall satisfaction of the

*These authors contributed equally.
†Corresponding author.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Long-term rewards in recommender systems.

entire set of recommended items (Xue et al. 2022; Wang
et al. 2022), and it is difficult to relate the long-term reward
to a single recommended item. Figure 1 shows the long-term
reward of a recommender system.
Recently, a growing literature has focused on applying re-

inforcement learning (RL) to recommender systems due to
its ability to improve the long-term reward (Chen et al. 2019;
Gao et al. 2022a; Zou et al. 2019; Cai et al. 2023a). RL-
based methods treat users as the environment and the rec-
ommender system as the agent, and then model the sequen-
tial interactions between users and the recommender system
as Markov Decision Processes (MDP). After such modeling,
several kinds of RL methods (Fan et al. 2020; Lillicrap et al.
2015; Fujimoto, Hoof, and Meger 2018) can be employed to
optimize users’ long-term rewards.
Despite the growing interest in RL-based recommenda-

tion, it is still challenging to apply RL to industrial-level
recommender systems. A significant challenge arises from
the fact that industrial recommender systems are typically
built upon a multi-stage structure, including matching, pre-
ranking, ranking, and re-ranking, to provide real-time rec-
ommendations from tens of millions of candidate items in
a low latency (Wang et al. 2020b). The upstream stages uti-
lize lightweight models to provide a subset of the candidates
to the downstream stages for more precise estimation. Co-
operation of the multiple stages is essential for optimizing
the long-term rewards (Zhang et al. 2023). However, it is
challenging to apply RL to the joint optimization of multi-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9305

ple stages due to the fact that different stages have different
observation spaces, e.g., the predictions or statistics of the
candidate sets at each stage. This feature makes it inappro-
priate to model multiple stages in a single-agent RL model.
Recently, multi-agent reinforcement learning (MARL)

has reached success in RL problems with multiple agents.
Particularly, the centralized training with decentralized exe-
cution (CTDE) paradigm has made significant progress in
cooperative MARL tasks (Rashid et al. 2020). However,
challenges arise when training MARL in multi-stage recom-
mender systems. The key problem is that CTDE assumes
that observations of all the agents are simultaneously sam-
pled from the replay buffer in the training stage, but in a
multi-stage recommender system, even a slight change of
the actions in upstream stages may cause different candi-
dates in downstream stages, leading to different observations
and actions in downstream stages. This feature contradicts
the assumption of CTDE and deteriorates the performance
when training MARL with CTDE.
This paper proposes a novel UNidirectional-EXecution-

based multi-agent Reinforcement Learning (UNEX-RL)
framework to apply MARL to multi-stage recommender
systems. The unidirectional execution is a unique feature
of multi-stage recommender systems compared to typical
MARL applications. It leads to two effects in the train-
ing process of MARL, namely the observation dependency
(OD) in critic learning and the cascading effect (CE) in ac-
tor learning. OD and CE deteriorate the performance of tra-
ditional CTDE-based approaches in the training of MARL.
To mitigate these two effects, we propose a novel cascad-
ing information chain (CIC) approach to train UNEX-RL ef-
fectively. Moreover, we provide practical variance reduction
techniques to further improve the performance. UNEX-RL
shows significant improvement in optimizing the long-term
rewards in multi-stage recommender systems.
In summary, our contributions are as follows:

• We introduce a novel UNEX-RL framework to improve
the long-term rewards of multi-stage recommender sys-
tems. To the best of the authors’ knowledge, we are the
first to investigate the application of RL in industrial
multi-stage recommender systems.

• We show that the unidirectional execution in multi-stage
recommender systems leads to two effects, namely OD
and CE. Then we provide a CIC approach to solve these
problems. CIC shows a significant improvement over tra-
ditional CTDE-based training methods of MARL.

• We also discuss practical variance reduction techniques,
i.e. stopping gradient (SG) and category-quantile rescal-
ing (CQR), to improve the performance of UNEX-RL.

• We conduct extensive experiments in both public datasets
and an online recommender system serving over 100 mil-
lion users. UNEX-RL achieved a 0.558% increase in
users’ usage time in online A/B experiments of a real-
world multi-stage recommender system.

2 Related Work
2.1 RL in Recommender Systems
Due to the ability to improve cumulative reward, RL has
gathered increasing attention in the realm of recommender
systems (Shani et al. 2005; Zou et al. 2019; Zheng et al.

Figure 2: A multi-stage recommender system.

2018; Chen et al. 2019). RL models multiple interactions
between users and recommender systems as MDP, aim-
ing to optimize the long-term cumulative reward of the
recommender system. Value-based approaches usually es-
timate users’ preference for each item by Q networks, and
select the top k items for users(Zheng et al. 2018; Zhao
et al. 2018). Policy-based approaches usually use actor-
critic-based methods to learn a policy that aims to improve
users’ satisfaction(Cai et al. 2023a,b; Xue et al. 2022, 2023).
However, previous studies focused on improving a certain
part of recommender systems with a single agent, and did
not consider the multi-stage structure of industrial-level rec-
ommender systems, which is the contribution of our work.

2.2 MARL
In fully cooperative MARL, agents are trained to collaborate
and achieve better cooperation by sharing the same reward.
The CTDE paradigm learns a centralized critic with decen-
tralized actor, has been increasingly used in recent years (Fo-
erster et al. 2018; Peng et al. 2021; Wang et al. 2020a). In
contrast, communication-based methods are used to transfer
information between agents to facilitate the completion of
cooperative tasks (Sukhbaatar, Fergus et al. 2016; Foerster
et al. 2016). However, there are still challenges when apply-
ing MARL to multi-stage recommender systems (see Sec.
4), and to the best of the authors’ knowledge, we are the first
to discuss and solve these challenges.

3 Preliminary
3.1 Multi-Stage Recommender System
A typical multi-stage recommender system includes the
matching, pre-ranking, ranking, and re-ranking processes.
For the sake of convenience, we utilize the term “stages”
to uniformly describe these processes in the following dis-
cussions. Specifically, there are N stages in the system, as
shown in Figure 2. The system receives a user request at
each time step t, with an observable user state st, including
the user profile, the browsing history, etc. The system returns
an item set It out of the universal candidate set IU . The i-th
stage takes a candidate set Iit as input, and outputs a subset
I
i+1
t . We have IU = I

1
t � I

2
t · · · � I

N
t � I

N+1
t = It.

Generally, Stage i can be modeled as a selecting function

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9306

Figure 3: Overall framework of UNEX-RL.

F i with input Iit and output I
i+1
t , parameterized by ai

t:

I
i+1
t = F i(Iit ;a

i
t), (1)

where ai
t is to be determined. We would like to emphasize

that Eq. (1) is a very general description of Stage i. Here we
provide an example:
Example 1: This example is a simple multi-objective rank-
ing module. TheF i is the combination of the following step:
1. Predicting the user engagement on each item, e.g., the

click-through rate, the watch time, etc. The predictions
are denoted by pi

t, a
��Iit

�� ⇥M
i matrix, where M i is the

number of predictions. pi
t can be obtained from any DNN

model.
2. Taking a linear combination of pi

t with the weight vector
ai
t 2 R

Mi

, i.e. qi
t = pi

ta
i
t 2 R

|Ii
t |.

3. Sorting the items by qi
t and output the top items as Ii+1

t .
In this example, the action ai

t acts as the weights to merge
the predictions of each item in pi

t.

Problem Formulation We focus on the optimization of
the actions ai

t at all the stages and all the steps, aiming at
improving the user’s long-term reward. Formally we have:

max
a1:N

t

Rt =
1X

t0=t

�
t0�1

rt0 , (2)

where the upper bound “1” indicates a summation of the
rewards until the user leaves, and � is the discount factor.
MARL-based approaches are usually used to improve the

long-term reward with multiple cooperative agents. Before
proposing our UNEX-RL framework, we first provide some
basic concepts of MARL.

3.2 MARL
Agents in cooperative MARL aim to jointly maximize their
collective rewards. It can be modeled as a decentralized par-
tially observable Markov decision process (Dec-POMDP)

(Oliehoek, Amato et al. 2016), consisting of a tuple G =
{N ,S,A, P,R,⌦, O, i, �}, whereN is the set ofN agents,
S is the state space, A is the action space, P is the transi-
tion function, R is the reward function, ⌦ is the observation
space, and O is the observation function. At Step t, the en-
vironment falls into a state st 2 S , and each agent i 2 N
receives an observation ⌧ i

t drawn according to the observa-
tion function O(st, i). Each agent learns a policy function
µ
i parameterized by ✓

i, and outputs the action ai
t 2 A as

ai
t = µ

i
�
⌧ i
t; ✓

i
�
. (3)

After executing the actions of N agents, the system tran-
sits to the next state according to the transition function:
P (st+1|st,a1:N

t) and returns the reward rt = R(st,a1:N
t).

Here we use “1 : N” to represent a traverse from 1 to N .
CTDE is a training paradigm of MARL with a central-

ized critic and decentralized actors, and MADDPG (Lowe
et al. 2017) is one of the representative examples. MADDPG
learns a centralized critic Qi for each agent i by sharing the
global observation and actions in the training stage:
Q

i(⌧ 1:N
t ,a1:N

t) = E⌧1:N
t+1:1,a1:N

t+1:1

⇥
R

i
t|⌧ 1:N

t ,a1:N
t

⇤
, (4)

where Ri
t is the long-term reward of Agent i defined in Eq.

(2). Given Q
i, the loss of critic learning in CTDE writes:

loss(�i) = ED[(yi �Q
i(⌧ 1:N

t ,a1:N
t ;�i))2], (5)

where
y
i = r

i
t + � ⇤Qi(⌧ 1:N

t+1,a
1:N
t+1;�

i�), (6)
and �

i is the parameters of Qi for Agent i. ⌧ 1:N
t+1 is the ob-

servation of Step t + 1, which is obtained from the replay
buffer, and ai

t+1 = µ
i(⌧ i

t+1; ✓
i�) is the action of target pol-

icy with delayed parameters ✓i�. �i� is the parameters of
the target critic, and D is the replay buffer. The policy gra-
dient is calculated separately for each agent:

r✓iJ = ED

h
r✓iµ

irµiQ
i
�
⌧ 1:N
t ,a1:N

t

���
ai

t=µi(⌧ i
t)

i
(7)

where ai
t, the action of agent i, is obtained of the policy µ

i,
while the other actions are sampled from the replay buffer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9307

4 Method
This section provides the UNEX-RL method. Firstly, we
provide the overall framework and show that the unidirec-
tional execution leads to several challenges i.e. OD and CE.
Then, we propose CIC to tackle these challenges. Finally,
practical variance reduction techniques are provided to re-
duce the variance and to improve the performance.

4.1 Overall Framework
The UNEX-RL framework is illustrated in Figure 3. When a
user opens the app, a session begins, which consists of mul-
tiple requests until the user leaves the app. At Step t, the
system obtains a user state st together with the first candi-
date set I1t . The N stages are modeled as N agents. Agent i
receives the information available at Stage i, denoted by ⌧ i

t,
and uses the policy function µi to provide the action ai

t. The
action ai

t is used to select Ii+1
t out of Iit (see Eq. (1)). Af-

ter the N stages, the system outputs the final recommended
set It. Then, the user provides feedback rt and determines
whether to send the next request or leave. UNEX-RL aims
to maximize the long-term reward Rt defined in Eq. (2).

There are three parts in the agent observation ⌧ i
t:

• The inherit part ⌧ i�1
t when i > 1, which means Stage i

possesses all the observations in Stage i� 1.
• The action of the previous stage, i.e. ai�1

t .
• The information obtained in this stage for the first time,
e.g., new predictions or statistics about the candidate set
I
i
t . We denote it as vi

t, and generally, we assume vi
t to be

obtained from an information extraction process:
vi
t = Pi

�
I
i
t ;P

i
�
, (8)

where P
i is the parameter. We do not explicitly model

Pi, but we assume it to be accessible in training.
Formally we have:

⌧ 1
t =

⇥
st,v

1
t

⇤
, ⌧ i+1

t =
⇥
⌧ i
t,a

i
t,v

i+1
t

⇤
. (9)

The unidirectional execution, which is the key differ-
ence between UNEX-RL and traditional MARL, arises from
the information extraction process Pi in Eq. (8). Since vi

t
must be obtained after the candidate set Iit is determined,
Agent imust be executed after Agent i�1, and all the agents
must be executed in series (see the blue arrows in Figure 3).
MARL is usually trained by CTDE (Lowe et al. 2017),

but the unidirectional execution brings two challenges:
• Observation Dependency (OD): The OD problem is
about the critic learning, i.e., Eq. (5)(6). In the calcula-
tion of target actions in Eq. (6), the observations ⌧ 1:N

t+1 are
sampled from the replay buffer, and the actions a1:N

t+1 are
calculated via the target policy. However, if we change
the actions ai

t+1, the observations ⌧
i+1
t+1 in Stage i+1will

also change according to Eq. (9), which contradicts the
assumption that ⌧ 1:N

t+1 is predefined in the replay buffer.
• Cascading Effect (CE): The CE problem is about the
actor learning part, i.e., Eq. (7), which optimizes the pol-
icy function µ

i of the i-th agent under the condition that
the actions of other agents are sampled from the replay
buffer. However, according to Eq. (9), the action ai

t is
contained in the observation of downstream stages, i.e.,
⌧ i+1:N
t , hence will affect the decisions of downstream

stage actors, which is not taken into account in Eq. (7).

4.2 Training of UNEX-RL
This subsection presents the training of UNEX-RL, espe-
cially the solution to the OD and CE problems, as shown
in Algorithm 1. We use the actor-critic structure. Different
from Eq. (5)(6), all the agents share the reward rt from the
user, and thus we only use a global critic Qg .

We first consider the solution to OD. A key dilemma is
that the observations from the replay buffer contradict the
observations of target actors in the training stage. Thus, we
need to find an independent subset of the observations. Our
solution is based on the following finding: given all the target
actors and all the checkpoints of the system, we are able
to replay the total recommendation only based on the first
observation in the training stage. Formally we have:
Theorem 4.1. Denote E(·) as the information implied by

input variables. Assume that the parameters P
i
of the infor-

mation extraction in Eq. (8) are given for all i. Then 8i, 2
i N , the set

�
⌧ 1
t ,a

1:i�1
t

contains all the information of

the observation ⌧ i
t, i.e. E

�
⌧ i
t

�
⇢ E

��
⌧ 1
t ,a

1:i�1
t

 �
.

Please refer to Appendix. A for the detailed proof of The-
orem 4.1. Note that the assumption of a given parameter P i

is reasonable since it is common to replay the online rec-
ommendation processes based on model checkpoints in the
offline training (Chen et al. 2019).
Theorem 4.1 models the information flow of the unidi-

rectional execution in Fig. 3. Based on this finding, we pro-
pose a cascade information chain (CIC) method, described
in Algorithm 2, to obtain ⌧ 1:N

t and a1:N
t only from the first

observation ⌧ 1
t . CIC executes iteratively, leveraging the in-

formation of upstream stages to obtain the observations of
downstream stages until the whole observations and actions
have been obtained. For simplicity, we represent CIC as:

⇥
⌧ 1:N
t ,a1:N

t

⇤
= C

�
⌧ 1
t ; ✓

1:N
, P

1:N
�
. (10)

Via CIC, the critic learning can be formulated as:

L(�) = ED[(yg �Q
g(⌧ 1:N

t ,a1:N
t ;�))2], (11)

where

y
g
t = rt + � ⇤Qg(C

�
⌧ 1
t+1; ✓

1:N�
, P

1:N
�
;��), (12)

� and �
� are parameters of the critic and the target critic.

Here the only independent observation which needs to be
obtained from the replay buffer is ⌧ 1

t+1, while the obser-
vations of the downstream stages are obtained from CIC.
Therefore, CIC provides a solution to the OD problem.
Nowwe discuss the actor learning of UNEX-RL and show

that CIC can also be used to solve the CE problem. Note that
traditional CTDE in Eq. (7) does not consider the influence
of ai

t to the actions of its downstream agents. In contrast, any
change of µi will change not only the corresponding action
ai
t, but also the actions of succeeding stages a

i+1:N
t in CIC.

Therefore, we just need to use CIC in the policy gradient:

r✓iJi = ED

⇥
r✓iµ

irµiQ
g
�
C
�
⌧ 1
t ; ✓

1:N
, P

1:N
��⇤

(13)

In a word, we use CIC to replay the execution process in
the training stage to solve OD and CE problems. The differ-
ence between CTDE and CIC is shown in Figure 4.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9308

Algorithm 1: The training process of UNEX-RL.

1: Input:
�
s1:T , ⌧ 1:N

1:T ,a1:N
1:T , r1:T

for each user.

2: Output: A critic function Qg
�
⌧ 1:N
t ,a1:N

t ;�
�
parameterized by �;N policies µi

�
⌧ i
t; ✓

i
�
, parameterized by ✓i, 1 i N .

3: for each user session with T requests from the replay buffer do
4: for t = 1, · · · , T do
5: Collect the reward rt, the observation ⌧ 1:N

t , and all the actions a1:N
t from the replay buffer.

6: Collect the first-stage observation of the next step ⌧ 1
t+1 from the replay buffer.

7: Calculate the CIC according to Eq. (10) to obtain the target action a1:N
t+1 and the updated observation ⌧ 1:N

t+1 from ⌧ 1
t .

8: Critic learning: � �� ↵r�L, where L(�) is defined in Eq. (11)(12), and ↵ is the learning rate.
9: Actor learning: ✓i ✓

i � �r✓iJi, where r✓iJi is defined in (13), and � is the learning rate.
10: end for
11: end for

Figure 4: Train with CTDE and CIC.

Algorithm 2: The process of CIC.

1: Input: The first observation ⌧ 1
t , actor parameters ✓1:N ,

and prediction system parameters P 1:N .
2: Output: Actions a1:N

t and observations ⌧ 1:N
t .

3: a1
t = µ

1
�
⌧ 1
t ; ✓

1
�

4: for i = 2, · · · , N do
5: I

i
t = F i

�
I
i�1
t ;ai�1

t

�
, as shown in Eq. (1).

6: vi
t = Pi

�
I
i
t ;P

i
�
, as shown in Eq. (8).

7: ⌧ i
t =

⇥
⌧ i�1
t ,ai�1

t ,vi
t

⇤
, as shown in Eq. (9).

8: ai
t = µ

i
�
⌧ i
t; ✓

i
�

9: end for

4.3 Variance Reduction Techniques
RL in recommender systems suffers from large variance due
to the highly sparse data (Chen et al. 2019), and MARL
makes things even worse due to the decentralized actions of
multiple agents (Lowe et al. 2017). Here we provide some
practical variance reduction techniques.

Stopping Gradient (SG) The CIC function provides mul-
tiple paths from Q

g to µ
i, which will make the gradient

somehow uncontrollable in backward propagation. Here we
stop the gradient from µ

i+1:N to µ
i, and only use the direct

gradient from Q
g to µ

i in critic learning.

Category Quantile Rescale (CQR) The user’s feedback
rt depends not only on the user’s interest in the recom-
mended item but also on the user’s or the item’s bias feature.
Such bias leads to a large range of rt, resulting in a large
variance (Zhan et al. 2022). Please refer to Appendix. B for
more details about these biases. Here we propose CQR, a
reward-reshaping method to solve this problem. We obtain
the group of users similar to the user u, denoted by Gu, and
the group of items similar to the item i, denoted by Gi. There
are sufficient discussions on how to find similar users and
items (Pi et al. 2020; Chen et al. 2021). The CQR reward is
the quantile of the reward conditioned on Gu and Gi:

r̃t,ui = � (rt,ui|Gu,Gi) (14)
where � denotes the cumulative density function.
Clearly, r̃t,ui obeys a uniform distribution, and this uni-

formity remains when conditioned on any Gu and Gi. Thus,
the range of r̃t,ui will be moderate compared with rt, which
can reduce the variance of critic learning.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9309

5 Evaluation
We conduct extensive offline and online experiments, and
answer the following research questions (RQs):
• RQ1: How does the UNEX-RL framework perform com-
pared to other state-of-the-art (SOTA) methods?

• RQ2: Does UNEX-RL with CIC effectively solve the
problems in multi-stage recommender systems?

• RQ3: How do the variance reduction techniques con-
tribute to the performance?

• RQ4: Can the UNEX-RL framework lead to improve-
ments in real-world recommender systems?

5.1 Preparing the Dataset
Dataset and Simulator We select KuaiRand (Gao et al.
2022b) as the offline experimental dataset. KuaiRand is a
public dataset obtained from Kuaishou, containing 27,285
users and 32,038,725 items. It encompasses contextual fea-
tures of both users and items, along with multiple feedback
signals from users.
To emulate real user behavior, we construct a user simulator
to act as the environment and mimic the user’s interaction
with the recommender system. After receiving the recom-
mended items, the user simulator provides immediate feed-
back and determines whether to send the next request. We
follow the work in (Xue et al. 2023) to introduce a quitting
mechanism: the user will exit the session once they have ex-
hausted their satisfaction, and an early quit will also lead to
inferior performance in terms of reward metrics.

Offline Experiment Details Align with industrial recom-
mender systems, we consider three stages i.e., matching,
pre-ranking, and ranking. The operation in each stage is the
same as Example 1 in Sec. 3.1, i.e., a linear ranking function
qi
t = pi

ta
i
t, where pi

t 2
��Iit

�� ⇥ 3 represents the prediction
of three feedbacks, i.e., like, long view and watch time. The
action ai

t 2 R
3 is the weight of the linear ranking. The state

st comprises the user profile, the behavior history, and the
request context. The observation vi

t includes statistics of the
candidate items. To ensure fairness, we use a consistent net-
work architecture, i.e., a multi-layer perceptron with 5 lay-
ers, for actors and critics of all the compared methods. The
hyperparameters can be found in Table 3 in Appendix. C.

5.2 Compared Methods
• Cross Entropy Method (CEM) (Rubinstein and Kroese
2004): a black-box optimization method commonly used
for hyper-parameter optimization. We use CEM to search
the best parameters ai

t at each stage.
• DDPG (Lillicrap et al. 2015): Since DDPG is a single-
agent method, We deploy it at the final ranking stage.

• TD3 (Fujimoto, Hoof, and Meger 2018): Similar to
DDPG, we deploy TD3 at the final ranking stage.

• UNEX-RL-CTDE: UNEX-RL trained by CTDE along
with CQR in a multi-stage recommender system.

• UNEX-RL-CTDE (w/o CQR): UNEX-RL-CTDE with-
out CQR.

• UNEX-RL-CIC: UNEX-RL trained under CIC in Algo-
rithm 1, along with SG and CQR.

• UNEX-RL-CIC (w/o CQR): UNEX-RL-CIC without
CQR.

Methods WatchTime Session
(s) Length

CEM 654.0 15.3
DDPG 732.6 18.2
TD3 763.2 18.9

UNEX-RL-CTDE(w/o CQR) 782.5 19.7
UNEX-RL-CTDE 887.2 21.6

UNEX-RL-CIC(w/o CQR) 974.3 22.7
UNEX-RL-CIC(w/o SG) 752.1 18.4

UNEX-RL-CIC 1056.2 24.2

Table 1: The overall performance of different methods.

• UNEX-RL-CIC (w/o SG): UNEX-RL-CIC without SG.

5.3 Evaluation Metric
We measure two kinds of long-term rewards, namely the
WatchTime, i.e., the accumulated watching time of all the
items watched in the session, and the Session Length, i.e.,
the number of items watched in the session.

5.4 Performance Comparison (RQ1)
The results of the offline experiments are shown in Table
1. CEM searches a global weight vector ai for each stage.
Since DDPG and TD3 are single-agent methods, we deploy
them at the final ranking stage. Compared to CEM, RL-
based algorithms performmuch better due to their advantage
of optimizing the long-term rewards of the users. Further-
more, UNEX-RL achieves significantly better performance,
showing that MARL can better release the ability of RL in a
multi-stage recommendation system. Moreover, the compar-
ison between UNEX-RL-CIC and UNEX-RL-CTDE shows
the effectiveness of our proposed CIC approach.

5.5 Impacts of Multiple Stages (RQ2)
To demonstrate that the UNEX-RL framework can better
adapt to multi-stage recommender systems, we analyze the
impact of the number of agents on different methods, as
shown in Figure 5. CEM can be regarded as a method with 0
agents. For all other RL-based methods, we adjust the num-
ber of agents from 1 to 3. Specifically for DDPG, we deploy
an independent DDPG at each stage.
When there is only one agent, UNEX-RL-CTDE and
UNEX-RL-CIC degrade to DDPG, and the three meth-
ods exhibit the same performance. As the number of
agents increases, both UNEX-RL-CTDE and UNEX-RL-
CIC show significant improvements, proving the effective-
ness of UNEX-RL. However, multiple independent DDPGs
show even lower performance since the lack of coopera-
tion among the agents. When there are multiple agents,
UNEX-RL-CIC outperforms UNEX-RL-CTDE, showing
that the CIC training paradigm can better facilitate coopera-
tion among the agents in multi-stage recommender systems.

5.6 Impacts of Variance Reduction (RQ3)
To analyze the contribution of the variance reduction tech-
niques, we deploy the ablation study of UNEX-RL, shown
in Figure 6. By removing CQR from UNEX-RL-CTDE and
UNEX-RL-CIC, the performance significantly deteriorates,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9310

Figure 5: Performance of different numbers of agents.

Figure 6: Performance of Variance Reduction Techniques.

proving that CQR can significantly improve the performance
of UNEX-RL. Also, by removing SG from UNEX-RL-CIC,
the performance will be much worse, showing that SG is a
key technique to improve the training of CIC. We do not dis-
cuss the impacts of SG on CTDE and DDPG since these two
methods do not contain gradients from µ

i+1 to µi.

5.7 Online A/B Experiments (RQ4)
We deploy UNEX-RL on Kwai, a short video app with
over 100 million users. Through online experiments, we
compare UNEX-RL with the current SOTA methods. The
baseline is CEM, and we successively experiment with
DDPG, TD3, UNEX-RL-CTDE, and UNEX-RL-CIC. The
evaluation metrics are the relative improvements of daily
WatchTime and session-wise WatchTime.
In the online experiment, we deploy agents in the pre-
ranking and ranking stages, and the two agents return actions
as the weight vector of the ranking functions. The observa-
tions include user information that all the agents share, and
stage-wise observations, i.e., the statistics of the predicted
scores in the current stage.
Table 2 shows the comparisons of different methods. Ac-
cording to Table 2, DDPG and TD3 show significant im-
provements compared to CEM, showing the effectiveness of
RL to improve users’ long-term rewards. More importantly,
both UNEX-RL-CTDE and UNEX-RL-CIC perform better
than the RL methods with a single agent, indicating that
the proposed UNEX-RL framework leads to improvements
in real-world recommender systems. Notably, UNEX-RL-
CIC achieves the best performance compared to other meth-

Figure 7: Results of a long period online experiment.

Algorithms Session Daily
WatchTime WatchTime

CEM - -
DDPG + 0.233% + 0.219%
TD3 + 0.414% + 0.395%

UNEX-RL-CTDE + 0.610% + 0.602%
UNEX-RL-CIC + 0.970% + 0.953%

Table 2: Results of online experiments compared with CEM.

ods, i.e., a 0.953% gain of daily WatchTime compared with
CEM, and a 0.558% gain compared with TD3. We empha-
size that a 0.1% improvement holds statistical significance
in our system.
Furthermore, we conduct a 150-day online experiment,

with the baseline group remaining with the CEM approach,
while the experimental group successively introduced TD3,
UNEX-RL-CTDE, and UNEX-RL-CIC. DDPG is not intro-
duced to the experimental group since it is tested in the same
period as TD3 with a lower performance. We mark the de-
ployment time of these methods, showing significant gains
when deploying UNEX-RL. The results shows the improve-
ment of UNEX-RL over existing methods.

6 Conclusion
This paper provides a general framework, i.e. UNEX-RL,
for applying MARL to multi-stage recommender systems.
UNEX-RL differs from traditional MARL in the unidirec-
tional execution, which brings challenges to the training of
UNEX-RL. To tackle the challenges of OD and CE arising
from the unidirectional execution, we provide the CIC ap-
proach to effectively train UNEX-RL, and provide practi-
cal variance reduction techniques, i.e. SG and CQR, to fur-
ther improve the performance. UNEX-RL has shown its ef-
fectiveness on both public datasets and a real-world recom-
mender system, and has been deployed online, serving over
100 million users.

References
Cai, Q.; Liu, S.; Wang, X.; Zuo, T.; Xie, W.; Yang, B.;
Zheng, D.; Jiang, P.; and Gai, K. 2023a. Reinforcing User

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9311

Retention in a Billion Scale Short Video Recommender Sys-
tem. arXiv preprint arXiv:2302.01724.
Cai, Q.; Xue, Z.; Zhang, C.; Xue, W.; Liu, S.; Zhan, R.;
Wang, X.; Zuo, T.; Xie, W.; Zheng, D.; et al. 2023b. Two-
Stage Constrained Actor-Critic for Short Video Recommen-
dation. In Proceedings of the ACM Web Conference 2023,
865–875.
Chen, M.; Beutel, A.; Covington, P.; Jain, S.; Belletti, F.;
and Chi, E. H. 2019. Top-k off-policy correction for a REIN-
FORCE recommender system. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data

Mining, 456–464.
Chen, Q.; Pei, C.; Lv, S.; Li, C.; Ge, J.; and Ou, W. 2021.
End-to-end user behavior retrieval in click-through ratepre-
diction model. arXiv preprint arXiv:2108.04468.
Fan, J.; Wang, Z.; Xie, Y.; and Yang, Z. 2020. A theoretical
analysis of deep Q-learning. In Learning for dynamics and

control, 486–489. PMLR.
Foerster, J.; Assael, I. A.; De Freitas, N.; and Whiteson, S.
2016. Learning to communicate with deep multi-agent re-
inforcement learning. Advances in neural information pro-

cessing systems, 29.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2018. Counterfactual multi-agent policy gra-
dients. In Proceedings of the AAAI conference on artificial

intelligence, volume 32.
Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In
International conference on machine learning, 1587–1596.
PMLR.
Gao, C.; Li, S.; Lei, W.; Chen, J.; Li, B.; Jiang, P.; He, X.;
Mao, J.; and Chua, T.-S. 2022a. KuaiRec: A fully-observed
dataset and insights for evaluating recommender systems. In
Proceedings of the 31st ACM International Conference on

Information & Knowledge Management, 540–550.
Gao, C.; Li, S.; Zhang, Y.; Chen, J.; Li, B.; Lei, W.; Jiang,
P.; and He, X. 2022b. KuaiRand: An Unbiased Sequential
Recommendation Dataset with Randomly Exposed Videos.
In Proceedings of the 31st ACM International Conference

on Information & Knowledge Management, 3953–3957.
Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. DeepFM:
a factorization-machine based neural network for CTR pre-
diction. arXiv preprint arXiv:1703.04247.
Huang, P.-S.; He, X.; Gao, J.; Deng, L.; Acero, A.; and Heck,
L. 2013. Learning deep structured semantic models for web
search using clickthrough data. In Proceedings of the 22nd

ACM international conference on Information & Knowledge

Management, 2333–2338.
Lian, J.; Zhou, X.; Zhang, F.; Chen, Z.; Xie, X.; and Sun,
G. 2018. xdeepfm: Combining explicit and implicit feature
interactions for recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge

discovery & data mining, 1754–1763.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971.
Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.;
and Mordatch, I. 2017. Multi-agent actor-critic for mixed

cooperative-competitive environments. Advances in neural

information processing systems, 30.
Oliehoek, F. A.; Amato, C.; et al. 2016. A concise introduc-

tion to decentralized POMDPs, volume 1. Springer.
Peng, B.; Rashid, T.; Schroeder de Witt, C.; Kamienny, P.-
A.; Torr, P.; Böhmer, W.; and Whiteson, S. 2021. Facmac:
Factored multi-agent centralised policy gradients. Advances
in Neural Information Processing Systems, 34: 12208–
12221.
Pi, Q.; Zhou, G.; Zhang, Y.; Wang, Z.; Ren, L.; Fan, Y.; Zhu,
X.; and Gai, K. 2020. Search-based user interest model-
ing with lifelong sequential behavior data for click-through
rate prediction. In Proceedings of the 29th ACM Interna-

tional Conference on Information & Knowledge Manage-

ment, 2685–2692.
Rashid, T.; Samvelyan, M.; De Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning.
The Journal of Machine Learning Research, 21(1): 7234–
7284.
Rendle, S. 2010. Factorization machines. In 2010 IEEE

International conference on data mining, 995–1000. IEEE.
Rubinstein, R. Y.; and Kroese, D. P. 2004. The cross-

entropy method: a unified approach to combinatorial opti-

mization, Monte-Carlo simulation, and machine learning,
volume 133. Springer.
Shani, G.; Heckerman, D.; Brafman, R. I.; and Boutilier, C.
2005. An MDP-based recommender system. Journal of Ma-

chine Learning Research, 6(9).
Sukhbaatar, S.; Fergus, R.; et al. 2016. Learning multiagent
communication with backpropagation. Advances in neural

information processing systems, 29.
Wang, R.; Shivanna, R.; Cheng, D.; Jain, S.; Lin, D.; Hong,
L.; and Chi, E. 2021. Dcn v2: Improved deep & cross net-
work and practical lessons for web-scale learning to rank
systems. In Proceedings of the web conference 2021, 1785–
1797.
Wang, Y.; Han, B.; Wang, T.; Dong, H.; and Zhang, C.
2020a. Dop: Off-policy multi-agent decomposed policy gra-
dients. In International conference on learning representa-

tions.
Wang, Y.; Sharma, M.; Xu, C.; Badam, S.; Sun, Q.; Richard-
son, L.; Chung, L.; Chi, E. H.; and Chen, M. 2022. Surro-
gate for long-term user experience in recommender systems.
In Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, 4100–4109.
Wang, Z.; Zhao, L.; Jiang, B.; Zhou, G.; Zhu, X.; and Gai,
K. 2020b. Cold: Towards the next generation of pre-ranking
system. arXiv preprint arXiv:2007.16122.
Xue, W.; Cai, Q.; Xue, Z.; Sun, S.; Liu, S.; Zheng, D.; Jiang,
P.; Gai, K.; and An, B. 2023. PrefRec: Recommender Sys-
tems with Human Preferences for Reinforcing Long-term
User Engagement.
Xue, W.; Cai, Q.; Zhan, R.; Zheng, D.; Jiang, P.; and An,
B. 2022. ResAct: Reinforcing Long-term Engagement in
Sequential Recommendation with Residual Actor. arXiv

preprint arXiv:2206.02620.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9312

Zhan, R.; Pei, C.; Su, Q.; Wen, J.; Wang, X.; Mu, G.; Zheng,
D.; Jiang, P.; and Gai, K. 2022. Deconfounding Duration
Bias in Watch-time Prediction for Video Recommendation.
In Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, 4472–4481.
Zhang, Z.; Huang, Y.; Ou, D.; Li, S.; Li, L.; Liu, Q.; and
Zeng, X. 2023. Rethinking the Role of Pre-ranking in
Large-scale E-Commerce Searching System. arXiv preprint
arXiv:2305.13647.
Zhao, X.; Zhang, L.; Ding, Z.; Xia, L.; Tang, J.; and Yin, D.
2018. Recommendations with negative feedback via pair-
wise deep reinforcement learning. In Proceedings of the

24th ACM SIGKDD international conference on knowledge

discovery & data mining, 1040–1048.
Zheng, G.; Zhang, F.; Zheng, Z.; Xiang, Y.; Yuan, N. J.; Xie,
X.; and Li, Z. 2018. DRN: A deep reinforcement learning
framework for news recommendation. In Proceedings of the
2018 world wide web conference, 167–176.
Zhou, G.; Mou, N.; Fan, Y.; Pi, Q.; Bian, W.; Zhou, C.; Zhu,
X.; and Gai, K. 2019. Deep interest evolution network for
click-through rate prediction. In Proceedings of the AAAI

conference on artificial intelligence, volume 33, 5941–5948.
Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H.; Ma, X.; Yan,
Y.; Jin, J.; Li, H.; and Gai, K. 2018. Deep interest network
for click-through rate prediction. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge dis-

covery & data mining, 1059–1068.
Zou, L.; Xia, L.; Ding, Z.; Song, J.; Liu, W.; and Yin, D.
2019. Reinforcement learning to optimize long-term user
engagement in recommender systems. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining, 2810–2818.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9313

