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Abstract

With the progress of urban transportation systems, a signifi-
cant amount of high-quality traffic data is continuously col-
lected through streaming manners, which has propelled the
prosperity of the field of spatial-temporal graph prediction.
In this paper, rather than solely focusing on designing pow-
erful models for static graphs, we shift our focus to spatial-
temporal graph prediction in the dynamic scenario, which
involves a continuously expanding and evolving underlying
graph. To address inherent challenges, a decoupled learning
framework (DLF) is proposed in this paper, which consists
of a spatial-temporal graph learning network (DSTG) with
a specialized decoupling training strategy. Incorporating in-
ductive biases of time-series structures, DSTG can interpret
time dependencies into latent trend and seasonal terms. To
enable prompt adaptation to the evolving distribution of the
dynamic graph, our decoupling training strategy is devised
to iteratively update these two types of patterns. Specifically,
for learning seasonal patterns, we conduct thorough training
for the model using a long time series (e.g., three months of
data). To enhance the learning ability of the model, we also
introduce the masked auto-encoding mechanism. During this
period, we frequently update trend patterns to expand new in-
formation from dynamic graphs. Considering both effective-
ness and efficiency, we develop a subnet sampling strategy to
select a few representative nodes for fine-tuning the weights
of the model. These sampled nodes cover unseen patterns and
previously learned patterns. Experiments on dynamic spatial-
temporal graph datasets further demonstrate the competitive
performance, superior efficiency, and strong scalability of the
proposed framework.

Introduction
Spatial-temporal graph prediction has emerged as an es-
sential task in the intelligent transportation systems (Yin,
Zhang, and Jing 2023; Wang et al. 2023a; Varga et al.
2023; Jiang et al. 2023; Wang et al. 2023b), with the po-
tential to have a significant impact on our daily routines. Re-
cently, researchers have been devoted to developing deep-
learning models due to their remarkable capacity to capture
complex relationships. The prevailing approaches (Jin et al.
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2023; Lan et al. 2022; Zhang et al. 2022) entail concep-
tualizing spatial-temporal data as spatial-temporal graphs,
where monitoring sensing systems are represented through
graph structures. Subsequently, spatial-temporal graph con-
volution networks (STGs) are as an engine to model the
spatial-temporal correlations, typically including two mod-
ules: graph convolutional networks (GCNs) for spatial corre-
lation and sequence modules for temporal correlation, such
as Long Short-Term Memory (LSTM) (Tian et al. 2018;
Chahal et al. 2023) or Transformer (Gu et al. 2023; Yan,
Ma, and Pu 2021).

Despite their promising results, most of these models are
evaluated using short-term datasets (e.g., two months) and
portray the underlying graph as static and unchanging. How-
ever, when considering a longer time frame, the distribution
of the graph can undergo substantial evolution over time,
which is termed a dynamic spatial-temporal graph. This con-
cept encompasses two crucial elements. Firstly, the under-
lying structure of the graph would change over time. For
example, new nodes may emerge due to urban develop-
ment and traffic network expansion. These new nodes would
introduce new patterns and updated neighbor information.
Secondly, the distribution feature of the original nodes in
the graph would also evolve over time. These evolved pat-
terns should be incorporated into models to update outdated
knowledge. Otherwise, the prediction performance of the
model for these nodes would be unpromising. Overall, to
accurately model the evolving nature of a dynamic spatial-
temporal graph, it is crucial to learn these unseen patterns
and new neighbor information.

The initial approach is the retraining method, however,
once the spatial-temporal graph evolves, retraining a new
model can be computationally burdensome. To mitigate this
issue, researchers have shifted their focus towards devel-
oping continuous learning strategies (Chen, Wang, and Xie
2021; Wang et al. 2023a) that aim to reduce computational
complexity, but there may be a trade-off in the prediction
performance. However, both the retraining method and con-
tinuous methods assume that there is sufficient data avail-
able from the updated graph for at least one month. In fact,
this assumption is very ideal and oversimplifies the dynamic
graph scenario, especially for new nodes. Consequently, the
emergence of few-shot (or even zero-shot) challenges would
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have a catastrophic impact, resulting in unreliable predic-
tions (Li, Tang, and Ma 2022). Such inefficient scalability
of these methods under the dynamic graph setting would
raise concerns for traffic managers who are actively involved
in devising new traffic planning strategies. In summary, de-
veloping a method with excellent performance, scalability,
and efficiency for dynamic spatial-temporal graph learning
is still an open question.

One noteworthy insight within the time series commu-
nity pertains to the structured inductive bias inherent in time
series data. This insight involves the interpretation of in-
tricate temporal correlations as disentangled seasonal and
trend patterns. Seasonal patterns denote recurring patterns
derived from long-term time series, exhibiting a tendency to
remain stable over time. In a spatial-temporal graph, adja-
cent nodes within the graph often exhibit similar seasonal
patterns. In contrast, trend patterns exhibit strong correla-
tions with short-term time steps. In light of the character-
istics of these two patterns, we propose a dynamic spatial-
temporal graph learning method by updating two patterns
alternately with different frequencies. The inert update of
seasonal patterns enhances the scalability capabilities of the
model by providing historical information from the entire
graph. On the other hand, by constantly learning trend pat-
terns from short-term data, the model can promptly respond
to the evolution of the dynamic graph.

Specifically, we propose a decoupled learning framework
(DLF), which can be summarized two-fold. First, we design
a disentangled spatial-temporal graph convolutional network
(DSTG) to effectively separate temporal associations into
seasonal and trend terms. DSTG is an asymmetric structure
and uses specific components to independently capturing
long-term seasonal variations and short-term trends. Second,
we design a decoupled training strategy for the training of
DSTG, which involves alternately updating two distinct pat-
terns using unequal-length data to achieve dynamic spatial-
temporal graph learning. Specifically, given that seasonal
patterns are believed stable, we only conduct a comprehen-
sive training of the model every three months to prevent the
assimilation of spurious long-term patterns from short time
series. Furthermore, we implement an additional masked au-
toencoder enhancement strategy to boost the model’s learn-
ing ability. During this period, we fine-tune trend patterns to
promptly integrate new knowledge from the dynamic graph
(e.g., every half month) into DSTG. Considering perfor-
mance and efficiency, we develop a subset sampling strat-
egy to sample a representative subset, which can encompass
new patterns from the updated road network and previously
learned patterns. During the fine-tuning process, we freeze
the weights of the seasonal patterns to avoid capturing spu-
rious seasonal patterns from short-period time series. Our
contributions are three-fold:

• We reframe the problem of spatial-temporal prediction
within the context of data streaming and tackle this prob-
lem using dynamic spatial-temporal graph learning. Our
approach employs a decoupled learning framework com-
prising two components: a disentangled spatial-temporal
graph network (DSTG) and a decoupled training strategy.

• DSTG decouples temporal correlation into seasonal and
trend patterns. We then employ a decoupled training
strategy that alternately updates these two patterns, fa-
cilitating efficient and effective dynamic graph learning.

• We evaluate our framework on real-world datasets, and
experimental results demonstrate the superiority of our
framework in prediction performance, training efficiency,
and scalability for new knowledge.

Related Work
Spatial-temporal graph prediction Recently, the accu-
racy of spatial-temporal graph prediction has significantly
improved with the emergence of deep learning (Zhou et al.
2022, 2023b). Among these advancements, the most ad-
vanced approach is the spatial-temporal Graph Neural Con-
volutional Networks (STG) (Wang et al. 2023c; Bai et al.
2020; Wang et al. 2023d,a; Jiang et al. 2023; Zhou et al.
2023a; Xia et al. 2023). For example, ST-GDN (Zhang et al.
2021) and D2STGNN (Shao et al. 2022) employ diffusion
graph convolutional networks with RNNs to capture tem-
poral patterns. ST-LSTM (Bi et al. 2022) employs TCN
for efficient capture of time dependencies. Additionally, re-
searchers have begun integrating the Transformer architec-
ture into spatial-temporal graph prediction models (Xu et al.
2020; Ren, Li, and Liu 2023), which is renowned for its
proficiency in modeling long-time series. However, existing
models are primarily designed for static graphs and neglect
the dynamic evolution of distribution and underlying struc-
ture in the streaming scenario.

Dynamic spatial-temporal graph learning We are wit-
nessing a growing interest in dynamic spatial-temporal
graph learning with the availability of large-scale spatial-
temporal datasets (Liu et al. 2023; Wang et al. 2020). In this
field, developing continuous learning methods is an emerg-
ing step. Compared to the retraining method with high per-
formance, their efficiency is impressive, whose primary ob-
jective is to consolidate the learned knowledge of the model.
For example, TrafficStream (Chen, Wang, and Xie 2021) and
ER-GNN (Zhou and Cao 2021) design different experience-
replay strategies, and STKEC (Wang et al. 2023a) uses the
memory mechanism to explicitly preserve important knowl-
edge. Nevertheless, these methods are limited in their ability
to handle dynamic graphs since they necessitate a specific
quantity of data from the updated graph.

Problem Formulation
In this section, we first define the spatial-temporal graph
prediction problem in a dynamic context, where data is col-
lected in a streaming manner and the underlying graph struc-
ture evolves dynamically over time. To facilitate our analy-
sis, we assume that the graph structure remains relatively
stable over a one-month period (30 days).

We use G = (G1, G2, · · · , GT ) to denote a dynamic
spatial-temporal graph, where Gτ = {Vτ , Eτ , Aτ} repre-
sents the graph during the τ -th month, Eτ is a set of edges
and Vτ is a set of nodes with |Vτ | = Nτ . Aτ ∈ RNτ×Nτ is
the adjacency matrix. Xτ =

[
Xt

τ ∈ RNτ×F |t = 0, · · · , Th

]
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is the node feature matrix with feature dimension F of Nτ

nodes in the past Th time steps.
Problem (Dynamic spatial-temporal graph learn-
ing). Given a dynamic spatial-temporal graph
G = (G1, G2, · · · , Gτ , · · · ), our goal is to sequen-
tially learn a model function F to predict future graph
signals. For example, we use the graph information in τ -th
month Gτ and archived data over a period of time Dτ

to train a prediction function Fτ with the parameters ωτ .
Given a test sample xt, this function can predict future
graph signals of all nodes in the next TP time-steps, which
is denoted as ŷ:

Pr
(
ŷ | xt

τ ,Dτ

)
=

∫
Pr

(
ŷ | xt

τ , ωτ

)
Pr (ωτ | Dτ ) dωτ

(1)
where Pr (ŷ | ·) represents the distribution of the predicted
values ŷ. An optimal model Fτ should make the prediction
distribution approximate to the ground-truth distribution. To
obtain Fτ , we first identify two training strategies in this
paper: the retraining method and the online method.
The retraining method. In the spatial-temporal graph
learning community, the retraining method requires col-
lected data from Gτ for training (at least 20-day data in
the general setting). Otherwise, they suffer from a few-shot
data challenge, if there is not enough data, the prediction
performance of these models is unpromising (Li, Tang, and
Ma 2022). In this paper, we utilize all the graph data that is
available until the τ -th month as training data. This means
that training data can encompass a time period of (τ − 1)
months.

F re
τ : ωτ = argmaxωτ

P (ωτ | T (G1:τ )) (2)

where T (·) means corresponding training data. The learned
model with optimal parameters ωτ is used to directly pre-
dict spatial-temporal graph signals of Gτ in the τ -th month
without any further fine-tuning.
The online learning method. Our online learning frame-
work only uses a representative subset of the graph Gτ to
fine-tune the archive model, which can allow us to integrate
new knowledge efficiently. If we perform a fine-tuning pro-
cess every two weeks, there will be two fine-tuning pro-
cesses every month. For example, we have collected half
of the month’s data in τ -th month to fine-tune the archive
model with parameters ω̂:

Fon
τ : ωτ = argmaxωτ

P
(
ωτ | ω̂, T

(
G̃τ

))
(3)

where G̃τ means the selected subset of the graph Gτ , then
we select the corresponding training data for fine-tuning. Fi-
nally, the trained model will be used as a predictor in next
half a month.

Method
In this section, we provide a detailed description of the pro-
posed framework, which includes a disentangled spatial-
temporal graph learning model (DSTG) and a decoupling
training strategy. The details are shown in Fig. 1 and the
pseudo-code is shown in Algorithm.1.

Spatial-Temporal Graph Learning
Our DSTG consists of three modules: an input module, a dis-
entangled spatial-temporal module, and an output module.
In the input module, the input spatial-temporal graph signal
is separated into seasonal factors and trend factors. Addi-
tionally, inspired by (Zhou et al. 2021), we incorporate time
position information into the model. The proposed disentan-
gled spatial-temporal graph network consists of two GCNs
and a disentangled temporal layer with residual technology.
two GCNs are respectively employed to capture spatial cor-
relations of trend and seasonal factors, and the disentangled
temporal module interprets complex temporal patterns as
seasonal and trend patterns. Finally, a decoder composed of
CNNs is used to generate predictions as shown in Fig. 1.

Graph convolutional network Recently, GCNs have
shown attractive performance in handling non-Euclidean
data (Huang et al. 2023b,a), which is widely used in spatial-
temporal learning tasks. Given the input at l-th layer H l ∈
RN×dl , the computing process of a GCN layer can be as
follows:

GCN
(
H l, G

)
= σ

(
(A+ I)H lW l + blτ

)
(4)

where W l ∈ Rdl×dl+1 and blτ ∈ Rdl are learnable parame-
ters, and A represents the adjacency matrix of the graph G,
and I is the corresponding degree matrix.

Disentangled temporal module This module is an asym-
metric structure, which consists of a seasonal component
and a trend component to disentangle complex temporal
patterns. The seasonal component exploits transformer ar-
chitecture to capture long-term seasonal patterns, owing to
its powerful capability to explicitly model long-term de-
pendencies adaptively via the pairwise query-key interac-
tion (Woo et al. 2022). The trend component is based on
the lightweight and efficient TCN (Hewage et al. 2020) ar-
chitecture to learn short-term patterns.

Specifically, given the spatial-temporal representation of
a node H ∈ RTh×dh , we decompose this time series
into a trend part Ht and a seasonal part Hr by a mov-
ing average kernel in the input layer. After GCN lay-
ers, the seasonal part Hr is input to the seasonal module,
which uses self-attention to capture long-term dependen-

cies: Hr+1 = softmax

(
(HrWQ)(HrWK)

⊤

√
d

)(
HrWV

)
,

where WQ, WK , and WV are learnable parameters. Then
a position-wise feedforward layer is applied to generate out-
puts. The efficient transformer architecture is a viable alter-
native (e.g., DLiner (Zeng et al. 2023) or Autoformer (Wu
et al. 2021)). The trend part Ht is input into a TCN layer
to capture short-term patterns, which are stacked by causal
convolution layers. Finally, the output vectors from both
components are combined, which is then fed into the out-
put module for generating predictions.

Decoupled Training Strategy
To effectively handle the dynamic spatial-temporal graph,
we employ a decoupled training strategy that involves updat-
ing two patterns in an alternating manner. This strategy en-
tails utilizing three-month archive data for thorough training
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Figure 1: The proposed online learning framework. We update two patterns with unequal-length data. Seasonal patterns are
updated with three-month data. We fine-tune the archive model (except the weights of seasonal patterns) to promptly adapt to
the dynamic graph by sampling representative nodes.

of the model, thereby enabling it to effectively capture com-
plex seasonal patterns. During this period, we incorporate
biweekly fine-tuning of the weights of both the trend mod-
ule and GCNs. This iterative fine-tuning process helps the
model adapt to the dynamic nature of the graph. Please note
that we can flexibly adjust these two time spans for differ-
ent applications. To further enhance efficiency, we propose
a subnet sampling strategy, whereby representative data is
carefully selected for fine-tuning.

Training for seasonal patterns We aim to utilize three-
month data to thoroughly train the model for capturing
spatial-temporal patterns, particularly seasonal patterns. To
enhance the model’s ability to learn complex patterns, fol-
lowing by (Nie et al. 2022), we introduce an enhanced train-
ing strategy: masked autoencoder mechanism, which draws
inspiration from computer vision models (He et al. 2022).
Specifically, to implement this mechanism, we start with
a continuous long-term series as the input. Next, we can
divide this input sequence into P patches where P is set
to a large value in this paper. Each patch has a shape of
(L×Nτ × F ), where L represents the length of one patch
and is equal to the length of the input sequence. Then we cre-
ate a challenging self-supervised task by randomly masking
a subset of patches with a masking ratio up to 75%. This
strategy can reduce computational complexity while provid-
ing sufficient long-term information. Once the model has
learned from this task, we further fine-tune it for downstream
prediction tasks.

Fine-tuning for new knowledge The streaming nature of
the dynamic graph introduces previously unseen patterns
and neighborhood information. To promptly incorporate this
knowledge, we select a subset of each graph to continuously

fine-tune the weights of trend modules and GCNs. The core
concept behind this subset sampling strategy is to detect
evolved nodes whose patterns have changed significantly for
expanding unseen patterns and replay nodes whose patterns
are consistent for reinforcing learned patterns. This strategy
can enhance the efficiency of the training process and allow
the model to efficiently adapt to updated graphs.

Specifically, to compute the evolution degree of each
node, we first select the half-month data which was used for
training the archived model, termed as Zr and the data used
for the current update Zc. Then we respectively sum these
two sequences along the time dimension and obtain daily

Algorithm 1: Decoupled Training Strategy for Dynamic
Spatiotemporal Graph Learning
Input: A dynamic graph G = (G0, G1, · · · , Gτ , · · · ) and
corresponding observation data.
Output: A prediction model F .

1: while Gτ keeps evoluting do
2: if (τ%3 == 0) then
3: Train Fτ with three-month data.
4: else
5: Fine-tune the archive model every half month:
6: (1). Select new nodes, significantly evolved nodes,

and replay nodes to construct a subgraph.
7: (2). Fine-tune the archive model (freeze the param-

eters of seasonal module) using this subgraph.
8: end if
9: Make prediction with the learned model.

10: end while
11: return solution
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average flow vectors, which are termed as Z̃r ∈ RNr×Lh×F

and Z̃c ∈ RNc×Lh×F , where Lh is equal to time-steps of
one-day data (e.g., Lh = 288 if data sampling frequency
is five minutes), Nr and Nc represent the number of nodes
recorded in the archived data, please note that we only con-
sider nodes that have been recorded in Zr. Given two such
vectors of node vi, Z̃i

r = [xt
r|t = 0, · · · , Lh] ∈ RLh×F and

Z̃i
c = [xt

c|t = 0, · · · , Lh] ∈ RLh×F , where xt
c represents a

data point. Then we calculate the similarity between Z̃i
r and

Z̃i
c based on Wasserstein distance (Adler and Lunz 2018).

inf
γ∈Π[Z̃i

r,Z̃
i
c]

∫
v

∫
u

γ(u, v)

(
1− xu

rx
v
c

ab

)
dudv

s.t.
∫

γ(u, v)du =
xu
r

a
,

∫
γ(u, v)dv =

xv
c

b

(5)

where a =
√∑Lh

t=1 (x
t
r)

2 and b =
√∑Lh

t=1 (x
t
c)

2. A high
distance means that the patterns of this node have changed
significantly, which may be attributed to alterations in node
features or the introduction and disappearance of the neigh-
borhood. In this paper, we sample the top ke% of nodes with
high distances, as well as newly added nodes that appear in
the archived data (if there have been changes in the graph
structure), along with their N-hop neighbors. This subgraph
is used to fine-tune the archive model.

With continuous fine-tuning processes for acquiring new
information, there is a possibility that previously acquired
knowledge may be replaced or forgotten, even though it re-
mains valuable for generating accurate node representations
(Wang et al. 2023b). To overcome this challenge, we pro-
pose replaying the learned patterns to consolidate old knowl-
edge. To evaluate the consistency of node patterns with the
model’s learned patterns, we reconsider the distance of each
node in Eq.5. A low value indicates that the node patterns
align well with patterns used for training in the previous
process. We choose the top kr% of nodes with the smallest
distances to replay learned knowledge for fine-tuning.

Experiment
Experiment Setting
Dataset The used dataset is collected by California Trans-
portation Agencies (CalTrans) Performance Measurement
System (PeMS) in real-time every 30 seconds in one year.
The data is aggregated into 5-minute intervals from 30-
second data instances. The used dataset includes 1408
nodes, and we artificially created a traffic dataset with dy-
namic road networks by masking 5% of the nodes every
month from December to January.

Setting We optimize all the models by the
Adamw (Loshchilov and Hutter 2017) optimizer. The
learning rate is set to 10−3. Sampling node ratio kr and
ke are equal to 4% and 1%, respectively. The maximum
epoch is 100. We set the forecasting length and lookback
length to 12. For two training strategies, we split the
training data along the temporal dimension into training

datasets and validation datasets with a ratio of 7:3. The
test set is obtained following by description in the Section
problem formulation. The hyperparameters of all models are
chosen through an independent parameter-tuning process.
We report the total time of training and validation for
efficiency evaluation on A100 GPUs, and three widely used
metrics, MAE, MAPE, and RMSE are used to evaluate
prediction performance, and we report three metrics in three
granularities (i.e. 3 horizons, 6 horizons, and 12 horizons).

Baseline Methods The baselines for comparison primar-
ily include three categories: retraining methods, continuous
learning methods, and online learning methods.

For retraining methods, some advanced models are used
as baselines1, including (1) TCN which is effective in learn-
ing local and global temporal correlations; (2) STGCN (Yu,
Yin, and Zhu 2017) which employs graph convolution
and gated CNN to capture spatial-temporal patterns; (3)
STNN (Yang, Liu, and Zhao 2021) which employs graph
convolution networks to learn spatial-temporal correlations;
(4) ST-GAM (Wang et al. 2022) which is an encoder-
decoder architecture to alleviate error propagation among
predicted time steps; (5) DSTG+AD which can decouple the
time patterns into the seasonal patterns and the trend patterns
training with All available Data.

For continuous learning methods, we thoroughly train the
model without a decoupling mechanism every three months
with all data, during which time we fine-tune the model
based on different strategies once a month. The methods in-
clude (6) DSTG+SK: STKEC (Wang et al. 2023a) which
uses a memory module to store long-term patterns, and
they also select some important nodes based on the influ-
ence function to consolidate old knowledge; (7) DSTG+TS:
TrafficStream (Chen, Wang, and Xie 2021) which proposes
an experience-replay strategy, and it samples some nodes
based on JS divergence and EWC regularized parameter
term (Kirkpatrick et al. 2017) to consolidate previous knowl-
edge; (8) DSTG+NN which selects only New Nodes with
their N-hops neighbors to fine-tune all parameters.

Online learning methods include (9) DSTG-Static which
trains the model every three months and directly predicts
traffic during this period without any further fine-tuning;
(10) DLF which is our proposed framework and updates
dual-scale pattern alternately with unequal-length data.

Method Performance and Efficiency Analysis
The average prediction performance for all nodes over nine
months is shown in Table. 1. We can observe that GCN-
based models achieve better performance than TCN because
they use graph convolutional networks to capture spatial de-
pendencies. The proposed DSTG achieves better prediction
performance due to the decoupling of complex time patterns
into seasonal patterns and trend patterns, which prevents
the model from capturing spurious time patterns. However,
these models with retraining methods are trained with all
the data every month, so they consume more training time.

1The selected baselines should be independent of the size of the
graph, so we have made slight adjustments to a few non-essential
function codes of some models for this purpose.
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Method
3 horizons 6 horizons 12 horizons Efficiency

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE Time(s)

Retrain

TCN 30.25 21.15 44.78 34.78 24.64 47.12 38.72 27.71 54.23 42349.93
STGCN 24.16 17.07 38.19 28.11 19.42 40.83 31.02 23.17 46.14 75481.24
STNN 23.05 16.15 35.37 26.12 18.06 39.87 30.94 23.14 46.89 119083.72

ST-GAM 24.13 17.22 37.09 27.84 19.61 41.23 33.15 25.37 50.71 145146.83
DSTG+AD 23.41 16.04 35.53 25.47 17.52 39.51 28.87 22.79 43.73 93014.63

Continual
DSTG+NN 27.31 20.49 42.37 29.72 24.33 44.90 33.76 28.47 49.92 52824.36
DSTG+SK 25.65 17.93 39.12 27.44 20.81 41.82 31.55 26.03 46.49 60412.90
DSTG+TS 26.43 19.19 40.20 28.56 22.04 42.91 31.07 25.40 47.36 58339.42

Online
DSTG-Static 30.67 25.70 44.83 32.62 27.83 46.94 36.41 31.93 51.47 33852.42
DLF (Ours) 22.78 15.81 35.25 24.88 17.02 38.45 28.16 21.95 43.22 45809.21

Table 1: The prediction performance and efficiency of all methods for all nodes over nine months.

For continual methods, they sample some data with differ-
ent strategies for fine-tuning the model to reduce computa-
tional complexity. For example, TrafficStream calculates the
feature evolution of each node and sample a few nodes as
replay nodes for consolidating old knowledge. Although the
efficiency of DSTG+TS is significantly improved, their per-
formance is worse than retraining methods. In short, both
retraining and continuous learning strategies exhibit larger
errors than our framework, because the changes in the dy-
namic road network structure and the evolution of traffic
distribution features render the model trained in the previ-
ous month obsolete.

Comparing other methods, DSTG-Static achieves high
errors because it fails to incorporate new knowledge.
DSTG+NN is worse than DLF because it catastrophically
forgets the learned patterns during fine-tuning. Our frame-
work achieves better performance because updating dif-
ferent patterns alternately is beneficial for learning more
spatial-temporal patterns. Overall, our framework is supe-
rior in terms of performance and efficiency, which will be
further explained in the following section.

Ablation Study
To verify the effectiveness of the individual components in
our proposed framework, we make the following variants:
(1). w/o Dec: we remove the time decomposition mechanism
and only employ a TCN layer to capture temporal patterns;
(2). w/o mask: we remove the masked autoencoder enhance-
ment strategy and directly follow general traffic prediction
tasks; (3). w/o Fre: we use half a month’s data to fine-tune
all the parameters in fine-tuning; (4). OnlyNew: we use only
new nodes to fine-tune the model (exclude the weights of
seasonal patterns).
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Figure 2: Ablation experiment of component effectiveness.

As shown in Fig 2, it is evident that our framework outper-
forms other variants, thus demonstrating the efficacy of each
component in our model. When we no longer freeze weights
of seasonal patterns, the model may learn spurious seasonal
patterns from short-term time series in fine-tuning, thus w/o
Fre achieves poor performance. OnlyNew has higher errors
because this model only focuses on new patterns and ignores
patterns that have changed significantly.

Method Scalability Analysis
The dynamic nature of the graph introduces new neighbor
information and temporal patterns, it is crucial to evaluate
the scalability for this new knowledge. We present the pre-
diction performance of models for new nodes with neigh-
bors. Table 2 shows the average 12-horizon performance.

GCN-based models can generate representation for new
nodes through their inductive structure. However, their per-
formance is still limited because their parameters fail to con-
sistently absorb new knowledge from the dynamic graph.
Our framework DLF achieves strong scalability through the
collaboration between captured seasonal patterns and fast
learning ability. On the one hand, explicitly preserved sea-
sonal patterns can provide historical information of the en-
tire road network. New and evolved nodes can access this
information to enhance spatial-temporal representation. On
the other hand, representative samples based on the subset
sampling strategy can efficiently integrate new information
into the model, allowing it to adapt to the updated graph.

Generalization of Models
To evaluate the generalization performance of the frame-
work, we evaluate it on the Knowair dataset (Wang et al.
2020) from the atmospheric domain, which records the air
pollution feature PM2.5 and 18 meteorological features. The
task goal is to predict the next 12-horizon PM2.5 concentra-
tions given the PM2.5 observed concentrations at the start-
ing point and next 12-horizon weather data. We generate a
dynamic spatial-temporal atmosphere graph by a masking
strategy. We report the MAE, RMSE, and critical success in-
dex (CSI) which is widely used in this domain, please note
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Model MAE MAPE RMSE

Retrained

STGCN 34.82 26.46 50.74
STNN 35.64 28.63 52.85

DSTG+AD 33.36 25.24 48.87

Continual DSTG+SK 37.17 33.03 53.27
DSTG+TS 38.64 37.22 56.16
DSTG+NN 39.77 32.47 54.69

Online DSTG-Static 41.65 36.93 59.47
DLF (Ours) 30.24 23.17 45.21

Table 2: The scalability performance of the model for new
knowledge.

that the higher CSI value means better performance. The ex-
periment results are shown in Table 3.

We observe that DLF can still achieve excellent perfor-
mance and high efficiency in this dataset. The proposed
DSTG has better prediction performance due to the decou-
pling of complex temporal patterns into seasonal patterns
and trend patterns, which prevents the model from capturing
spurious information. The performance of continuous learn-
ing strategies is lower than that of the retraining method.
DLF achieves lower errors than other methods because up-
dating different patterns alternately can help the model better
adapt to the dynamics of graphs.

Complexity and Uncertainty Analysis
Computational complexity The time complexity
of a GCN layer is O

(
N2

)
because of the ma-

trix multiplication (Chen, Wang, and Xie 2021).
Thus, for a dynamic graph, the time complexity of
GCN layers in the retraining method in this paper is
O
(
N2

1 +
(
N2

1 +N2
2

)
+
(
N2

1 +N2
2 +N2

3

)
+ · · ·

)
, where

Nτ means the number of nodes in Gτ . Our proposed
framework trains a model every three months, utilizing
all nodes. During this period, we fine-tune the archived
model twice a month using only new nodes and a few
sampled nodes, thus, the time complexity reduces to
O(N2

1 +
(
(∆N2 + n2)

2 + n̂2
2)
)
+
(
(∆N3 + n3)

2 + n̂2
3

)
+(

(∆N4 + n4)
2 + n̂2

4

)
+ · · · ), where ∆Nτ means the

number of new nodes, nτ and n̂τ mean the number of
sampled nodes. In a contemporary transportation system,
the number of nodes is vast and new nodes typically
constitute only a minor fraction. For example, in the third
month, ∆N3 ≪ N3 and n3 are also set to a small value,
so the training time O

(
(∆N3 + n3)

2
+ n̂2

3

)
is far less

than O
(
N2

3

)
in a large traffic network. On the other hand,

our framework uses data over a shorter time span, whereas
retraining method uses all available data.

Uncertainty quantization The dispersion or error of an
estimate can be characterized by uncertainty, and a lower
level of uncertainty indicates a smaller margin of error of
predictions. Inspired by (Chang et al. 2020; Bai, Ling,
and Zhao 2022), our analysis shows that our online learn-
ing framework has less uncertainty of prediction distribution

Model MAE RMSE CSI Time

STGCN 30.82 40.75 46.20% 37698.35
STNN 32.26 41.57 48.34% 40422.09

DSTG+AD 30.45 38.81 51.32% 34412.67
DSTG+TS 32.97 42.96 45.37% 22429.31
DSTG+SK 34.24 44.05 45.62% 24381.57
DLF(Ours) 29.37 38.31 53.05% 18531.42

Table 3: Prediction performance for all nodes on Knowair.

compared to the retraining method from the perspective of
data.
PROOF. Let us rethink the prediction distribution in Eq.1,
the first term is Pr (ŷ | xT , ωτ ), which means that the given
model parameterized by ωτ takes a test sample xT to make
a prediction, hence the variance of Pr (ŷ | xT , ωτ ) only de-
pends on the noise or randomness coming from xT+1. Thus,
given the same test sample, the uncertainty difference for
two training strategies only derives from the variance of
the second term of Eq. 1, namely Pr (ωτ | Dτ ). Let us re-
fer back to Eq.2 and Eq.3, which indicate that the variabil-
ity of the two approaches is influenced by the randomness
of the training data samples, which can be quantified using
dataset variance. We achieve proof by demonstrating the fol-
lowing chain inequality: Var

(
T
(
G̃τ

))
≤ Var(T (Gτ )) ≤

Var(T (G1:τ )), where Var(·) represents the variance of data.
Please refer to the appendix for complete proof.

Discussion
We have taken an initial step towards comprehending dy-
namic space-time graphs. However, our framework does
have some limitations that are worth addressing for future re-
search. Firstly, Our developed model, DSTG, utilizes a sim-
ple spatial-temporal graph learning model. It is evident that
prediction performance could be enhanced by incorporat-
ing models with more powerful representation abilities. (2).
A challenging aspect is how to generalize learned knowl-
edge to unseen nodes without historical data, which requires
the model to possess strong inductive learning capabilities.
Unfortunately, the existing inductive capability of STGNNs
is inefficient and has not yet received sufficient attention.
Lastly, an important research direction is to explore few-
shot learning techniques to enhance the learning of dynamic
spatial-temporal graphs, particularly for newly added nodes.

Conclusion
This paper introduces a novel study on spatial-temporal
graph prediction with a dynamic scenario by proposing a
decoupled learning framework. Our approach involves a dis-
entangled spatial-temporal graph convolutional network and
a decoupled training strategy. The DSTG decomposes tem-
poral correlations into seasonal and trend patterns, and the
training strategy updates these patterns alternately to facil-
itate dynamic spatial-temporal graph learning. Through ex-
tensive experiments on real-world datasets, we illustrate the
effectiveness, efficiency, and scalability of our framework.
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