End-to-End Learning of LTL$_f$ Formulae by Faithful LTL$_f$ Encoding

Hai Wan1, Pingjia Liang1, Jianfeng Du2,3*, Weilin Luo1, Rongzhen Ye1, Bo Peng1

1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P.R.China
2Guangdong University of Foreign Studies, Guangzhou 510006, P.R.China
3Bigmath Technology, Shenzhen 518063, P.R.China
wanhai@mail.sysu.edu.cn, liangpj3@mail2.sysu.edu.cn, jfdu@gdufs.edu.cn, luowlin3@mail2.sysu.edu.cn, yerzh@mail2.sysu.edu.cn, pengb8@mail2.sysu.edu.cn

Abstract

It is important to automatically discover the underlying tree-structured formulae from large amounts of data. In this paper, we examine learning linear temporal logic on finite traces (LTL$_f$) formulae, which is a tree structure syntactically and characterizes temporal properties semantically. Its core challenge is to bridge the gap between the concise tree-structured syntax and the complex LTL$_f$ semantics. Besides, the learning quality is endangered by explosion of the search space and wrong search bias guided by imperfect data. We tackle these challenges by proposing an LTL$_f$ encoding method to parameterize a neural network so that the neural computation is able to simulate the inference of LTL$_f$ formulae. We first identify faithful LTL$_f$ encoding, a subclass of LTL$_f$ encoding, which has a one-to-one correspondence to LTL$_f$ formulae. Faithful encoding guarantees that the learned parameter assignment of the neural network can directly be interpreted to an LTL$_f$ formula. With such an encoding method, we then propose an end-to-end approach, TLTL$_f$, to learn LTL$_f$ formulae through neural networks parameterized by our LTL$_f$ encoding method. Experimental results demonstrate that our approach achieves state-of-the-art performance with up to 7% improvement in accuracy, highlighting the benefits of introducing the faithful LTL$_f$ encoding.

Introduction

Formulae with tree structures widely exist in data mining and knowledge management, e.g., linear temporal logic (LTL) (Luo et al. 2022) and regular expression (Ye et al. 2023). Therefore, it is important to automatically discover the underlying tree-structured formulae from large amounts of data. In this paper, we focus on linear temporal logic on finite traces (LTL$_f$) formulae (Baier and McIraith 2006; Giacomo and Vardi 2013), which are tree-structured formulae characterizing temporal properties. LTL$_f$ has been successfully used in many applications, typically, characterizing the high-level behaviors of a system based on observed traces in planning (Neider and Gavran 2018). For example, LTL$_f$ can specify that an agent keeps walking forward until (U) it encounters a block (p_1 U p_2), where p_1 and p_2 express “agent walking forward” and “agent encountering a block”, respectively. Besides planning, learning LTL$_f$ formulae can also be applied in apprenticeship learning (Kasenberg and Scheutz 2017), behavior classification (Camacho and McIraith 2019), and explainable artificial intelligence (Kim et al. 2019).

Learning LTL$_f$ formulae is a challenging problem. The core challenge is to bridge the gap between the concise tree-structured syntax and the complex LTL$_f$ semantics. Besides, a formula with arbitrary form has only semantic constraints and no syntactic constraints. Finding such a formula probably leads to explosion of the search space. On the other hand, imperfect data, e.g., incorrect labels (Kim et al. 2019), tend to introduce wrong search bias far away from the target formula.

To tackle the above challenges, some approaches (Camacho and McIraith 2019; Luo et al. 2022) modeled the relation between syntax and semantics by introducing an intermediate representation, but they need to pay additional costs from learning the over-expressive intermediate representation. There are also some approaches (Neider and Gavran 2018; Gaglione et al. 2021) that uniformly encoded syntactic and semantic constraints as Boolean satisfiability problem (SAT) or maximum satisfiability problem (MaxSAT), but they suffer from the high computational complexity of SAT or MaxSAT. Other approaches (Lemieux, Park, and Beschastnikh 2015; Shah et al. 2018; Kim et al. 2019) directly encoded syntactic constraints, exploiting well-designed heuristics to search for formulae satisfying semantic constraints. However, the heuristics are limited in scope and are time-consuming. In contrast, imperfect data, some approaches (Neider and Gavran 2018; Camacho and McIraith 2019) directly ignored them, and others (Lemieux, Park, and Beschastnikh 2015; Shah et al. 2018; Kim et al. 2019) limited the hypothesis space by templates.

In this paper, we propose an LTL$_f$ encoding method for faithfully bridging the neural network inference and the LTL$_f$ inference. An LTL$_f$ encoding is a parameter assignment of the target neural network ensuring that, under certain simple conditions, an LTL$_f$ formula is able to be directly interpreted from the neural network. We identify the conditions where LTL$_f$ encodings and LTL$_f$ formulae are one-to-one corresponding, and refer to the encoding under these conditions as faithful LTL$_f$ encoding, which provides a compact encoding of the LTL$_f$ syntax. We model the LTL$_f$ semantics via designing an inference process with LTL$_f$ encoding; in other words, inference with LTL$_f$ encoding simulates the inference of LTL$_f$ formulae. Based on this theoretical re-

*Corresponding author

Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
sult, we propose an end-to-end approach, \(TLTL_f \), to learn LTL\(_f\) formulae. Specifically, \(TLTL_f \) learns a neural network that is parameterized by the LTL\(_f\) encoding method, and subsequently interprets an LTL\(_f\) formula from the learned parameter assignment of the neural network.

Following the assessment of the state-of-the-art (SOTA) approach (Luo et al. 2022), we evaluate \(TLTL_f \) across datasets with and without imperfect data. Experimental results show that \(TLTL_f \) achieves SOTA performance and improves the accuracy by up to 7% compared with the SOTA approach. Besides, the LTL\(_f\) formula learnt by \(TLTL_f \) is highly faithful to the network from which it is extracted, giving the same satisfiability results over 95% traces. Following the work (Kim et al. 2019; Luo et al. 2022), we also evaluate \(TLTL_f \) on imperfect data generated by assigning incorrect labels to a subset of the original data. Results demonstrate that \(TLTL_f \) still outperforms other approaches on imperfect data.

Related Work

Learning LTL formulae from positive and negative traces. Neider and Gavan (2018) provided two methods to learn LTL formulae, one based on SAT and the other based on the decision tree. Besides, Camacho and McIlraith (2019) designed a SAT-based method to learn formulae from the symbolic state representation of LTL formulae. However, both studies are limited by an assumption that the training data are precise. Kim et al. (2019) handled imperfect data based on Bayesian inference. Their use of templates limits the hypothetical space of formulae, preventing the proposed method from learning arbitrary formulae. Overall, these approaches cannot handle imperfect data and learn arbitrary formulae simultaneously.

Recently, several studies have realized the importance of learning arbitrary LTL\(_f\) formulae from imperfect data. Gaglione et al. (2021) proposed a MaxSAT-based approach to tolerate imperfect data, but the scalability is limited by the computational complexity of the MaxSAT solver. The work (Luo et al. 2022) is the closest to this work. Based on a theoretical result that the graph neural network (GNN) inference is able to simulate the LTL\(_f\) inference in checking if a trace is satisfied, Luo et al. (2022) first trained a GNN classifier for the trace satisfiability problem and then interpreted LTL\(_f\) formulae from the model parameters. However, they do not guarantee the faithfulness between the GNN inference and the LTL\(_f\) inference, i.e., the result of the interpreted LTL\(_f\) formula is probably different from that of the GNN classifier in checking if a trace is satisfied. This is because they only proved that, given a formula, a GNN classifier can always be constructed to simulate LTL\(_f\) inference, but not vice versa, which means that the expressive power of a GNN classifier is stronger than an LTL\(_f\) formula. It results in additional costs from learning the over-expressive GNN classifier. In contrast, the interpreted LTL\(_f\) formula in this work is more faithful with the learnt neural network.

Learning temporal logic formulae from other forms of data. Some work learns temporal logic formulae from other forms of data, such as Markov decision process (Kasenberg and Scheutz 2017) and only positive traces (la Rosa and McIlraith 2011; Lemieux, Park, and Beschastnikh 2015; Le and Lo 2015; Shah et al. 2018; Cao et al. 2018). In the business process modeling, some studies (Maggi, Bose, and van der Aalst 2012; Ciccio, Mecella, and Mendling 2013; Maggi et al. 2018; Leno et al. 2020) use temporal logic to model the declarative process model learned from the event log, which is viewed as a kind of positive traces.

Learning other formal languages. Our work is also relevant to learning logical representations, such as regular language (Angluin 1987; Giametidis and Tripakis 2016; Bollig et al. 2009; Angluin, Eisenstat, and Fisman 2015; Fiterau-Brostean et al. 2017; Gabel and Su 2008, 2010; Ye et al. 2020) and other forms of temporal formulae (Asarin et al. 2011; Jin et al. 2015; Bombara et al. 2016; Xu et al. 2016; Xu and Julius 2016; Kong, Jones, and Belta 2016; Arif et al. 2020; Brunello, Sciacicco, and Stan 2020; Roy, Fisman, and Neider 2020; Xu et al. 2019; Maggi, Montali, and Peñaloza 2020). Although the expressive power of temporal formulae is weaker than that of regular languages, learning temporal formulae is more compact and easy to understand (Camacho and McIlraith 2019). Our approach will potentially be extended to learn formulae in other formal languages.

Learning tree structure. There have been various studies on learning tree structure. They can be divided into two main categories. One is to extract a latent tree structure for each example to improve the performance. For example, in nature language processing (NLP), the syntactic dependency tree of the sentence is extracted to improve the performance on tasks like semantic role labeling (Shi, Malioutov, and Irsoy 2020; Zhang et al. 2022) and sentiment analysis (Li et al. 2021; Hou et al. 2021). Syntactic dependency parsing is a classical problem in NLP and there have been some mature tools like the natural language toolkit (Bird, Klein, and Loper 2009). For the neural approach, Chen and Manning (2014) used three types of operations of a stack and a queue to construct the syntactic dependency tree and used a neural network to predict the operation in each construction step. The other category is to design an approach to learning the tree structure of specific semantics. Fargier, Gimenez, and Mengin (2018) proposed a greedy learning algorithm to learn lexicographic preference trees from positive examples. Sun et al. (2020) and Xie et al. (2021) used a tree-structured decoder to generate the abstract syntax tree of code from the natural language description. Ye et al. (2023) used a differentiable approach to learn the syntax tree of regular expressions from both positive and negative examples. Compared with the above studies, our approach learns the tree-structured LTL\(_f\) formulae with a completely different tree structure from both positive and negative examples.

Preliminaries

Linear temporal logic. Linear temporal logic (LTL) (Pnueli 1977) is a modal logic typically used to express temporally extended constraints over state trajectories. Derived from LTL, LTL interpreted over finite traces (Baier and McIlraith 2006; Giacomo and Vardi 2013) is referred to as finite LTL\(_f\). The syntax of LTL\(_f\) for a finite set of atomic propositions \(\mathbb{P} \) is built up of \(\top \) (true) and \(\bot \) (false), standard logical operators \((\land \) and \(\neg \)), and temporal logical operators \(\text{next} (X) \) and \(\text{until} \)
where all nodes in an LTL target LTL be a trace and otherwise. The traces mentioned in this paper are finite. The formulas.

The prefix form of an LTL formula ϕ, denoted by $pre(\phi)$, is defined recursively as follows:

$$pre(\phi) = \begin{cases} \phi & \text{if } \phi = p, \text{ a propositional symbol} \\ \alpha pre(\phi) & \text{if } \phi = \alpha \phi_1, \alpha \in \{\neg, X\} \\ \beta pre(\phi_1) pre(\phi_2) & \text{if } \phi = \phi_1 \beta \phi_2, \beta \in \{\land, U\} \\ \end{cases}$$ \tag{1}

The syntax tree of an LTL formula ϕ, denoted by $T(\phi)$, is defined as follows:

- If $\phi = p$, then $T(\phi)$ is a tree with a single node v_p.
- If $\phi = \alpha \phi_1$, where $\alpha \in \{\neg, X\}$, then the root node of $T(\phi)$ is v_p and it has a unique subtree $T(\phi_1)$.
- If $\phi = \phi_1 \beta \phi_2$, where $\beta \in \{\land, U\}$, then the root node of $T(\phi)$ is v_p and it has two subtrees, one for each subtree $T(\phi_1)$ and $T(\phi_2)$.

The node sequence obtained by preorder traversal of all nodes in an LTL syntax tree $T(\phi)$, denoted by pretravel($T(\phi)$), is defined as follows:

$$\text{pretravel}(T(\phi)) = \begin{cases} v_p, & \text{if } \phi = p \in \mathbb{P} \\ v_\alpha, \text{pretravel}(T(\phi_1)), & \text{if } \phi = \alpha \phi_1, \alpha \in \{\neg, X\} \\ v_\beta, \text{pretravel}(T(\phi_1)), \text{pretravel}(T(\phi_2)), & \text{if } \phi = \phi_1 \beta \phi_2, \beta \in \{\land, U\} \\ \end{cases}$$ \tag{2}

LTL formulae are interpreted over finite traces of propositional states. A finite trace is represented by $s = s_0, s_1, \ldots, s_n$, where $s_t \in 2^P$ is a state at time t. For every state s_i in π and every $p \in \mathbb{P}$, p holds if $p \in s_i$ or $\neg p$ holds otherwise. The traces mentioned in this paper are finite.

The size of π is the number of states in π, denoted by $|\pi|$. By π_t, we denote a sub-trace of π beginning from the state s_t. Let π be a trace and $|\pi| = n$. The satisfaction relation $|=\pi|$ is defined as follows:

$$\pi_i |= p \iff p \in s_i, \pi_i |= \neg \phi \iff \pi_i \neq \phi, \pi_i |= \phi_1 \land \phi_2 \iff \pi_i |= \phi_1 \land \pi_i |= \phi_2, \pi_i |= X\phi \iff i < n \land \pi_{i+1} |= \phi, \pi_i |= \phi_1 \land \pi_i |= \phi_2 \iff \exists \leq k \leq n, \pi_i |= \phi_2 \land \forall \leq j < k, \pi_j |= \phi_1,$$

where ϕ, ϕ_1, ϕ_2 are LTL formulae, and $p \in \mathbb{P} \cup \{\top, \bot\}$.

Learning LTL formulae. We focus on the problem of learning a target LTL formula to characterize the behaviors observed in a set of positive traces (Π^+), while to exclude behaviors observed in a set of negative traces (Π^-). The target formula is an LTL classifier over traces aiming to separate the provided positive and negative traces. We denote $\Pi = \Pi^+ \cup \Pi^-$. We define lab: $\Pi \rightarrow \{0, 1\}$: for any $e \in \Pi$, lab(e) = 1 if $e \in \Pi^+$, or lab(e) = 0 if $e \in \Pi^-$. The accuracy of an LTL formula ϕ for Π is defined as:

$$\text{acc}(\phi, \Pi) = \frac{|\{\pi \in \Pi^+: \pi |= \phi\}| + |\{\pi \in \Pi^-: \pi \neq \phi\}|}{|\Pi|}. \tag{3}$$

LTLf Encoding and Inference.

The key part of TLTLf is a neural network parameterized by the LTLf encoding method. So in this section, we first show the definition of LTLf encoding to parameterize TLTLf, as well as the model structure of TLTLf for inference of the satisfaction relation over traces. Afterwards, we introduce a subclass of LTLf encoding, namely faithful LTLf encoding, and show a one-to-one correspondence between LTLf formulae and faithful LTLf encodings.

Model Structure of TLTLf.

The input of TLTLf is a trace and its output is the satisfaction relation between TLTLf and a trace. The trainable parameters of TLTLf are given by Definition 1.

Definition 1 Let \mathbb{P} be a set of atomic propositions and $L \in \mathbb{N}$. The parameter set of TLTLf of size L is defined as $\Gamma = \{\Gamma_{\text{right}}, i, j \in [0, L]| i < L \land \neg j \leq L\} \cup \{\Gamma_{\text{atom}}, i, j \in [0, L]| 1 \leq j \leq |\mathbb{P}|\}$.

To establish a relationship between parameters of TLTLf and an LTLf syntax tree, we confine that every parameter in Γ be assigned a value between 0 and 1. We call a parameter assignment with this restriction an LTLf encoding, formally defined below.

Definition 2 An LTLf encoding of TLTLf of size L is defined as $\theta = \{\theta_{\text{right}}, i, j \in [0, L]| i < L \land \neg j \leq L\} \cup \{\theta_{\text{atom}}, i, j \in [0, L]| 1 \leq j \leq |\mathbb{P}|\}$.

An LTLf encoding is able to represent an LTLf syntax tree. Let $T(\phi)$ be an LTLf syntax tree and pretravel($T(\phi)$) = v_1, v_2, \ldots, v_L. For all $i \in [1, L]$, the parameters $\theta_\text{right}, \theta_\text{atom}, \theta_0$ and θ_atom determine whether v_i is $v_{i-1}, v_{i-1}, v_{i-1}, v_{i-1}, v_{i-1}$ and v_p for $p \in \mathbb{P}$, respectively. We introduce θ_none to encode a null node so as to represent a smaller syntax tree using an LTLf encoding of a greater size. For example, if we want to use an LTLf encoding of size $L + 1$ to represent $T(\phi)$, we should set $\theta_{\text{none}, L+1} = 1$. The parameter $\theta_{\text{right}}, i, j$ is used to represent whether the right child of v_i is v_j. Since pretravel($T(\phi)$) is the prefix form of ϕ, the left or the only child of v_i should be v_{i+1} if v_i has children. We use the following Example 1 to illustrate an LTLf encoding.

Example 1 Let $\mathbb{P} = \{p_1, p_2\}$ and θ be an LTLf encoding of TLTLf of size 3 where $\theta_{\text{right}}, 1 = 0.8, \theta_{\text{atom}}, 1 = 0.3, \theta_{\text{atom}}, 2, 1 = \theta_{\text{none}}, 3 = 1$ and other parameters are...
assigned 0. The LTL\(_f\) formula that \(\theta\) represents is the most likely to be \(\neg p_1\) while it may also be \(Xp_1\) since \((\theta_X)_{ij} = 0.3\).

In fact, an arbitrary parameter assignment of TLTLf can be converted to an LTL\(_f\) encoding of TLTLf of the same size, as shown in the following equation.

\[
\begin{align*}
(\theta_{\text{right}})_{i,j} &= \frac{e[(\text{right})]_{i,j}}{e[(\text{right})]_{i,j} + e[(\text{left})]_{i,j}}, \\
(\theta_{\text{atom}})_{i,j} &= \frac{e[(\text{atom})]_{i,j}}{e[(\text{atom})]_{i,j} + e[(\text{left})]_{i,j}}, \\
(\theta_{\gamma})_{i,j} &= \frac{e[(\gamma)]_{i}}{e[(\gamma)]_{i} + e[(\gamma)]_{j}}, \\
(\theta_X)_{i,j} &= \frac{e[(X)]_{i}}{e[(X)]_{i} + e[(\gamma)]_{j}}.
\end{align*}
\]

where

\[
\begin{align*}
\text{(4)}
\end{align*}
\]

Thus, TLTLf is defined as a neural network parameterized by Definition 1, which is then transformed to an LTL\(_f\) encoding by Equation (4). Given a trace \(\pi\), TLTLf computes a satisfaction relation in the TLTLf of \(\pi\). The encoding process of TLTLf is formalized in Definition 3.

Definition 3 Let \(\mathbb{P}\) be a set of atomic propositions and \(\Gamma\) a parameter assignment of TLTLf of size \(L \in \mathbb{N}\). \(\theta\) is constructed from \(\Gamma\) by Equation (4). Given a trace \(\pi\), TLTLf computes satisfaction vectors \(x_i \in \mathbb{R}^L\) where \(0 \leq i \leq L\) as follows:

\[
\begin{align*}
(x_i)_{j} &= \sigma(\sum_{k=1}^{n} \theta_{\text{atom}}_{i,j} Pk_{i} + \theta_X_{i,j} (x_{i+j} + 1) + \theta_{\gamma} \cdot 1 \cdot \theta_{(\gamma)}_{i,j} + \theta_{(X)}_{i,j} (x_{i+j} + 1) + \theta_{(\gamma)}_{i,j} (x_{i+j} + 1) - 1)),
\end{align*}
\]

where

\[
\begin{align*}
\text{(6)}
\end{align*}
\]

and \((x_{i+1}) = 0\) for all \(1 \leq k \leq L + 1\), and \(I(C)\) returns \(L\) if \(C\) is satisfied or \(0\) otherwise. By ESat(\(\theta, \pi\)) we denote the satisfaction relation between \(\theta\) and \(\pi\). Finally, TLTLf outputs ESat(\(\theta, \pi\)) as \((x_0)\).

Intuitively, \((x_i)_{j}\) represents whether \(\pi_i = s_1, s_{i+1}, \ldots, s_n\) satisfies the \(j\)-th sub-formula of the formula that \(\theta\) represents. The computation of \((x_i)_{j}\) is based on the definition of the satisfaction relation of TLTLf. Specifically, we first calculate \((r_i)_{j}\), which denotes whether the right sub-formula of the \(j\)-th sub-formula satisfies \(\pi_i\). Here \(\theta_{\text{right}}\) plays a role of right-child selection. In Equation (6), \(\theta_{\gamma}, \theta_{\gamma}, \theta_{X}, \theta_{\gamma}\) are used to select operators while \(\theta_{\text{atom}}\) is used to select atomic propositions. For example, if the \(j\)-th sub-formula is of the form of \(\neg \phi_{j+1}\), then the equation can be simplified to \((x_i)_{j} = \sigma(1 - (x_{i+j})_{j+1})\), which means that the \(j\)-th sub-formula satisfies \(\pi_i\) if its only child sub-formula does not satisfy \(\pi_i\). We use the following Example 2 to illustrate Definition 3.

Example 2 Let \(\pi = \{p_1, p_2\}, \{p_2\} \) and \(\theta\) be the LTL\(_f\) encoding of TLTLf given in Example 1. Then the satisfaction vector is \(x_0 = [0, 1, 0], x_1 = [0, 0, 0, 0]\). The inference output is ESat(\(\theta, \pi\)) = \((x_0)\).

The Faithful Subclass of LTL\(_f\) Encoding

As shown in Example 1, not every LTL\(_f\) encoding corresponds to an LTL\(_f\) formula. So in the following we introduce the notion of faithful LTL\(_f\) encoding by adding additional constraints to ensure the correspondence.

Definition 4 Let \(\theta\) be an LTL\(_f\) encoding of TLTLf of size \(L\). \(\theta\) is said to be faithful if it satisfies the following conditions:

1. \(\forall \gamma \in \theta : \gamma = 0 \lor \gamma = 1\).
2. \(\forall i \in [1, L]: (\theta_{\text{none}})_{i,j} + \sum_{j=1}^{n} (\theta_{\text{atom}})_{i,j} + (\theta_{\gamma})_{i,j} + (\theta_X)_{i,j} + (\theta_Y)_{i,j} = 1\).
3. \(\sum_{j=1}^{n} (\theta_{\text{atom}})_{i,j} + (\theta_{\text{none}})_{i,j} + \sum_{j=1}^{n} (\theta_{\text{atom}})_{i,j} + (\theta_{\gamma})_{i,j} + (\theta_X)_{i,j} = 1\).
4. \(\theta_{\text{none}})_{i,j} = 0 \land \forall i \in [2, L]: \sum_{j=1}^{n} (\theta_{\text{right}})_{i,j} + (\theta_{\gamma})_{i,j} + (\theta_X)_{i,j} + (\theta_Y)_{i,j} + (\theta_{\gamma})_{i,j} = 1\).
5. \(\forall i \in [1, L - 1]: (\theta_{\text{none}})_{i,j} = 0 \land \forall i \in [2, L]: \sum_{j=1}^{n} (\theta_{\text{right}})_{i,j} + (\theta_{\gamma})_{i,j} + (\theta_X)_{i,j} + (\theta_Y)_{i,j} + (\theta_{\gamma})_{i,j} = 1\).
6. \(\forall i \in [1, L], \forall j \in (i, L], \forall t \in (i, j], \forall t' \in (i, j]: (\theta_{\text{right}})_{i,j} + (\theta_{\gamma})_{i,j} + (\theta_Y)_{i,j} + (\theta_{\gamma})_{i,j} + (\theta_{\gamma})_{i,j} = 1\).

Intuitively, Condition 1 ensures all the parameters are assigned Boolean values. Condition 2 forces each node on the syntax tree to represent only one operator or one atomic proposition. Condition 3 restricts the number of children of a node according to the operator. If this node represents a binary operator, it will not represent other operators or atomic propositions because of Condition 2. Thus this node will have exactly one right child according to Condition 3. Besides, the node \(v_i\) has no child node so it must represent an atomic proposition or must not be used. Condition 4 restricts the number of fathers of a node. Except for the root node that has no father, every valid node \(v_i\) (where \((\theta_{\text{none}})_{i,j} = 0\) has exactly one father node. Condition 5 is used to restrict that null nodes \(v_i\) (where \((\theta_{\text{none}})_{i,j} = 1\) are placed continuously at the end of the node sequence obtained by preorder traversal of all nodes. Condition 6 restricts that, if \(v_i\) is the right child of \(v_j\), then every node \(v_j\) between them does not have a right child \(v'_j\) such that \(i' > j\).

The faithful LTL\(_f\) encoding ensures the LTL\(_f\) formula that it represents to be unique, as shown in the following example.

Example 3 Consider the LTL\(_f\) encoding of TLTLf given in Example 1 again. A faithful LTL\(_f\) encoding closed to \(\theta\) is \(\theta\), where \((\theta_{\text{right}})_{i,j} = 1, (\theta_{\text{atom}})_{3,2,1} = 1, (\theta_{\text{none}})_{3,1} = 1\) and other parameters are assigned 0. The LTL\(_f\) formula that \(\theta\) represents is unique, which is \(\neg p_1\).

 Faithful LTL\(_f\) Encoding vs LTL\(_f\) Formula

For an arbitrary LTL\(_f\) formula \(\phi\), we introduce a function to encode \(\phi\) into a parameter assignment of TLTLf of an equal or greater size, formalized in the following Definition 5.

Definition 5 Let \(\phi\) be an LTL\(_f\) formula, \(T(\phi)\) its syntax tree, and \(\text{prenot}(T(\phi)) = v_1, v_2, \ldots, v_L\). The function for encoding \(\phi\) into a parameter assignment of TLTLf of size \(L' \geq L\), denoted by \(\phi(\mu_L)\), is defined as follows:

- \(\forall i \leq i \leq L: (\theta_{\text{right}})_{i,j} = 1\) if \(v_j\) is the right child of \(v_i\) and \((\theta_{\text{right}})_{i,j} = 0\) otherwise.
Theorem 3

We interpret an LTL formula as a propositional formula and then use a SAT solver to determine its satisfiability. The algorithm interprets the LTL formula by recursively dividing the formula into subformulas and applying the following rules:

1. If the formula is of the form \(p \) (a propositional atom), then \(\Theta(p) = \{p\} \).
2. If the formula is of the form \(\neg \phi \), then \(\Theta(\neg \phi) = \Theta(\phi)' \), where \(\Theta(\phi)' \) is the complement of \(\Theta(\phi) \).
3. If the formula is of the form \(\phi \land \psi \), then \(\Theta(\phi \land \psi) = \Theta(\phi) \cap \Theta(\psi) \).
4. If the formula is of the form \(\phi \lor \psi \), then \(\Theta(\phi \lor \psi) = \Theta(\phi) \cup \Theta(\psi) \).
5. If the formula is of the form \(\phi \rightarrow \psi \), then \(\Theta(\phi \rightarrow \psi) = \Theta(\phi)' \cup \Theta(\psi) \).

Example 5 Consider \(\phi = (\neg \phi_1 \lor \phi_2) \land \phi_3 \). Then \(\Theta(\phi) = \Theta(\neg \phi_1) \cup \Theta(\phi_2) \cup \Theta(\phi_3) \).

Theorem 4 For any LTL \(\phi \) and any finite sequence of traces, \(\Theta(\phi) \) is a faithful encoding of \(\Theta(\phi) \).

Learning LTL \(\ell \) Formulation by LTL \(\ell \) Encoding

For learning LTL \(\ell \) formula, we first build LTL \(\ell \) parameterized by an LTL \(\ell \) encoding and then train it to distinguish positive traces from negative traces. Afterwards, we give an algorithm to extract the formula from LTL \(\ell \).

The faithful conditions are used in both the network structure and the optimization objective. The construction process of \(\theta \) is similar to using the softmax function. We use it to make \(\theta \) satisfy Condition 2 and Condition 3 as much as possible. Notice that \(\theta \) satisfies Condition 2 because \(\forall i \in [1, L]\{\theta_{\text{none}}\}_i + \sum_{i=1}^{\left|\mathcal{P}\right|} \theta_{\text{atom},i,j} + \theta_{\text{1},i} + \theta_{\text{X},i} + \theta_{\text{U},i} = 1 \). Similarly, Condition 3 in Definition 4 is approximately satisfied.

For each trace \(\pi \) in the set of positive traces \(\Pi^+ \) and the set of negative traces \(\Pi^- \), we use the LTL \(\ell \) encoding \(\Theta \) to infer the satisfaction relation. The classification objective is:

\[
\zeta = \sum_{\pi \in \Pi} \left(\text{ESat}(\theta, \pi) - \lambda(\pi) \right)^2,
\]

where \(\forall \pi \in \Pi^+, \lambda(\pi) = 1 \) and \(\forall \pi \in \Pi^-, \lambda(\pi) = 0 \).

We additionally use regularized loss to make \(\theta \) approximately satisfy Condition 4, 5, and 6 in Definition 4. The regularization terms are formulated as:

\[
\zeta = \sum_{i=1}^{L-1} \left(\text{Relu}(\theta_{\text{none},i}) + (\theta_{\text{none},i+1}) \right) + \sum_{i=2}^{L-2} \left(\text{Relu}(\theta_{\text{right},i}) \right)
\]

They are obtained from the corresponding conditions by converting constraints like \(x = y \) to \((x - y)^2 \) and \(x > y \) to \(\text{Relu}(y - x) \). The final objective to be minimized is:

\[
\zeta = \zeta + \alpha_1 \zeta_2 + \alpha_2 \zeta_3 + \alpha_3 \zeta_4,
\]

where \(\alpha_1, \alpha_2, \alpha_3 \) are coefficients for regularization terms.

LTL \(\ell \) Encoding Interpretation

We interpret an LTL \(\ell \) formula from an LTL \(\ell \) encoding by Algorithm 1. The algorithm interprets the LTL \(\ell \) encoding from bottom to top and calculates the score of the interpretations for each sub-formula \((s_j \in \text{line 12}) \) according to the LTL \(\ell \) encoding. The score of an interpretation is obtained by multiplying all related parameters in the LTL \(\ell \) encoding. The following Example 6 illustrates how Algorithm 1 works.

Example 6 Suppose an LTL \(\ell \) encoding \(\theta \) of size 3 shown in Table 1 and the beam width 2 are input to Algorithm 1. The outcomes of execution steps of Algorithm 1 are shown in...
Algorithm 1: Interpreting LTLf Formula

Input: LTLf encoding θ of size L, the beam width ω, the training set Π
Output: An LTLf formula φ interpreted from θ
1 i ← L;
2 while i ≥ 1 do
3 for pk ∈ P do
4 fi ← ∅;
5 fi ← fi ∪ {(pk, (θatom)i,k)};
6 for (φ2, s2) ∈ fi+1 do
7 fi ← fi ∪ {(φ2, s2)};
8 for i + 2 ≤ j ≤ L do
9 for ((φ1, s1), (φr, s3)) ∈ fj do
10 fi ← fi ∪ {(φ1, s1), (φr, s3)};
11 Sort fi = {(φj, sj)} according to sj, keep top ω elements and remove the others;
12 i ← i − 1;
13 φ ← the best formula obtained from fi according to the classification accuracy on Π;
15 return φ;

Table 2, where the top 2 interpretations and their scores for each fi are displayed in bold. For i = 3, the interpretations of f3 can only be an atomic proposition. The score of f3 = p1 is (θatom)3,1 according to Algorithm 1 (line 5). We keep p1 and p2 as the top 2 interpretations for f3. The score of f2 = Xp1 is obtained by multiplying (θX)2 and the score of f3 = p1. Continuing this way we finally obtain the top 2 interpretations for f1, namely p2 and p1 ∧ p2.

Evaluation

Competitors. We compared TLTf with four SOTA approaches, including C & M. (Camacho and McIlraith 2019), BayesLTf (Kim et al. 2019), MaxSAT-DT (Gaglione et al. 2021) and GLTLf (Luo et al. 2022). C & M. cannot learn from imperfect data but can learn arbitrary formulae. BayesLTf can learn from imperfect data but cannot learn arbitrary formulae. MaxSAT-DT, GLTLf and our proposed TLTf can learn arbitrary formulae from imperfect data.

Datasets. We reused the datasets that are provided by (Luo et al. 2022). There are 5 domains for k ∈ {3, 6, 9, 12, 15} and each domain has 50 datasets. For each dataset, there is a formula with k operators, and there are 250/500 positive/negative traces for this formula constituting the training set and 500/500 positive/negative traces for this formula constituting the test set. For generating the imperfect data, a portion of traces from the original data were randomly chosen to reverse labels; i.e., original positive labels are turned to be negative, and vice versa. The percentage δ of traces with wrong labels is determined by the imperfection rate drawn from {10%, 20%, 30%, 40%}.

Comparison across datasets. As shown in Table 3, TLTf obviously outperforms BayesLTf and GLTLf. Although MaxSAT-DT and C & M. seem to have the best performance, they run out of time in more cases when k increases. In contrast, TLTf keeps successful in all cases and it keeps a high accuracy when k increases. If we treat the accuracy of failed cases as 0, then the accuracies of MaxSAT-DT and C & M. on datasets with k = 9 drop to 16% and 68%, respectively, obviously lower than that of TLTf.

Comparison on imperfect data. TLTf also outperforms other approaches on imperfect data, as shown in Figure 1(a). MaxSAT-DT and C & M. fail to solve any formula on imper-
(b) Network accuracy and the accuracy of formula interpreted from the network. (c) Consistency. (d) Accuracy achieved by different beam widths \(\omega \) for Algorithm 1.

![Graphs showing accuracy and consistency](image)

Table 3: Experimental results for \(L = 10 \) across different approaches.

<table>
<thead>
<tr>
<th>Method</th>
<th>(k_f = 3)</th>
<th>(k_f = 6)</th>
<th>(k_f = 9)</th>
<th>(k_f = 12)</th>
<th>(k_f = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F(_1)</td>
<td>(N_s)</td>
<td>Acc</td>
<td>F(_1)</td>
</tr>
<tr>
<td>MaxSAT-DT</td>
<td>100</td>
<td>100</td>
<td>49</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>C.&M.</td>
<td>99.7</td>
<td>99.7</td>
<td>50</td>
<td>97.9</td>
<td>96.7</td>
</tr>
<tr>
<td>BayesLTL</td>
<td>85.1</td>
<td>85.9</td>
<td>50</td>
<td>77.9</td>
<td>76.7</td>
</tr>
<tr>
<td>GLTLf</td>
<td>94.3</td>
<td>94.2</td>
<td>50</td>
<td>90.0</td>
<td>90.3</td>
</tr>
<tr>
<td>TLTLf</td>
<td>98.0</td>
<td>97.9</td>
<td>50</td>
<td>95.3</td>
<td>95.4</td>
</tr>
</tbody>
</table>

Table 3: Experimental results for \(L = 10 \) across different approaches. Acc stands for the average accuracy (%) for successful cases. \(F_1 \) stands for the average \(F_1 \) score (%) for successful cases. \(N_s \) stands for the number of cases out of total 50 cases that are successfully solved within the time limit.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

fect training data. In contrast, TLTLf still has a high average accuracy 88.47% even when being trained on datasets with a moderately high imperfect rate \(\delta = 0.3 \).

Comparison on the performance of interpreting. Both TLTLf and GLTLf involve network training and interpreting, so we compare the performance gap between the two parts for TLTLf with that for GLTLf. Figure 1(b) shows that TLTLf has a smaller performance gap than GLTLf. This result suggests that the neural model underpinned TLTLf is more interpretable. We further assess consistency between the inference of neural model and that of the interpreted formula, indicating their agreement on the test set. For example, if the neural model and the interpreted formula give the same classification results on 95 out of 100 test traces, then the consistency between them is 95%. TLTLf achieves higher consistency, aligning with its reduced performance gap between the neural network and interpreted formula.

Hyper-parameters analysis. To analyze the impact of different hyper-parameters, we conducted experiments with various sizes of encoding and beam widths, on the datasets with \(k_f = 9 \). During the analysis of one hyper-parameter, the other hyper-parameter was set as default. From Figure 1(d), it can be seen that with the increase of the size of encoding, the accuracy increases to a certain extent until \(L = 8 \). This may be caused by that \(k_f \) was set to 9 for all experimental datasets. Figure 1(e) shows that the accuracy first increases rapidly as the beam width increases and then remains stable. This implies that \(\omega = 100 \) is sufficient to guarantee a high accuracy for the formula interpreted by Algorithm 1.

Conclusion and Future Work

Learning tree-structured LTLf formulae from imperfect data is important and challenging. In this paper we have proposed TLTLf parameterized by the LTLf encoding to simulate LTLf inference. TLTLf bridges the gap between the concise tree-structured syntax and the complex LTLf semantics. Besides, we have identified the faithful LTLf encoding, which has a one-to-one correspondence to the prefix form of LTLf formulae. Experiment results demonstrate that TLTLf achieves the SOTA performance and yields LTLf formulae more consistent with the learnt neural network than existing approaches do. Future work will extend our approach to LTL or other formal languages.
Acknowledgements

This paper was supported by National Natural Science Foundation of China (No. 62276284, 61976232, 61876204, 51976857), Guangdong Basic and Applied Basic Research Foundation (No. 2023A151011470, 2022A151011355), Guangzhou Science and Technology Project (No. 202201011699), Shenzhen Science and Technology Program (KJZD2023092311405902), Guizhou Provincial Science and Technology Projects (No. 2022-259), Humanities and Social Science Research Project of Ministry of Education (No. 18YJCZH006), as well as the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 23ptpy31).

References

