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Abstract

Quantitative stock selection is one of the most challenging
FinTech tasks due to the non-stationary dynamics and com-
plex market dependencies. Existing studies rely on channel
mixing methods, exacerbating the issue of distribution shift in
financial time series. Additionally, complex model structures
they build make it difficult to handle very long sequences.
Furthermore, most of them are based on predefined stock re-
lationships thus making it difficult to capture the dynamic and
highly volatile stock markets. To address the above issues, in
this paper, we propose Channel-Independent based Spatio-
Temporal Hypergraph Pre-trained Attention Networks (CI-
STHPAN), a two-stage framework for stock selection, in-
volving Transformer and HGAT based stock time series self-
supervised pre-training and stock-ranking based downstream
task fine-tuning. We calculate the similarity of stock time se-
ries of different channel in dynamic intervals based on Dy-
namic Time Warping (DTW), and further construct channel-
independent stock dynamic hypergraph based on the similar-
ity. Experiments with NASDAQ and NYSE markets data over
five years show that our framework outperforms SOTA ap-
proaches in terms of investment return ratio (IRR) and Sharpe
ratio (SR). Additionally, we find that even without introduc-
ing graph information, self-supervised learning based on the
vanilla Transformer Encoder also surpasses SOTA results.
Notable improvements are gained on the NYSE market. It is
mainly attributed to the improvement of fine-tuning approach
on Information Coefficient (IC) and Information Ratio based
IC (ICIR), indicating that the fine-tuning method enhances
the accuracy and stability of the model prediction.

Introduction
Stock markets play a crucial role in shaping the develop-
ment of the global economy (Zou et al. 2022), with global
market capitalization returning to $100 trillion by June 2023
and investors re-embracing risky assets after the COVID-19.
Stock markets are characterized by uncertainty and volatil-
ity, and traditional machine learning techniques have been
applied to stock price prediction to overcome these diffi-
culties while improving prediction accuracy. However, tra-
ditional machine learning requires the manual construction
of a large number of features with financial and economic
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Figure 1: Correlation of stock movements among differ-
ent sector-industries. Dynamic hyperedges are constructed
based on similarity between the normalized time series.

implications, which requires a high level of expertise. More-
over, traditional machine learning techniques have difficulty
capturing the interactions among stocks.

In recent years, deep learning techniques have achieved
great success in areas such as natural language process-
ing(NLP), computer vision (CV) and automatic speech
recognition (ASR), especially with the release of ChatGPT1

at the end of 2022, which ushered in the era of large mod-
els. Accordingly, researchers in the quantitative investment
field also actively tried to use deep learning for stock price
prediction to enhance investment returns. Many studies have
showed that deep learning-based stock price prediction mod-
els outperform traditional machine learning (Sezer, Gudelek,
and Ozbayoglu 2020). Examples included LSTM (Feng
et al. 2018), GRU (Xu and Cohen 2018) and Transformer
(Muhammad et al. 2023), which were based on recurrent
neural networks to improve the accuracy. In addition, many
studies focused on correlations among stocks, such as hold-
ing relationships (Chen, Wei, and Huang 2018), sector rela-
tionships (Feng et al. 2019) and momentum spillover effects
(Cheng and Li 2021).They applied various graph neural net-
works (Zhang, Cui, and Zhu 2020) such as GCN (Chen, Wei,
and Huang 2018), GAT (Hsu, Tsai, and Li 2021) and HGCN
(Sawhney et al. 2020) to fuse stock temporal features and
spatial features to improve stock prediction accuracy.

However, all of those methods were end-to-end models.

1OpenAI (2023): https://openai.com/research/gpt-4
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Figure 2: Stock time series patching. Patches are generated
in the form of sliding windows over the entire stock time
series data. Each patch contains a fixed length P and the
interval S between each patch can be set as needed.

For instance, the stock price time series were first extracted
by CNN or LSTM for temporal features, and then the spa-
tial features were fused by GNN as node features in the stock
relationship graph, and finally the prediction was performed
by linear layer, which was regarded as a time series regres-
sion problem (Saha, Gao, and Gerlach 2022). This end-to-
end approach had complex time complexity and did not take
full advantage of the powerful feature representation capa-
bility of deep neural networks. Moreoever, most of the above
graph-based approaches were based on predefined static re-
lationships in the financial domain, whereas the stock market
is highly volatile. In addition, the predefined relationships
also greatly limited the types of relationships between stocks
where there were also fairly consistent movements between
stocks in different industries (as shown in Figure 1).

In this paper, we propose CI-STHPAN for stock selection.
To the best of our knowledge, it is the first work to pre-train
on stock time-series and fine-tune on a quantitative stock se-
lection downstream task. In addition, we go beyond the con-
struction of predefined stock financial relationships to con-
struct hypergraphs based on long-term stock time series sim-
ilarities to explore more potential stock relationships. Our
main contributions are summarized as follows:

• We propose a two-stage framework for stock selection:
Transformer and HGAT based stock time series self-
supervised pre-training and stock-ranking based down-
stream task fine-tuning, which takes full advantage of the
powerful spatio-temporal feature representation capabil-
ity of deep neural networks.

• We apply a range of financial multivariate time series
processing techniques, including Patching which allows
the model to have a longer lookback window, chan-
nel independence and reversible instance normalization
(RevIN) which allows the model to overcome the distri-
bution shift properties of financial time series.

• We have conducted extensive experiments on both NAS-
DAQ and NYSE stock markets to validate the superior
performance of CI-STHPAN for quantitative stock selec-
tion.

Related Work
Transformer Based Time Series Forecasting
In recent years, Transformer-based deep learning models
have achieved great success in NLP (Kalyan, Rajasekharan,
and Sangeetha 2021), CV (Khan et al. 2022), ASR (Karita
et al. 2019) and other fields. The core idea was to use the at-
tention mechanism to learn the association of elements in
a sequence autonomously, and thus many researchers ap-
plied it to time series forecasting, such as LogTrans (Li et al.
2019), Informer (Zhou et al. 2021), Autoformer (Wu et al.
2021), FEDformer (Zhou et al. 2022), Pyraformer (Liu et al.
2021), Non-stationary Transformers (Liu et al. 2022) and
so on2. Inspired by the success obtained by pre-train tech-
niques in NLP, such as BERT and GPT, many studies begun
to explore pre-train on time-series data. (Zerveas et al. 2021)
first proposed a Transformer-based temporal self-supervised
learning framework and experimentally verified that self-
supervised learning outperformed supervised learning. (Nie
et al. 2022) further improved it while responding to (Zeng
et al. 2023) question on Transformer-based time series fore-
casting models by proposing PatchTST, a patch time se-
ries prediction Transformer based on channel independent,
which enhanced the time series representation learning abil-
ity while reducing the training time, and achieved SOTA re-
sults in many time series prediction tasks.

Spatio-temporal Based Stock Selection
Stock price movements are influenced by both historical
trends and the movements of stocks associated with them.
By such observations, ST-GNN3 integrated both temporal
and spatial features in the field of quantitative stock se-
lection, and thus received much research attention in re-
cent years. However, most of them constructed relation-
ships among stocks based on predefined relationships such
as stockholders (Chen, Wei, and Huang 2018), industry-
sector (Feng et al. 2019; Kim et al. 2019; Sawhney et al.
2020), and concepts (Xu et al. 2021b). The predefined re-
lationships greatly limited the types of relationships among
stocks markets which are highly volatile, as shown in Figure
1. Therefore, many studies in recent years started to con-
struct dynamic hidden stock relationships to adapt to highly
volatile market, such as hidden conceptual relationships (Xu
et al. 2021a), potential relationships among stocks and sec-
tors (Hsu, Tsai, and Li 2021), similarity based dynamic hid-
den relationships (Wang et al. 2022), relevance implicit hy-
pergraph relations (Huynh et al. 2023), etc.

Design of CI-STHPAN
Problem Formulation
In order to perform stock selection and maximize investment
returns, following the work (Feng et al. 2019; Sawhney et al.
2021; Wang et al. 2022), we formulate stock price forecast-
ing as a stock ranking problem. Given a list of stocks S =
{s1, s2, . . . , s|S|}, at each trading day t for each stock si ∈

2More technical details about the Transformer-based time series
forecasting models can be referred to (Zeng et al. 2023).

3ST-GNN:Spatio-Temporal Graph Neural Networks
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Figure 3: Overview of the proposed CI-STHPAN. A two-stage framework for stock selection, involving Transformer and HGAT
based stock time series self-supervised pre-training and stock-ranking based downstream task fine-tuning.

S , according to the trading data Xi = [xt−L, . . . ,xt−1] ∈
RM×L and stock relational hypergraph G = (V, E), we con-
struct the model Fθ(X[1:|S]),G) to predict the return ratio

r̂ti =
ĉti−ct−1

i

ct−1
i

, where M is the feature dimension and L is

the size of look back window. V = {v1, v2, . . . , v|s|} and
ε = {e1, e2, . . . , eR} are the set of nodes and hyperedges,
respectively. ct−1

i and ĉti are the ground-truth and predict
close price of stock si, respectively. Subsequently, based on
the predicted return R̂t = [r̂t1, r̂

t
2, . . . , r̂

t
|S|] we can rank all

stocks yt =
{
yt1 > yt2 > · · · > yt|S|

}
such that any pair of

stocks si, sj ∈ S , when yti > ytj , r̂
t
i > r̂tj , and finally we

choose the top-ranked k stocks to invest on trading day t.

Data Preprocessing
Following (Feng et al. 2019), we first standardize the raw
stock price data. Specifically, we calculate the 5-day, 10-
day, 20-day, and 30-day moving averages based on the close
prices, in order to represent the stock price time series trend
from short to long, thus we get the input of the model with a
time series feature dimension M of 5. We further standard-
ize the full sample data based on the maximum value of each
channel m on the training set, xm

i =
xm
i

max(xm
i,train)

, and fol-
lowed by patching and hypergraph constrution, respectively.

Stock Time Series Patching Patching empowers the
model with a longer time series dependence to improve the
prediction accuracy while reducing the complexity of model,
the training time and GPU memory usage. As shown in Fig-
ure 2, patches are generated in the form of sliding windows
over the entire stock time series, and each patch contains a
fixed length P . The interval S between each patch affects the

number of generated patches N =
⌊
L−P
S

⌋
+2. The interval

should not be too small, otherwise it may fail to capture the
local temporal information and if it equals the length of the
patch, it means there is no overlap between patches. There-
fore, for each dimension of each stock with time series data
xm
i = [xm

t−L, . . . , x
m
t−1] ∈ RL, after Patching, it would gen-

erate Xm
pi = [xm

1 , . . . ,xm
N ] ∈ RP×N . It can be considered

that the original length L is changed to N .

Stock Hypergraph Construction We construct hyper-
graph among stocks, which more adequately represents the
collective higher-order relationships in the stock market and
have been verified by (Sawhney et al. 2021) to work bet-
ter than pair-wise graphs. Specifically, we construct channel
independent hypergraphs among stocks with similar stock
price trends based on DTW (Salvador and Chan 2007). In
each dimension, for each stock, we calculate the distance
matrix Dm between each point of the pair-wise sequence,
and find a path to minimize the sum of elements based on
the matrix as:

Similarity
(
smi , smj

)
= DTW

({
Dm

pq

}m

∆T×∆T

)
, (1)

Dm
pq =

(
xm,p
i − xm,q

j

)2
, p, q ∈ {1, . . . ,∆T}. (2)

The calculated DTW value represents the similarity be-
tween two stocks and subsequently the most similar K
stocks are connected by a hyperedge, which finally gen-
erates a hypergraph Gm

DTW = (V ,EDTW ) on channel m.
To avoid using future information for model training, we
construct the hypergraphs Gm

DTW,train = (V, EDTW,train),
Gm
DTW,valid = (V ,EDTW,valid) on the training and valida-

tion sets, respectively, and use Gm
DTW,valid in the testing

phase. In addition, we also construct the domain knowledge
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predefined graphs following (Sawhney et al. 2021), includ-
ing the industry hypergraph GIndustry = (V ,EIndustry) and
the wikidata association hypergraph GWiki = (V, EWiki),
noting that these two hypergraphs do not change dynami-
cally nor are they channel independent, and thus are shared
across the full sample and channels. Based on the differ-
ent relationship hypergraphs constructed, we can generate
different hypergraph adjacency matrices H ∈ R|V|×|E|,
E = EDTW

(⋃
EIndustry(∪EWiki)

)
in random combina-

tions.

Model Structure
Transformer Encoder CI-STHPAN extracts the stock
temporal features using the vanilla Transformer Encoder
(Vaswani et al. 2017). Firstly, the input feature Xm

pi is
mapped by a linear projection and added with a learn-
able position encoding so that the input feature dimen-
sion is changed from P to Encoder dimension D, Xm

ei =
WeX

m
pi + Wpos, where Xm

pi ∈ RP×N , Xm
ei ∈ RD×N ,

We ∈ RD×P , Wpos ∈ RD×N . Subsequently, in the multi-
head self-attention, each head h = 1, . . . ,H generates query
Qm

h = (Xm
ei )

T
WQ

h , key Km
h = (Xm

ei )
T
WK

h , value
V m
h = (Xm

ei )
T
W V

h based on Xm
ei , where WQ

h ,WK
h ∈

RD×dk , W V
h ∈ RD×D, dk = D

H . Finally, the output
Xm

attention,i ∈ RD×N is obtained from a multi-head self-
attention layer as:

Xm
attention,i = ||h=H

h=1 Softmax

(
Qm

h Km
h√

dk

)
V m
h . (3)

The multi-head attention also includes Batch Normaliza-
tion, which has been verified to be more applicable in tem-
poral data by (Zerveas et al. 2021). It is worth noting that dif-
ferent channels share all parameters as they pass through the
various components of the Encoder. The Encoder eventually
generates the temporal features Xm

temporal,i ∈ RD×N by
stacking E layers of multi-head self-attention layers through
residual connections.

Hypergraph Attention Network CI-STHPAN extracts
the relational features among stocks using a hypergraph at-
tention network. Firstly, the global temporal feature Xm

v,i =
Xm

temporal,iW1 + b1 is extracted from the individual stock
temporal feature Xm

temporal,i ∈ RD×N , where W1 ∈
RN×1,b1 ∈ RD, and it is used as the initial em-
bedding of the hypergraph attention network X

m(0)
G =[

xm
v,0, . . . ,x

m
v,|V|

]
∈ R|V|×D, and subsequently updating

each node feature with the adjacent hyperedges based on the
hypergraph attention adjacency matrix Hm ∈ R|V|×|E| us-
ing the multi-head architecture as follows4:

x
m(l+1)
v,i = ||Hh=1f

(
D

− 1
2

v Hm
k WD−1

e Hm
k

TD
− 1

2
v x

m(l)
v,i Pk

)
,

(4)

4The detailed derivation formula of the hypergraph convolu-
tional network can be referred to (Sawhney et al. 2021).

where Dv and De are the degree matrix of each vertex
and each hyperedge, respectively, W is the diagonal hyper-
edge weight matrix, Pk is learnable matrix, f represents the
LeakyReLU activation function, and each element of Hm

is αm
ij representing attention coefficient, which indicates the

importance of hyperedge j to node i, and is calculated as:

αm
ij =

exp
(
f
(
a⃗T

[
W2x

m
v,i ∥ W2e

m
j

]))∑
k∈Ni

exp
(
f
(
a⃗T

[
W2xm

v,i ∥ W2emk
])) , (5)

where a⃗ represents the feed forward network and the feature
of the hyperedge emj is expressed as equal-weighted aver-
ages of the features of all the nodes Ej connected to it:

emj =
1

|Ej |
∑
k∈Ej

xm
v,k. (6)

Inspired by the Transformer, we also introduce Dropout
layers and residual connections between each hypergraph at-
tention layer, and perform Batch Normalization after each
layer to maintain the robustness of the model. The final
Xm

spatio,i ∈ RN×D can be obtained by fusing the tempo-
ral and spatial features as:

Xm
spatio,i = MLP(Xm

temporal,i + HGAT(Xm(0)
G ,Hm)).

(7)

Channel Independence Following (Nie et al. 2022; Han,
Ye, and Zhan 2023), we only need to convert the in-
put tensor after Patching from [|S| ×M ×D ×N ] to
[(|S| ∗M)×D ×N ], and we can consider it as a tensor of
length N feature dimension D with batch size (|S| ∗M) to
realize channel independence without changing any struc-
ture of the model. In addition, in order to maintain channel
independence in graph feature extraction, hypergraph con-
struction as well as node feature updating are performed
channel by channel.

Instance Normalization Financial time-series are highly
distribution-shifted in nature, i.e., the distribution of training
set and testing set are not consistent. Following (Nie et al.
2022; Kim et al. 2021), we simply need to normalize the
data using the mean and variance before Patching and re-add
after the output layer to achieve Instance Normalization.

Pre-training
Self-supervised pretrain has been widely used in NLP (De-
vlin et al. 2018) and CV (Dosovitskiy et al. 2020) in recent
years. Research on pretraining on time-series data also grad-
ually developed in recent years, such as (Zerveas et al. 2021;
Nie et al. 2022). In this paper, for the first time, a pre-trained
model is constructed on stock time-series data and applied to
the downstream task of stock selection. Specifically, based
on the technique of masked autoencoder, the data Xm

pi ∈
RP×N after Patching is randomly masked on patches with
a certain proportion to generate masked data Xm

mask,i =

[xm
1 , . . . , xm

maski, . . . , x
m
N ] ∈ RP×N , as shown in Figure 3.

After the fused temporal and spatial feature Xm
spatio,i gen-

erated by the model introduced in Section 3.3, the regener-
ated temporal data X̂

m

mask,i = [x̂m
1 , . . . , x̂m

mask, . . . , x̂
m
N ] ∈

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9190



Model Methods NASDAQ NYSE

IRR SR IRR SR

CLF

ARIMA (Wang and Leu 1996) RNN with ARIMA Features 0.10 0.55 0.10 0.33
HGCluster (Luo et al. 2014) Stock trend to hypergraph clustering 0.10 0.06 0.11 0.10
Adv-LSTM (Feng et al. 2018) Adversarial training 0.23 0.97 0.14 0.81
HATS (Kim et al. 2019) Diverse stock relationships 0.15 0.80 0.12 0.73
HMG-TF (Ding et al. 2020) Multiscale Gaussian prior 0.19 0.83 0.13 0.75
LSTM-RCGN (Li et al. 2021) Using news to predict overnight stock 0.13 0.75 0.10 0.70
HATR (Wang et al. 2021) Multi-scale local combinations 0.31 0.92 0.14 0.76

REG SFM (Zhang, Aggarwal, and Qi 2017) State-frequency memory 0.09 0.16 0.11 0.19
DA-RNN (Qin et al. 2017) Two-stage Attetion-RNN 0.14 0.71 0.13 0.66

RL
DQN (Carta et al. 2021) Maximise the gain function 0.20 0.93 0.12 0.72
iRDPG (Liu et al. 2020) Intelligent trading agents 0.28 1.32 0.18 0.85
RAT (Xu et al. 2021a) Relation-aware transformers 0.40 1.37 0.22 1.03

RAN

SAE-LSTM (Bao, Yue, and Rao 2017) Wavelet Transform & Stacked Autoencoder 0.22 0.95 0.12 0.79
RSR-I (Feng et al. 2019) Temporal graph convolution 0.39 1.34 0.21 0.95
STHAN-SR (Sawhney et al. 2021) Spatio-temporal attention hypergraph 0.44 1.42 0.33 1.12
ALSP-TF (Wang et al. 2022) Adaptive long-short pattern Transformer 0.53 1.55 0.41 1.24
CI-STHPAN (Ours) Spatial-temporal pre-training 0.66 2.01 0.79 2.14

Table 1: Profitability comparison with Classification (CLF), Regression (REG), Reinforcement Learning (RL), and Ranking
(RAN) baselines. Bold & underline depict the best & second-best results(p<0.01).

RP×N is recovered by a linear layer, and finally we train the
self-supervised pretrain model by the MSE on the masked
patch channel-by-channel:

Lpretrain = 1
M×|S|×N×P

∑M
m=1

∑|S|
s=1

∑N
i=1

∑P
p=1

(
x̂m,p

mask,i − xm,p
mask,i

)2

,

(8)
where M is the number of channels, |S| is the number of
stocks, N is the number of patches, and P is the length of
patches.

Finetune
After pre-training on a particular stock market, we fine-tune
it on the downstream task of stock ranking. Specifically, the
feature representation Xm

spatio,i generated by the model in-
troduced in Section 3.3, which fused both temporal and spa-
tial feature, is passed through a flatten layer with linear head
to predict the close price ĉti for each stock of the next trading

day, and further translated into a return ratio r̂ti =
ĉti−ct−1

i

ct−1
i

,

where ct−1
i is the true close price of stock si on the pre-

vious trading day, and finally, following (Feng et al. 2019;
Sawhney et al. 2021), the model is fine-tuned by combining
point-wise regression loss and pair-wise ranking loss as:

Lfinetune = ∥r̂ti − rti∥
2
+ α

∑|S|
i=1

∑|S|
j=1 max

(
0,−

(
r̂ti − r̂tj

) (
rti − rtj

))
,

(9)
where α is a hyperparameter to balance the two loss terms.

Experiments
Datasets The datasets used in our experiments are consis-
tent with Ref.(Feng et al. 2019) and contain historical stock
trading data between 2013 and 2017 for two markets, i.e.,

Martket NASDAQ NYSE

Stocks(Nodes) 1,026 1,737
Training Period 01/02/2013 - 12/31/2015

Validation Period 01/04/2016 - 12/30/2016
Testing Period 01/03/2017 - 12/08/2017

Days(Train:Valid:Test) 756 : 252 : 237

Table 2: Statistics of datasets.

Figure 4: Profitability of the selected top k stocks. STD de-
notes the standard deviation of 5 independent runs.

NASDAQ and NYSE, the latter being more stable than the
former and containing 1026 and 1737 stocks respectively,
as well as inter-stock sector-industry relation and wiki re-
lation data obtained from Wikidata. To avoid the data leak-
age problem, we strictly follow the sequential order to split
training/validation/testing sets by 3-year/1-year/1-year. The
detailed statistics of the datasets is shown in Table 2.
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Graph Method Component
NASDAQ NYSE

IRR SR IC ICIR IRR SR IC ICIR

×

Sup.

w.o. both 0.275 0.994 0.019 0.227 0.208 0.711 0.021 0.224
w. CI 0.351 1.564*# 0.008 0.122 0.262 0.794 0.011 0.123
w. RevIN 0.530*# 1.544# -0.002 -0.033 0.198 0.738 -0.027 -0.261
w. both 0.479# 1.334 0.029 0.294 0.190 0.711 0.030 0.303

Fine.

w.o. both 0.181 0.796 0.023 0.228 0.171 0.614 0.019 0.185
w. CI 0.787 2.117*# 0.005 0.057 0.621*# 1.536*# 0.001 0.000
w. RevIN 0.470# 1.415 0.059 0.494 0.363# 1.101 0.049 0.482
w. both 0.469# 1.452# 0.058 0.428 0.524*# 1.474*# 0.078 0.658

✓

Sup.

w.o. both 0.197 0.834 0.012 0.145 0.175 0.641 0.028 0.251
w. CI 0.310 1.617*# 0.023 0.302 0.239 1.024 0.018 0.224
w. RevIN 0.380 1.340 -0.001 -0.008 0.240 0.841 -0.011 -0.108
w. both 0.491# 1.591*# -0.005 -0.061 0.077 0.428 0.001 0.004

Fine.

w.o. both 0.293 1.025 0.031 0.341 0.089 0.381 0.017 0.162
w. CI 0.164 0.685 0.011 0.121 0.224 0.824 0.019 0.236
w. RevIN 0.334 1.067 0.091 0.581 0.488*# 1.408*# 0.052 0.565
w. both 0.657* 2.013*# 0.043 0.360 0.789*# 2.136*# 0.053 0.569

Table 3: Ablation study over CI-STHPAN’s components. Sup. and Fine. represents supervised learning and fine-tuning, respec-
tively. CI and RevIN represents Channel Independence and Revisable Instance Normalization, respectively. The specific imple-
mentation of the method w.o. CI is to convert the input tensor after Patching from [|S| ×M ×D ×N ] to [|S| × (M ∗D)×N ]
and construct only one hypergraph. * and # indicate the improvement over the ALSP-TF and STHAN-SR, respectively.

Figure 5: Influence of (a)graph sparsity k, (b)loss factor α,
and (c)patch length P. The hypergraph constructed on NAS-
DAQ and NYSE are DTW-20 and DTW-5, respectively.

Implementation Details Our experiments are imple-
mented with PyTorch and PyG, and the results reported are
run with the fixed random seed 2023. The look back win-
dow in supervised and self-supervised model are 336 and
512, respectively. The layers of the Encoder is 3, dimen-
sion D is 128, attention heads H is 16, the hidden units of
MLP with GELU is 256 and the attention heads in HGAT
is 4. We use grid search to find optimal hyperparameters
based on the loss of validation set, including loss factor
α ∈ {1, 2, 4, 6, 8, 10}, DTW top K ∈ {1, 5, 10, 15, 20} and
patch length P ∈ {12, 16, 24, 32, 40}. All of the experi-
ments are done on a GeForce RTX 3090 Ti GPU by Adam
optimizer. The self-supervised models are first pretrained,
then finetuned the head and the entire network. The learn-
ing rate is adjusted using the OneCycleLR with a maximum
value of 1e− 4, and the batch size equals |S|.

Metrics Following (Feng et al. 2019; Sawhney et al.
2021), we perform a daily buy-hold-sell trading strategy,

i.e., the model predicts the return of all individual stocks of
the next trading day t+1 at trading day t and we rank and
hold the top k stocks Sk and then sell them on trading day

t+1. The return per trading day is Rt =
∑

i∈Sk

cti−ct−1
i

ct−1
i

.
We backtest on the entire testing set and calculate the IRR
and the Sharpe ratio: SR =

E[R−Rf ]
std[R−Rf ]

, where Rf is the
risk-free rate. In addition, in order to measure the accuracy
and stability of the model prediction, we further introduce
four metrics, Information Coefficient (IC) which computed
by the average Pearson correlation coefficient, Information
ratio based IC (ICIR), calculated by mean(IC)/std(IC).

Overall Performance

In Table 1, we compare CI-STHPAN with four types of base-
line methods in terms of profitability. First, CI-STHPAN
achieves higher risk-adjusted returns (p < 0.01) than all
the baseline models in both NASDAQ and NYSE mar-
kets. Second, we find that Transformer-based methods (e.g.,
HMG-TF, RAT, ALSP-TF) outperform RNN-based methods
(e.g., SFM, DARNN, SAE-LSTM), which is attributed to
the long-term time-series modeling capability of the self-
attention mechanism. We also observe that methods con-
structing implicit dynamic relations (e.g., ALSP-TF, CI-
STHPAN) outperform methods based on predefined rela-
tions (e.g., Rank LSTM, HATS, STHAN-SR), not to men-
tion those that only consider price data (e.g., Adv-LSTM,
DQN, HATR). These observations collectively validate the
utility of CI-STHPAN as a dynamic spatiotemporal attention
based learning to rank stock selection model.
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Method Sparsity Supervised Fine-tuning
IRR SR IC ICIR IRR SR IC ICIR

None-graph - 0.479# 1.334 0.029 0.294 0.469# 1.452# 0.058 0.428
All 1.09% 0.311 1.032 -0.006 -0.084 0.386 1.381 0.042 0.301

Industry+Wiki 0.26% 0.358 1.045 0.003 0.030 0.440# 1.674*# 0.032 0.284
Industry+DTW 1.96% 0.272 0.912 -0.005 -0.046 0.396 1.511# 0.041 0.310

Wiki+DTW 1.09% 0.452# 1.428# 0.001 0.011 0.475# 1.691*# 0.059 0.430
Industry 1.02% 0.380 1.200 -0.009 -0.116 0.447# 1.352 0.045 0.370

Wiki 0.19% 0.263 1.009 -0.001 -0.023 0.591*# 1.856*# 0.062 0.442
DTW K=20 2.05% 0.491# 1.591*# -0.005 -0.061 0.657*# 2.013*# 0.043 0.360
DTW K=15 1.56% 0.553*# 1.626*# -0.006 -0.078 0.281 1.092 0.048 0.397
DTW K=10 1.07% 0.402 1.411 -0.006 -0.073 0.573*# 1.811*# 0.068 0.461
DTW K=5 0.58% 0.317 1.027 0.006 0.064 0.359 1.382 0.053 0.409
DTW K=1 0.19% 0.363 1.221 -0.005 -0.061 0.620*# 1.926*# 0.068 0.460

RSR-I 0.19% 0.390 1.340 0.020 0.217 -
STHAN-SR 0.26% 0.440 1.420 0.015 0.256 -

Table 4: Influence of different graph information on NASDAQ. Industry and Wiki relation represent pre-defined domain knowl-
edge. DTW K represents channel-independent stock dynamic relation based on the similarity.

(a) Encoder attention (b) Hypergraph attention

Figure 6: Attention visualization

Ablation Study
In Table 3, firstly, we can observe that Fine. improves the
model’s metrics compared to Sup., and it is particularly no-
table on the NYSE market. Secondly, the performance of the
model improves with the addition of CI and RevIN, more
significantly in the case of the introduction of the graph
module. In addition, Comparing w.o. both vs. w. CI and w.
RevIN vs. w. both respectively, we can find that the CI sig-
nificantly improves the model’s IRR and SR metrics.

In-depth Analysis
Graph Information In Table 4, we construct various hy-
pergraphs based on different relation among stocks. We can
find that the construction of dynamic implicit stock relation
based on DTW performs better compared to predefined rela-
tion which is mainly due to the improvement of IC and ICIR,
indicating that Fine. improves the accuracy and stability of
the model. Due to space limitations only NASDAQ results
are shown, NYSE results are consistent.

Hyperparameter Figure 4 demonstrates the returns and
risks associated with holding different top k stocks, and we
can find that holding the top 5 stocks can obtain satisfactory

Fine. on Pre. on IRR SR IC ICIR

NASDAQ NASDAQ 0.657 2.013 0.043 0.360
NYSE 0.273 1.030 0.066 0.457

NYSE NASDAQ 0.694 1.928 0.062 0.585
NYSE 0.789 2.136 0.053 0.569

Table 5: Transfer learning

returns and risks. Figure 5 shows the effect of three hyperpa-
rameters, loss factor α, graph sparsity K and patch length P ,
on the model performance in turn. It can be observed that the
maximum return can be realized when α=2, P=12, K=20 on
NASDAQ and K=5 on NYSE in fine-tuning method.

Attention Visualization Figure 6 illustrates the self-
attention weights of temporal features in one of the heads
in Encoder and part of stock nodes with their connected
hyper edges, respectively, which suggests that CI-STHPAN
can provide insights about the influence of lookback window
and relevance between stock.

Transfer Learning Table 5 shows the results of pre-
training on one market followed by fine-tuning on the other.
It can be observed that the pre-trained model on NASDAQ
also performs better on the NYSE.

Conclusion
In this paper, we propose CI-STHPAN, a two-stage frame-
work for stock selection, involving Transformer and HGAT
based stock time series self-supervised pre-training and
stock-ranking based downstream task fine-tuning. In addi-
tion, we also construct channel-independent stock dynamic
hypergraph based on DTW. Through quantitative and quali-
tative analysis of the NASDAQ and NYSE markets, we ex-
plore this capability of CI-SHPAN to extract features from
time series and relational graphs and validate its applicabil-
ity to quantitative stock selection.
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