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Abstract

Domain adaptation has become an attractive learning
paradigm, as it can leverage source domains with rich labels
to deal with classification tasks in an unlabeled target domain.
A few recent studies develop domain adaptation approaches
for graph-structured data. In the case of node classification
task, current domain adaptation methods only focus on the
closed-set setting, where source and target domains share the
same label space. A more practical assumption is that the tar-
get domain may contain new classes that are not included
in the source domain. Therefore, in this paper, we introduce
a novel and challenging problem for graphs, i.e., open-set
domain adaptive node classification, and propose a new ap-
proach to solve it. Specifically, we develop an algorithm for
efficient knowledge transfer from a labeled source graph to
an unlabeled target graph under a separate domain alignment
(SDA) strategy, in order to learn discriminative feature rep-
resentations for the target graph. Our goal is to not only cor-
rectly classify target nodes into the known classes, but also
classify unseen types of nodes into an unknown class. Exper-
imental results on real-world datasets show that our method
outperforms existing methods on graph domain adaptation.

Introduction
Many top-performing machine learning models are trained
on large-scale labeled data. However, in practice, labels can
be hard to obtain due to the huge cost and/or considerable
difficulty of labeling. To handle these challenges, domain
adaptation (DA) (Zhu et al. 2023) is proposed to transfer
knowledge from a labeled dataset, namely source domain,
to an unlabeled dataset, namely target domain, while domain
divergence always exists among source and target domains.
DA has drawn much attention in recent years for several rea-
sons. First, traditional machine learning methods require a
large amount of labeled data for model training, but unla-
beled data from new domains constantly emerge. Second,
compared to labeling the data from every new domain, it is
more efficient to transfer knowledge from a similar domain
that already has sufficient labels. Third, studies have shown
promising performance on knowledge transfer using domain
adaptation techniques in multiple fields, such as computer

*These authors contributed equally to this research.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Problem setting difference between closed-set and
open-set graph domain adaptation. Different colors denote
different categories.

vision (Zhu and Li 2022; Zhu et al. 2021b), natural language
processing (Jiang and Zhai 2007; Rezayi et al. 2023), and fa-
cial expression recognition (Zhu, Sang, and Zhao 2016; Zhu
et al. 2015).

Graph data, which efficiently represents the relationships
(edges) between objects (nodes), is ubiquitous and has vari-
ous applications in the real world. One of the most important
learning tasks on graph data is node classification, where
the algorithms learn to predict the category of each node.
Examples of this task are found in diverse areas, includ-
ing social networks1 (Bhagat, Cormode, and Muthukrishnan
2011), citation networks (Ji and Jin 2016), protein–protein
association networks (Szklarczyk et al. 2018), and prod-
uct co-purchasing networks (Bhatia et al. 2016). Although
many algorithms have been developed for supervised and
semi-supervised graph learning, the topic of cross-network
(or cross-graph) domain adaptation has been largely under-
explored. In recent years, a few graph domain adaptation
methods are brought up (Shen et al. 2021; Dai et al. 2022;
Wu et al. 2020). They focus on the closed-set cross-network
node classification problem, holding the assumption that the
target graph contains nodes of categories only in the source
graph, however, which is unrealistic. In many real-world ap-
plications, the target graph always contains novel nodes that

1In this paper, we use the two terms, graph and network, inter-
changeably to refer to graph-structured data.
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Figure 2: Illustration of the proposed separate domain alignment (SDA), which consists of three parts: (1) dividing target nodes
into two groups, i.e., certain group and uncertain group; (2) for certain group, we utilize adversarial domain alignment to align
target nodes to source nodes; (3) for uncertain group, we propose a neighbor center clustering loss to cluster target nodes.

are out of the label space of the source graph. Inspired by
this, we introduce the concept of open-set (Geng, Huang,
and Chen 2020) cross-network node classification. Specifi-
cally, we allow the target graph to contain nodes of unknown
classes that don’t belong to the source label space, and re-
quire the learned model to not only correctly classify target
node if its label is in the source label space but also to be able
to identify it as “unknown”. The difference between closed-
set domain adaptation and open-set graph domain adaptation
is illustrated in Fig. 1.

To address the new challenging problem, i.e., Open-Set
Graph Domain Adaptation (OS-GDA), we propose a novel
separate domain alignment (SDA) framework. An overview
is shown in Fig. 2. Rather than directly aligning source and
target domains without considering target unknown class
nodes, SDA provides different domain alignment strategies
for different target nodes. Specifically, we roughly split the
target nodes into two groups, i.e., certain group and un-
certain group, based on their entropy values of the classi-
fier’s outputs. The data in certain group have smaller entropy
values compared with threshold while those in uncertain
group have larger entropy values. In principle, entropy es-
timates the prediction uncertainty. The smaller the entropy,
the higher the certainty of the prediction is. For the certain
group, we utilize adversarial learning to align them to the
source domain. For the uncertain group, we propose a neigh-
bor center clustering method to better separate target data
from known classes and those from unknown classes. In this
way, the target data coming from known classes would align
to the source domain while those from unknown classes
would be far from data of known classes.

Our contributions are summarized as follows:
• We introduce a practical and challenging task, namely

open-set graph domain adaptation (OS-GDA), that al-
lows target graphs to contain unknown class nodes.

• We propose the Separate Domain Alignment (SDA)
framework, which provides suitable domain alignment
strategies for different target nodes.

• We conduct extensive experiments and show that our
method successfully tackles the novel OS-GDA problem
and surpasses all baselines with large margins.

Related Work
Graph Neural Networks
Since graph neural network (GNN) was first brought up
to extend general neural network methods to graph do-
mains (Scarselli et al. 2009), numerous GNN algorithms
have been developed and shown impressive performance in
graph learning tasks, which include node classification, edge
classification, graph classification, link prediction, regres-
sion, etc. Representative GNNs such as graph convolutional
network (GCN) (Kipf and Welling 2017) and GraphSAGE
(Hamilton, Ying, and Leskovec 2017) utilize the adjacency
matrix and define their own convolution operators on the
graphs. GCN makes a connection between spectral convolu-
tion and spatial convolution methods, which inspires Graph-
SAGE, a spatial-based method that becomes one of the most
popular GNN methods because of its simplicity and top-tier
performance (Hamilton, Ying, and Leskovec 2017; Wu et al.
2021; Zhu et al. 2021c). However, these GNN modes would
fail to solve the cross-network problem due to the domain di-
vergence between training graph and testing graph (Wu et al.
2020). GCN is widely used for node classification tasks and
is one of the most popular GNN structures used in graph
DA (Wu et al. 2020; Zhang et al. 2021; Dai et al. 2022). In
those graph DA algorithms, GCN and its variations act as the
backbone structure to solve the cross-network node classifi-
cation problem and demonstrate promising performances.

Closed-Set Domain Adaptation
Many DA methods have been proposed and achieved suc-
cess in various fields. Most existing methods belong to
closed-set domain adaptation (CS-DA), which aims to re-
duce the domain divergence between source and target do-
mains and extract domain-invariant features (Ganin and
Lempitsky 2015; Zhu et al. 2021a; Shi, Zhu, and Li 2022).
They can be roughly divided into two categories: (1) mo-
ment matching based methods which statistically match
the data distributions such as maximum mean discrepancy
(MMD) (Gretton et al. 2012) and CORrelation ALignment
(CORAL) (Sun, Feng, and Saenko 2016); (2) adversarial
learning based methods which play a minimax game be-
tween feature extractor and domain discriminator to learn
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domain-invariant features including Domain Adversarial
Neural Networks (DANN) (Ganin et al. 2016) and Condi-
tional Domain Adversarial Networks (CDAN) (Long et al.
2018a).

Compared to DA in CV and NLP fields, graph domain
adaptation is a relatively new topic. There are only a limited
number of methods proposed for the closed-set graph do-
main adaptation (CS-GDA). All of them share the same idea,
i.e., utilizing the adversarial domain alignment to mitigate
the domain divergence between source and target graphs.
Adversarial domain adaptation with graph convolutional
networks (AdaGCN) (Dai et al. 2022) utilizes GCN and
adversarial domain adaptation to model both graph struc-
tures and node attributes. Unsupervised domain adaptive
graph convolutional networks (UDAGCN) (Wu et al. 2020)
proposes a dual GCN to simultaneously leverage local and
global consistency to aggregate features. Adversarial Sepa-
ration Network (ASN) (Zhang et al. 2021) utilizes an adver-
sarial separation network to explicitly distinguish domain-
private and domain-shared information by introducing a
shared encoder along with two private encoders. However,
all of these methods require the source and target graphs to
share the same label space, which is not practical in real-
world applications.

Open-Set Domain Adaptation
In early open-set domain adaptation (OS-DA) defini-
tion (Panareda Busto and Gall 2017), both source and tar-
get domains have private label spaces, respectively, and the
common label space is known. Later, the setting of OS-
DA (Saito et al. 2018) is adjusted by claiming no source
private label space, which means target label space con-
tains source label space. In other words, the source label
space is the subset of the target label space. The goal of
OS-DA is to learn a model with source and target domains
that can not only correctly classify target data if it belongs
to source label space but also successfully identify target
data from unknown classes. Recent OS-DA methods (Liu
et al. 2019; Bucci, Loghmani, and Tommasi 2020; Zhu
and Li 2021) mainly focus on the later challenging setting.
Among recent OS-DA methods, OSBP (Saito et al. 2018)
and DANCE (Saito et al. 2020) have shown superior perfor-
mances and inspired many related works. OSBP proposes an
adversarial learning method that enables feature generation
that can separate unknown target samples from known target
samples (Saito et al. 2018). Later, DANCE proposes a neigh-
borhood clustering strategy that performs unsupervised clus-
tering of target samples to its neighbor and gives a thresh-
old to divide target samples into common-class group and
private-class group (Saito et al. 2020). However, DANCE
aligns every target sample to their neighbor samples could
lead to more inaccurate predictions within a local target clus-
ter when the cluster has inaccurate predictions.

Our Approach
Unlike the closed-set graph domain adaptation (CS-GDA)
problem, we target at open-set problem in graph domain
adaptation where the target domain contains categories that

do not belong to source label space. Compared with CS-
GDA, open-set graph domain adaptation (OS-GDA) is more
challenging and practical, since we cannot always guarantee
all target nodes in the source label space. As a result, the
task of OS-GDA is two-fold: both to align distributions of
source and target domains, and to identify target nodes that
are out of source label space. Here, we propose a novel sep-
arate domain alignment (SDA) scheme to address the OS-
GDA problem. Fig. 3 illustrates the overall framework.

Our framework SDA contains two novel contributions for
graph domain adaptation: 1) target domain separation, and
2) neighbor center clustering. The first part helps to dynam-
ically split target nodes into certain and uncertain groups
through entropy value, while the second part aims to refine
the coarsely divided unknown group by pushing these nodes
close to their neighbor centers. Our method provides nov-
elty and overcomes some issues commonly found in current
OS-DA methods such as OSBP and DANCE.

In this section, we first introduce the preliminaries. Then,
we recap the details of local and global node embedding.
Last, we illustrate our newly proposed SDA and summarize
the overall pipeline of our framework.

Preliminaries
In the OS-GDA problem, we focus on the graph node clas-
sification task. Let G be an undirected graph with node set
V and edge set E ⊆ V × V . Nv = |V | and Ne = |E|
denote the number of nodes and edges in the graph. Let
A ∈ RNv×Nv be the adjacency matrix of G, where each
element Aij = A(i, j) indicates the connectivity of node
vi and node vj . Ai,j = 1 if edge (vi, vj) ∈ E, otherwise
Ai,j = 0. X ∈ RNv×d represents the content features of
V where d is the feature dimension. Y is the label set for V
that comes from label space C.

Source Graph: Let Gs = (Vs, Es,As,Xs, Ys) indicate
the labeled source network with node set Vs, edge set Es,
and label matrix Ys with label space Cs.

Target Graph: Let Gt = (Vt, Et,At,Xt) be the unla-
beled target network with unlabeled node set Vt and edge
set Et. The target label space is denoted as Ct.

Open-Set Graph Domain Adaptation: Different from
CS-GDA which requires source and target graphs to share
the same label space, i.e., Cs = Ct, OS-GDA relaxes this
claim by allowing target graph to contain nodes from classes
out of source label space, i.e., Cs ⊂ Ct. Specifically, we
denote the known label space shared by both domains as
C = Cs ∩ Ct = Cs and the unknown label space for target
graph as C̄t = Ct \ Cs. The goal of OS-GDA is to train the
model with Gs and Gt, classify target nodes into |C|+1 cate-
gories, where C̄t are gathered as one unknown class, and re-
quire the learned model to classify the target node correctly
if it is associated with a label in C, or identify it as “un-
known” otherwise. In general, the model consists of three
modules, i.e., G, F , and O. Here, G : x → g represents
the graph feature extractor that maps the content feature of
node x into an embedding space, F : g → f is the classifier
using input embedding to predict the category, and domain
discriminator O is for adversarial domain alignment.
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Figure 3: Illustration of our novel Separate Domain Alignment (SDA) scheme for open-set graph domain adaptation, which
includes three losses: cross-entropy loss LCE , domain alignment loss LDA, and neighbor center clustering loss LNCC , and
three modules: feature extractor G = {GCNg, GCNl, Fa}, classifier F , and domain discriminator O.

Recap of Local and Global Node Embedding
Many methods (Xu et al. 2021; Zhang et al. 2020, 2021;
Wu et al. 2020) have proven the advantage of combining lo-
cal and global graph information to learn the semantic node
embedding. The core idea is to both recover the local 1-hop
neighbor information and extract the global topological fea-
tures from the given graph. Furthermore, the attention mech-
anism is adopted to aggregate the local and global embed-
dings to capture the semantic information from both aspects.

Local GCN (GCNl) To capture the local information in a
graph, We directly utilize the GCN model proposed by (Kipf
and Welling 2017) and formulate the local GCN GCNl as a
type of feed-forward neural networks. Give the graph G =

(V,E,A,X, Y ), the output of the i-th hidden layer Z(i)
l of

the GCNl is defined as:

Z
(i)
l (X) = σ(D̃− 1

2 ÃD̃− 1
2Z

(i−1)
l W

(i)
l ), (1)

where σ(·) is the activation function, Ã = A + IN denotes
the adjacency matrix with self-loops (IN is an identity ma-
trix), D̃ii =

∑
j Ãij and D̃− 1

2 ÃD̃− 1
2 is the symmetric nor-

malized adjacency matrix, Z(i−1)
l indicates the output of the

(i− 1)-th layer and Z0
l = X, and W

(i)
l represents the learn-

able parameters of the i-th layer.

Global GCN (GCNg) To excavate the global topological
features, we introduce the PPMI-based GCN (Zhuang and
Ma 2018), leveraging the PPMI matrix P to assess the topo-
logical proximity between nodes within a given graph G over
k steps. Please refer to (Zhuang and Ma 2018) for more de-
tails of P.

Utilizing the calculated matrix P, we formulate the global
GCN GCNg as a type of feed-forward neural networks,
which is defined as follows:

Z(i)
g (X) = σ(D− 1

2PD− 1
2Z(i−1)

g W(i)
g ), (2)

where σ(·) is the activation function, P denotes the PPMI
matrix, Dii =

∑
j Pij is the normalized matrix, Z(i−1)

g rep-

resents the output of the (i− 1)-th layer and Z
(0)
g = X, and

W
(i)
g is the trainable parameters of the i-th layer.

Embedding Attention (Fa) To further excavate the con-
tribution of both embeddings, i.e., local embedding Zl and
global embedding Zg , and generate a unified node embed-
ding space, an attention layer Fa is introduced. α1 and α2

are from the self-attention layer Fa with the input of con-
catenated Zl and Zg . Fa takes Zl and Zg as input and pro-
duces weight coefficients α1 and α2 for Zl and Zg , respec-
tively:

[α1, α2] = Fa([Zl,Zg]). (3)
The unified node embedding is the combination of local and
global embeddings with their corresponding weight coeffi-
cients:

Z =
exp (α1)

exp (α1) + exp (α2)
Zl +

exp (α2)

exp (α1) + exp (α2)
Zg.

(4)
Fig. 3 illustrates the details of how to extract the node em-
bedding. For simplicity, we use G = {GCNl, GCNg, Fa}
to denote the node embedding extractor.

Separate Domain Alignment
Previous CS-GDA methods (Wu et al. 2020; Zhang et al.
2021) utilize adversarial learning to align source and tar-
get graphs and minimize the entropy value of target nodes
to traverse low-density regions within the target embedding
space. As a result, these methods cannot be applied to our
proposed OS-GDA problem. Without considering the tar-
get nodes from unknown label space C̄t, directly aligning
source and target domains would lead to a negative knowl-
edge transfer.

To solve the problem, we propose a novel separate do-
main alignment (SDA) scheme that enables the model to
align known-class target nodes to source nodes while sep-
arating unknown-class target nodes from known-class target
nodes. SDA consists of two alignment operations, i.e., ad-
versarial domain alignment and neighbor center clustering,
for different target nodes.
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Inspired by (Grandvalet and Bengio 2004), we employ
entropy as a measure to assess the uncertainty of classi-
fier predictions. A lower entropy value indicates a higher
level of prediction certainty. Target nodes that have lower
entropy values are more inclined to belong to the known la-
bel space C, whereas those with higher entropy are more
likely to come from the unknown label space C̄t. We em-
ploy the threshold γ to adaptively divide the target nodes
into two groups, i.e, certain group and uncertain group,
by utilizing the entropy et = H(ft) where H(ft) =

−
∑|Cs|

i=1 f i
t log (f

i
t ), as the follows:

xt ∈
{
Groupc, et < γ

Groupu, et ≥ γ.
(5)

Instead of tuning the hyper-parameter γ to divide target
nodes, we set γ to log (|Cs|)

2 where |Cs| denotes the num-
ber of source classes and log (|Cs|) is the maximum entropy
value of the classifier.

Adversarial Domain Alignment for Certain Group For
target nodes from certain group Groupc, there is a high
probability that these nodes belong to known label space C.
We utilize adversarial domain alignment to learn domain in-
variant embedding for nodes from C. Specifically, we em-
ploy a domain discriminator O(·) to play a minimax game
with embedding extractor G(·). The objective function is:

Ladv = Exs∈Xs
log (O(G(xs))+Ext∈Groupc

log (1−O(G(xt)).
(6)

The domain discriminator tries to identify the source and
target nodes while the embedding extractor aims to fool the
domain discriminator. The overall process is:

min
O

max
G

Ladv. (7)

Neighbor Center Clustering for Uncertain Group Dur-
ing model training, for the target nodes from uncertain group
Groupu, directly utilizing adversarial learning to align them
to source domain could cause negative transfer, because
Groupu may contain target nodes from both known and
unknown classes. Violently enforcing target unknown class
nodes to align with source nodes will deteriorate the learned
domain-invariant embedding. To address this challenge, we
exploit a novel neighbor center clustering (NCC) to better
identify target nodes from known class and those from un-
known class while softly aligning target nodes to source
nodes. The main idea of our NCC is to move each target
node in Groupu either to source class centers or to clus-
ter centers in Groupu. The target unknown class nodes are
more likely to share similar semantic information with the
centers which are close to ground truth unknown class cen-
ters. Likewise, those from known class would possibly have
similar characteristics with the known class centers.

Given the uncertain group Groupu, we utilize K-means
to group them into K clusters and obtain corresponding
embedding centers {µ1

t , ..., µ
K
t }. Meanwhile, we utilize the

weight vectors Wf = [w1
f , ..., w

|Cs|
f ] in the classifier F

as source class centers. Let M represents the center matrix

which consists of cluster centers from Groupu and source
class centers:

M = [µ1
t , ..., µ

K
t , w1

f , ..., w
|Cs|
f ], (8)

where both µi
t and wj

f are L2-normalized.
Although our NCC module is inspired by DANCE, we

would like to point out two essential differences: (1) unlike
DANCE which aligns every target sample to their neigh-
bor samples, we require target data to align to their neigh-
bor cluster centers. (2) DANCE does not consider different
target data samples to have different alignments, while we
proposed two different alignment strategies for target data
from different groups. DANCE can be restricted due to its
sole neighborhood alignment and fail to identify unknown
class, while our method will not have this disadvantage.

Another thing to note is that although Groupu contains
both known and unknown classes, the majority of data in
Groupu belong to unknown class due to threshold γ. Thus,
M is mainly used to cluster unknown class data; meanwhile,
to avoid negative clustering for known classes data (a mi-
nority of data in Groupu), we add the source class centers
in M. To better discriminate between known and unknown
data, we propose Eq. (10). Hopefully, after the model con-
verges, using threshold γ could clearly identify known and
unknown data.

Given a target node embedding git from Groupu and the
center matrix M, the probability that the j-th center mj in
M is the neighbor center of git is,

pi,j =
exp (

〈
git,mj

〉
/τ)∑K+|Cs|

k=1 exp (
〈
git,mk

〉
/τ)

, (9)

where ⟨·, ·⟩ denotes the inner product between two vectors to
measure their similarity, τ denotes the temperature parame-
ter which is empirically set as 0.05. Eventually, the neighbor
center clustering loss is formulated as:

Lncc = −
Ngroupu∑

i=1

K+|Cs|∑
i=j

pi,j log (pi,j), (10)

where Ngroupu
is the number of target nodes in uncertain

group Groupu. By minimizing the above loss, the learned
target embedding space will be more discriminative and ben-
efit the target unknown class identification.

Overall Objective
Our total loss objective comprises three components. Cross-
entropy loss Lce is applied for the source graph. Adversarial
domain alignment loss Ladv and neighbor center clustering
loss Lncc in Eq. (6) and Eq. (10) are used for source and
target graphs. Therefore, the overall loss function is:

LSDA = Lce + Ladv + βLncc, (11)

where β is hyper-parameters for Lncc. Our method proce-
dure is summarized in Algorithm 1.
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Algorithm 1: Seperate Domain Alignment (SDA) Algorithm
Input: Gs, Gt, γ, β, K, initialized G, F , O.
Output: Learned G and F

1: for epoch = 1 to epochs do
2: Extract node embedding by utilizing G.
3: Apply Eq. (5) for target node division.
4: Apply Eq. (7) for target certain group alignment.
5: Apply Eq. (10) for target uncertain group alignment.
6: end for
7: return G and F

Inference
In the testing phase, given each target node xt with its classi-
fier output ft. If its entropy value is larger than the threshold
γ, which is the same as the one in Eq. (5), xt will be marked
as unknown class. Otherwise, it will be assigned to a class
in the source label space Cs depending on ft.

Experiments
In this section, we evaluate the effectiveness of our method
as the following: Firstly, we introduce the experimental
settings. Next, we compare our method to other methods.
Then, we provide an extensive ablative study investigating
each of our proposed modules. Last, we present the hyper-
parameters sensitivity study.

Experimental Settings
Datasets: We leverage three commonly used paper ci-
tation networks, i.e., ACMv9 (between years 2000 and
2010), DBLPv7 (between years 2004 and 2008), and
Citationv1(before the year 2008), provided by Arnet-
Miner (Tang et al. 2008) and construct graphs based on these
citation networks. These networks come from three differ-
ent original sources (ACM, DBLP, and Microsoft Academic
Graph, respectively, suggested by the dataset names) with 5
categories. we utilize the same dataset processing techniques
as (Zhang et al. 2021). We unify the dimension of attributes
by following (Zhang et al. 2021) and consider them as undi-
rected networks with each node indicating a paper and each
edge denoting a citation relation between two nodes. The
experiment is conducted under six domain adaptation tasks:
A→D, D→A, A→C, C→A, C→D, D→C.

Protocols: We introduce an open set protocol for the ex-
periment by setting the size of source label space Cs to 3 and
keeping the size of target label space Ct as 5. For each task,
we evaluate the method under every possible target unknown
class label space, which includes 10 situations. The reported
results are calculated by averaging over 10 runs with differ-
ent target unknown classes label space.

Baselines: We compare our method with four main
streams of the state-of-the-art methods: (1) Graph Node
Classification methods, namely GCN and GraphSAGE.
(2) Unsupervised Domain Adaptation methods, namely
DANN (Ganin et al. 2016) and CDAN (Long et al.
2018b). (3) Open-set Domain Adaptation methods, namely
OSBP (Saito et al. 2018) and DANCE (Saito et al.

2020). (4) Closed-set Graph Domain Adaptation methods,
UDAGCN (Wu et al. 2020) and ASN (Zhang et al. 2021).

Evaluation Metrics: We use four metrics, i.e., average
class accuracy over all classes (Acc), average class accu-
racy on known classes (Acck), average class accuracy on
unknown class (Accu), and h-score (HS) (Fu et al. 2020),
to evaluate the performance of all methods. The Acc is
the mean of per-class accuracy over known and unknown
classes, which would fail to truly discover the ability of un-
known class identification for the methods. Due to its equal
weighting of each known class accuracy and unknown class
accuracy, it results in the dominance of known class accu-
racy in the overall accuracy Acc. Thus, we introduce the
HS to address the importance of both Acck and Accu by
computing their harmonic mean:

HS =
2×Acck ×Accu
Acck +Accu

. (12)

HS value is high only when both Acck and Accu are high.
In our experiment, we report the averaged results of 10 runs
by enumerating every possible source label space Cs.

Implementation Details: Our implementation is based
on Pytorch (Paszke et al. 2019). We utilize the same graph
embedding extractor structure as ASN (Zhang et al. 2021)
which includes local GCN GCNl, global GCN GCNg , and
attention layer Fa. Both GCNl and GCNg are two-layer
structures, the hidden dimensions for two layers in GCNl

and GCNg are set as 128 and 16. The dropout rate is defined
as 0.5. To ensure a fair comparison, identical dimensions are
set for other baseline models. We optimize the model for
100 epochs by using Adam optimizer with learning rate of
0.005, momentum of 0.9, and weight decay of 5 × 10−4.
The hyper-parameters γ, τ and β are set as log (3)

2 , 0.05, and
0.05, respectively. The number of steps k in PPMI matrix for
GCNg is defined as 3, which is the same as ASN.

Results and Analysis
Quantitative comparisons are shown in Table 1 from the as-
pects of Acc and HS. The results of Acck and Accu are
in supplementary material. We group the methods on top
four rows compared with ours on the last row. On the first
row, there are two graph node classification GNN methods,
i.e., GCN and GraphSAGE. On the second row, there are
two unsupervised domain adaptation methods: DANN and
CDAN. On the third row, we present two state-of-the-art
open-set domain adaptation methods: OSBP and DANCE.
On the fourth row, we present two cutting-edge closed-set
graph domain adaptation methods: UDAGCN and ASN.

In Table 1, we observe that our method consistently out-
performs all other compared methods with a significant mar-
gin for all six OS-GDA tasks. One exception is for the task
of D → A, where the accuracy for DANCE is slightly bet-
ter than our SDA. The HS of our method SDA is the high-
est among all methods throughout the six tasks. For exam-
ple, we get 4.92% better than ASN and 24.30% better than
UDAGCN in terms of Acc. Checking HS, we see 8.39%
and 27.68% performance gains compared with ASN and
UDAGCN. Further, surprisingly the performances of GCN
and GraphSAGE are approaching or surpassing UDAGCN
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Methods A → D D → A A → C C → A C → D D → C Average
Acc HS Acc HS Acc HS Acc HS Acc HS Acc HS Acc HS

GCN 45.10 41.80 38.95 39.52 46.36 43.91 44.14 43.66 48.45 44.61 42.26 41.25 44.21 42.46
GraphSAGE 48.26 46.22 43.14 42.84 50.60 49.04 48.13 46.36 51.72 48.66 47.20 46.70 48.17 46.64
DANN 33.30 28.07 34.58 36.53 39.64 41.22 34.47 34.42 36.92 41.88 35.20 35.46 35.68 34.16
CDAN 31.13 21.65 29.03 27.76 30.99 26.00 31.72 30.91 35.69 30.47 28.62 21.82 31.20 26.44
OSBP 28.56 11.27 26.20 12.91 29.32 11.15 27.80 7.34 33.81 18.89 28.63 14.16 29.05 12.62
DANCE 60.54 25.99 53.27 39.53 63.23 39.15 60.44 35.88 64.29 28.98 57.62 39.50 59.90 34.84
UDAGCN 36.20 26.59 31.90 12.31 37.44 32.01 35.64 22.76 41.88 36.48 35.50 25.09 36.43 25.87
ASN 56.40 37.55 47.49 43.93 59.88 49.82 57.51 47.87 56.65 45.62 56.97 46.19 55.81 45.16
Ours (SDA) 61.60 49.22 51.36 50.86 64.47 55.27 61.67 55.89 67.51 55.35 57.74 54.72 60.73 53.55

Table 1: Results (%) on six open-set graph domain adaptation tasks in terms of Acc and HS.

Loss Objectives Acck Accu Acc HS
Lce 44.03 42.42 43.69 38.70
Lce + Lncc 49.45 48.74 49.27 45.67
Lce + Ladv 48.32 54.04 49.69 48.34
Lce + Lncc + Ladv (Ours) 49.68 56.40 51.36 50.86

Table 2: Ablation study for SDA on D→A domain adapta-
tion task. Lce is the cross-entropy loss objective. Ladv repre-
sents the adversarial domain alignment loss objective. Lncc

denotes the neighbor center clustering loss objective.

and ASN in terms of HS, which reveals the negative trans-
fer problem among CS-GDA methods when target domain
contains unknown classes. This phenomenon is caused by
violently enforcing source and target data to align without
considering the difference between their label spaces.

Ablation Study
We conduct ablation studies to examine the effectiveness
of the proposed LSDA in Eq. (11) and show the results in
Table 2. Firstly, compared with Lce, both Lce + Lncc and
Lce + Ladv gain significant improvement over four eval-
uation metrics. Especially, We can see 6.97% and 9.64%
performance gains in terms of HS, which proves the ef-
fectiveness of proposed domain alignment strategies for tar-
get nodes from different groups. Additionally, comparing
“Ours” to Lce + Lncc and Lce + Ladv , we achieve another
significant improvement over four evaluation metrics, which
further verifies the power of our SDA. Overall, each of the
incremental combination demonstrates the effectiveness of
the components, i.e., the adversarial domain alignment loss
Ladv for target nodes from certain group and neighbor center
clustering loss Lncc for target nodes from uncertain group,
indicating that SDA possesses a significant advantage in ad-
dressing open-set graph domain adaptation challenges.

Hyper-parameter Sensitivity Study
We evaluate the sensitivity of hyper-parameters β in
Eq. (11) and number of clusters K in target uncer-
tain group, showing the performance of our method on
domain adaptation task D→A in Fig. 4. β is selected
from {0.01, 0.03, 0.05, 0.08, 0.10}, and K is picked from
{1, 2, 3, 4, 5, 6}. As shown in Fig. 4(a), HS is relatively
stable in the range [0.01, 0.05] while slightly degraded in
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Figure 4: (a) the impact of the value β, i.e., the hyper-
parameter in Eq. (11), on domain adaptation task D→A. (b)
the impact of the value K, i.e., the number of clusters in tar-
get uncertain group, on domain adaptation task D→A.

the range [0.05, 0.10]. Acc and Acck are continually in-
creased by increasing the value of β while Accu is gradually
decreased. Fig. 4(b) demonstrates the performance of our
method under different number of clusters in target uncer-
tain group, i.e., K. We also observe that the HS is slightly
increased when increasing the value of K, Acc and Acck
are increased, and Accu is gradually decreased. Overall, our
method is less sensitive to these two hyper-parameters, i.e.,
β and K, from the aspects of Acc and HS.

Conclusion
In this work, we propose to address a new and challeng-
ing problem, namely open-set graph domain adaptation (OS-
GDA), where target graph is allowed to contain nodes that
are out of source label space. A novel separate domain align-
ment (SDA) scheme is newly introduced to effectively re-
solve the open-set cross-network node classification prob-
lem. We jointly consider two different domain alignment
strategies for different target nodes to sufficiently learn the
well-aligned discriminative embedding space, which further
improves the capability of the model on OS-GDA. Exten-
sive experiments show that our method achieves significant
performance gain over the state-of-the-art methods.
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