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Abstract

Many significant problems involving crystal property pre-
diction from 3D structures have limited labeled data due
to expensive and time-consuming physical simulations or
lab experiments. To overcome this challenge, we propose a
pretrain-finetune framework for the crystal property predic-
tion task named CrysDiff based on diffusion models. In the
pre-training phase, CrysDiff learns the latent marginal distri-
bution of crystal structures via the reconstruction task. Sub-
sequently, CrysDiff can be fine-tuned under the guidance of
the new sparse labeled data, fitting the conditional distribu-
tion of the target property given the crystal structures. To bet-
ter model the crystal geometry, CrysDiff notably captures the
full symmetric properties of the crystals, including the invari-
ance of reflection, rotation, and periodic translation. Exten-
sive experiments demonstrate that CrysDiff can significantly
improve the performance of the downstream crystal property
prediction task on multiple target properties, outperforming
all the SOTA pre-training models for crystals with good mar-
gins on the popular JARVIS-DFT dataset.

Introduction
Predicting crystal properties remains a significant chal-
lenge in materials science (Schütt et al. 2014; Du et al.
2023). Unlike molecules, which are commonly represented
as graphs (Wieder et al. 2020), crystals consist of a min-
imum unit cell repeating itself on a regular lattice in 3D
space, which can be viewed as a point cloud of atoms with
an orderly repeating pattern (Schütt et al. 2014). The proper-
ties of a crystal, such as its electronic, mechanical, and ther-
mal characteristics, are fundamentally linked to its atomic
arrangement or structure. Hence, the crystal property pre-
diction task involves predicting these properties based on
the crystal’s 3D structure. Through the prediction of crystal
properties, we may identify promising crystalline materials
with tailored properties before actual synthesis or testing,
speeding up the discovery process with reduced cost (Datta
and Grant 2004; Oganov et al. 2019).

Recently, we have witnessed a surge of interest in de-
veloping deep-learning models for crystal property predic-
tion (Chibani and Coudert 2020; Das et al. 2023a; Lin et al.
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2023). These models often rival the accuracy of Density-
functional theory (DFT) methods while being substantially
faster (Orio, Pantazis, and Neese 2009). Recent state-of-the-
art (SOTA) models (Louis et al. 2020; Xie and Grossman
2018; Choudhary and DeCost 2021; Yan et al. 2022) usu-
ally construct multi-edge graphs for a 3D crystal structure
where edges are created between nearby atoms within a pre-
specified distance threshold, and apply the Graph Neural
Networks (GNNs) model to learn representations of crys-
tal structures that are optimized for the downstream prop-
erty prediction task. However, the success of such methods
is largely tied to the large number of labeled crystal structure
data with target property values, which demands extensive
time and resources in physical simulations or laboratory ex-
periments (Yu et al. 2023). Therefore, these crystal property
predictors are often powerless for real scenarios when the
annotations of the crystal properties are sparse, but the 3D
crystal structure data are more readily available.

Consequently, a pertinent question is how to leverage vast
unlabeled datasets of 3D crystal structures to enhance down-
stream crystal property prediction that also relies on 3D
structures as input. Our answer is a form of self-supervised
pre-training paradigm (Liu et al. 2023b) that constructs the
surrogate task of exploring the intrinsic structure within
the untagged crystal structures and generates useful hidden
representations for the downstream prediction task. Recent
studies (Jiao et al. 2023a; Zaidi et al. 2023; Liu et al. 2023a)
have successfully applied similar strategies to molecular
property prediction, and motivate this design of the pretrain-
finetune framework in our method. For example, Zaidi et al.
(2023) describe a pre-training technique based on denoising
by utilizing large datasets of 3D molecular structures at equi-
librium to learn meaningful representations for downstream
prediction tasks. Yet, in the realm of crystal property predic-
tion from 3D structures, such pre-training remains underex-
plored. To our knowledge, CrysGNN (Das et al. 2023b) is
the only relevant published work for a pre-training frame-
work that extracts distilled knowledge from unlabeled crys-
tal structure data and injects it into different property predic-
tors to enhance their prediction accuracy. Nonetheless, Crys-
GNN heavily relies on the existing train-from-scratch prop-
erty predictors like Matformer (Yan et al. 2022) and fails to
take the crystal symmetry properties into account.

We aim to investigate the possibility of using crystal struc-
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ture reconstruction as a pre-training task with abundant un-
labeled crystal structure data, which is beneficial for down-
stream property prediction. The reconstruction of crystal
structures, given the atom compositions only, enables the
model to learn essential features and representations about
the crystal structures. These characteristics, such as bond
lengths, are often intricately correlated with the properties of
the crystal. Therefore, a model pre-trained to understand and
reconstruct these features will lay a foundation for predict-
ing properties during the fine-tuning phase under the guid-
ance of a small labeled dataset, leading to better data effi-
ciency. Furthermore, reconstruction tasks require the model
to be attentive to fine details in the crystal structure. This
level of attention to detail can enhance the model’s robust-
ness, making it less prone to errors when predicting proper-
ties based on subtle features in the crystal structure.

However, it is challenging to design a backbone model for
both the crystal structure reconstruction in the pre-training
phase and the crystal property prediction in the fine-tuning
phase. The main difficulty mainly stems from how to sat-
isfy the specific symmetry property of the crystalline mate-
rial world, where rotating, reflecting, or periodically trans-
lating the conformation of a 3D crystal structure does not
change the law of its behavior. While molecular representa-
tions share symmetry properties like rotation and reflection
invariance, the periodic translation invariance is distinct to
crystal structures. This uniqueness necessitates the develop-
ment of new definitions and innovative models to encode
such periodic structures accurately and faithfully.

In this study, inspired by their profound impact in molec-
ular biology (Zhang et al. 2023a) and material science (Jiao
et al. 2023b), we resort to diffusion models for our back-
bone and propose CrysDiff, a diffusion-based pre-training
framework via crystal structure reconstruction for the down-
stream property prediction task. In the pre-training phase,
CrysDiff tries to reconstruct the original crystal structures
via a joint denoising diffusion model given the atom compo-
sitions only, and thus is self-supervised without annotations
of target properties. The denoising model leverages popular
equivariant GNNs (EGNN) as building blocks so that all the
unique symmetries of crystal structures can be maintained.
In the fine-tuning phase, motivated by classification and re-
gression diffusion (CARD) models (Han, Zheng, and Zhou
2022), CrysDiff retains the backbone diffusion model but
diffuses on top of the new target property value with the as-
sociated crystal structure fixed. Hence, we can model the
conditional distribution of the target property value after ob-
serving the corresponding crystal structure, effectively trans-
ferring the knowledge of crystal structure distribution gained
from the pre-trained task.

To sum up, our contributions are three-fold. First, we pi-
oneer the pre-training approach through crystal structure re-
construction, aiming to enhance downstream property pre-
dictions from 3D structures. Second, we adopt diffusion
models in both the pre-training and fine-tuning phases, high-
lighting their versatility and efficacy across generative and
predictive tasks. Third, we guarantee strict adherence to all
the symmetric properties of crystals in both phases, thanks to
the incorporation of an EGNN-based denoising component.
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(a) Unit cell with the lattice L =
[l1, l2, l3].

(b) Point cloud of atoms with the
repeating pattern.

Figure 1: The illustration of periodic crystal structures.

Preliminaries
Representation of Crystal Structure
Cartesian Coordinate System A crystal can be viewed as
the infinite point cloud data, with a periodic arrangement of
atoms in 3D space (Figure 1). Formally, a crystal C can be
completely specified by three matrices C = (A,X,L), and
it is built up by repetitive translation of the unit cell (A,X),
the smallest repeating unit, along the lattice matrix L. For
an unit cell with N atoms, A = [a1, · · · ,aN ] ∈ Rda×N is
the atom feature matrix and ai ∈ Rda denotes the atom type.
X = [x1, · · · ,xN ] ∈ R3×N represents the 3D Cartesian co-
ordinates of each atom position. L = [l1, l2, l3] ∈ R3×3 is
the lattice matrix containing three basic vectors to describe
how the unit cell repeats itself along three directions. The
infinite point cloud of atoms in the periodic crystal struc-
ture can be determined as: {(a′

i,x
′
i) | a′

i = ai,x
′
i =

xi + Lk, ∀k ∈ Z3}. The integer vector k serves as the
translation vector, indicating how the unit cell can be repli-
cated in three dimensions via the lattice matrix L.

Fractional Coordinate System The position of an atom
under the Cartesian coordinate system is defined by its dis-
tances along three standard orthogonal bases. However, in
a crystal, the unit cell axes (l1, l2, l3) are not necessarily
perpendicular to each other. Instead, it is more natural to de-
scribe the position of an atom in terms of how far it is along
the l1, l2, and l3 directions, utilizing L as bases. A point de-
noted by the fractional coordinate vector f = [f1, f2, f3]

⊺ ∈
[0, 1)3 corresponds to the Cartesian vector x =

∑3
i=1 fili.

We resort to the fractional coordinate system in this work
since it can easily reflect the periodic nature of crystal struc-
tures. The crystal is now denoted by a tuple C = (A,F,L)
with F = [f1, · · · ,fN ] ∈ [0, 1)3×N containing the frac-
tional coordinates of all atoms in the unit cell.

Symmetries of Crystal Structure
Unlike molecules, crystals are made up of a unit cell that re-
peats regularly along a three-dimensional lattice. Encoding
such periodic structures poses unique properties of quantum
symmetries, including O(3) invariance and periodic transla-
tion invariance under the fractional coordinate system.
Definition 1 (O(3) invariance). A function f : (A,F,L) 7→
X is O(3) invariant such that for any orthogonal transforma-
tion Q ∈ R3×3 with Q⊺Q = I, we have, f(A,F,L) =
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(a) Definition 1: O(3) invariance of L.

𝐟 𝑤(𝐟 + 𝒕)

(b) Definition 2: Periodic translation invariance of F.

Figure 2: Symmetry properties of the crystal. Both cases of
transformations do not change the actual crystal structures.
For simplicity, we use 2D crystals for illustration.

f(A,F,QL). Namely, the structure of a crystal remains the
same when applying rotations and reflections to lattice L.

Definition 2 (Periodic translation invariance). A function
f : (A,F,L) 7→ X is periodic invariant such that for
any translation vector t ∈ R3, we have, f(A,F,L) =
f(A, w(F + t),L). Here, F + t is a broadcasting addition
and the functionw(F) := F−⌊F⌋ returns the fractional part
of each entry in F. Namely, the structure of a crystal remains
the same when applying periodic translation to F.

It is worth noting that the defined symmetries of crystals
(Figure 2) are consistent with the ones given under the Carte-
sian coordinate system (Yan et al. 2022). The rotations or
reflections of L have no effects on the fractional coordinates
of atoms, and thus, the E(3) invariance under the Cartesian
coordinate system can be reduced to O(3) invariance of L
only. Besides, since the fractional coordinate system reflects
the periodicity of the crystal structure intrinsically, we can
now obtain a simpler formulation on the periodic translation
invariance without the introduction of corner points under
the Cartesian coordinate system (Jiao et al. 2023b).

Methodology
Problem Setup and Framework Overview
The crystal property prediction aims to predict a target prop-
erty value y ∈ R based on its structure (A,F,L). The
proposed method follows the popular pre-training and fine-
tuning framework and utilizes the heated diffusion model
as the backbone model in both stages (Figure 3). It is com-
mon knowledge in crystallography that the structure of a
crystal determines its properties. Following this fundamen-
tal fact, the model first learns the latent distribution of the
crystal structure based on a large amount of unlabeled data
(A,F,L) during the pre-training stage. Next, the model is
fine-tuned under the guidance of new limited labeled data

(A′,F′,L′, y), adjusting the pre-learned representations to
perform well on the specific property prediction task.

More specifically, in the pre-training phase of the pro-
posed CrysDiff model, we reconstruct the original crystal
structure via a joint denoising diffusion model on both the
lattice L and the fractional coordinates of all atoms F given
the composition atom type A. We define the forward diffu-
sion process to transform (L,F) into random noise simulta-
neously and then a reverse generation process to reconstruct
the clean (L,F) via an EGNN-based denoising model. To
transfer the knowledge regarding crystal structures learned
in the pre-trained task, we stick to the same backbone diffu-
sion model in the fine-tuning phase. But the diffusion pro-
cess is now performed on top of target value y so that the
fine-tuned model can recover the predictive conditional dis-
tribution p(y | A′,F′,L′) after observing the labeled data.

Pre-training via Crystal Structure Reconstruction
In the pre-training phase, we perform the task of crystal
structure reconstruction to model the distribution p(F,L |
A) based on the diffusion model from a large amount of
unlabeled data. The motivations are as follows. First, the
crystal structure reconstruction task enables the pre-trained
model to learn meaningful representations of crystal struc-
tures, which are beneficial for the crystal property predic-
tion task. The model has already learned to recognize impor-
tant patterns in crystal structures, which expedites the learn-
ing process in the fine-tuning phase. Second, some previous
studies (Song and Ermon 2020) have shown that the usage
of the diffusion models is equivalent to learning a particular
force field directly from equilibrium structures with some
desirable properties in quantum chemistry. This force field
plays a decisive factor in crystal properties (Nagy 1998).
Third, a preliminary study (Zaidi et al. 2023) also employs a
score-based diffusion model to denoise the molecular struc-
tures and significantly improves the downstream molecular
property prediction. Following the previous work (Jiao et al.
2023b), the pre-trained model is built upon the diffusion
model where we simultaneously diffuse the lattice L and
the fractional coordinates F. Ct = (A,Ft,Lt) represents
the intermediate state at time step t. In the forward diffu-
sion process, we gradually add noise to C0 until we obtain
the random noise. In the reverse generation process, we ran-
domly sample from the prior distribution CT and gradually
learn to eliminate the noise through a parameterized denois-
ing model until the original structure C0 is recovered.

Diffusion on L We follow the denoising diffusion prob-
abilistic model (DDPM) (Ho, Jain, and Abbeel 2020)
to diffuse and generate L. We define the forward dif-
fusion process as a Markov chain q(Lt | Lt−1) =
N (Lt;

√
1− βtLt−1, βtI) according to a fixed variance

schedule {βt}Tt=1 with βt ∈ (0, 1). It progressively diffuses
L0 to the normal prior distribution p(LT ) = N (0, I) with
sufficiently large T since q(Lt | L0) = N (Lt;

√
ᾱtL0, (1−

ᾱt)I) with ᾱt = Πt
s=1αs = Πt

s=1(1 − βs). For back-
ward generation process, we formulate this reverse dynam-
ics as a conditional Markov chain with learnable transitions
pθ(Lt−1 | Ct) = N (Lt−1;µθ(Ct), σ2

t I) to reconstruct L0
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(a) Pre-training Phase of the CrysDiff model. (b) Fine-tuning Phase of the CrysDiff model.

Figure 3: In the pre-training phase, we perform the crystal structure reconstruction task based on the diffusion model. The
forward process is carried out on lattice L and fractional coordinates F simultaneously and gradually transforms the given L0

and F0 to some random noises LT and FT . The backward process predicts the noise terms ϵ̂L and ϵ̂F to reconstruct from the
noisy structure Ct via an EGNN-based denoising model ϕθ. In the fine-tuning phase, we conduct the crystal property prediction
task. We perform the diffusion on the target y to model the conditional p(y | C′) by keeping the new labeled data C′ fixed.

from noisy CT . Here, µθ(Ct) = 1√
αt

(
Lt − βt√

1−ᾱt
ϵ̂L(Ct)

)
and the denoising term ϵ̂L is given by the denoising model
ϕθ(A,Ft,Lt, t), which will be introduced later. The train-
ing loss is defined as the expected ℓ2 distance between
ground-truth ϵL and the estimated ϵ̂L:

LL = EϵL∼N (0,I),t∼U(1,T )

[
∥ϵL − ϵ̂L (Ct, t)∥22

]
. (1)

Diffusion on F To obey the bounded domain of F, we
exploit the score-based generative model (Song and Er-
mon 2020) with the wrapped normal distribution (Jiao
et al. 2023b), which has proven effective in the molecu-
lar conformer generation task (Jing et al. 2022). The for-
ward diffusion process is now defined as q(Ft | F0) ∝∑

Z∈Z3×N exp (−∥Ft − F0 + Z∥2F /(2σ2
t )). Here, σt is an

exponential annealing schedule and Ft = w(F0 + σtϵF)
with ϵF ∼ N (0, I). q(Ft | F0) approaches the uni-
form distribution U(0,1) when T is sufficiently large. For
the backward process, we apply the predictor-corrector
method (Song et al. 2021a) to reconstruct F0 from FT ∼
U(0,1). The estimated score ϵ̂F is still given by the de-
noising model ϕθ(A,Ft,Lt, t). The training loss for score
matching is given as,

LF = EFt∼q(Ft|F0),t∼U(1,T )[
λt ∥∇Ft

log q (Ft | F0)− ϵ̂F (Ct, t)∥22
]
.

(2)

Here, λt = 1/EFt

[
∥∇Ft

log q (Ft | F0)∥22
]

can be approx-
imated via Monte Carlo sampling methods.

EGNN-based Denoising Model The denoising model
ϕθ(A,F,L, t) that outputs ϵ̂L and ϵ̂F is built upon
EGNN (Satorras, Hoogeboom, and Welling 2021) to sat-
isfy the symmetry properties. Considering the representa-
tions [h

(s)
1 , · · · ,h(s)

N ] for each atom in the unit cell at the
k-th layer. The message-passing paradigm is presented as

follows.

m
(k)
ij = φm

θ

(
h
(k−1)
i ,h

(k−1)
j ,L⊤L, ψFT

(
f j − f i

))
,

h
(k)
i = h

(k−1)
i + φh

θ

h
(k−1)
i ,

N∑
j=1

m
(k)
ij

 .

Here, h0 is initialized as the ai with the Transformer si-
nusoidal position embedding (Vaswani et al. 2017). ψFT is
set as the Fourier transform to ensure periodic translation in-
variance. φm

θ and φh
θ are multilayer perceptions(MLPs). The

final output denoising terms ϵ̂L and ϵ̂F are decoded from the
atom representations by K EGNN layers.

ϵ̂L = LφL
θ

(
1

N

N∑
i=1

h
(K)
i

)
, ϵ̂F = [φF

θ (h
(K)
i )]Ni=1. (3)

Here, φL
θ and φF

θ are two MLPs with proper output sizes.
The final training algorithm in the pre-training phase of the
proposed CrysDiff model is summarized in Algorithm 1.

Fine-tuning for Crystal Property Prediction
To fully leverage the knowledge about the crystal structure
during the pre-training phase, we stick to the backbone dif-
fusion model when fine-tuning. However, the downstream
task becomes a deterministic task. Hence, we aim to model
p(y | A′,F′,L′) with the newly observed labeled data, fol-
lowing the previous work (Han, Zheng, and Zhou 2022).

Algorithm 1: Pre-training Phase of CrysDiff
Input: Atom features A, fractional coordinates F0, lattice
L0, number of diffusion steps T .

1: Sample ϵL ∼ N (0, I), ϵF ∼ N (0, I), t ∼ U(1, T ).
2: Lt ←

√
ᾱtL0 +

√
1− ᾱtϵL, Ft ← w (F0 + σtϵF).

3: ϵ̂L, ϵ̂F ← ϕθ (A,Ft,Lt, t) via Eq. (3).
4: Minimize LL + LF via Eq. (1) and Eq. (2).
5: return Pre-trained model ϕθ.
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Algorithm 2: Fine-tuning Phase of CrysDiff (Training)
Input: Atom features A′, fractional coordinates F′, lattice
L′, corresponding target crystal property y, number of diffu-
sion steps T .

1: Sample ϵy ∼ N (0, 1), t ∼ U(1, T ).
2: yt ←

√
ᾱty0 + (1−

√
ᾱt)ȳ +

√
1− ᾱtϵy .

3: ϵ̂y ← ϕθ (A
′,F′,L′, yt, t) via Eq. (4).

4: Minimize Ly via Eq. (5).
5: return Fine-tuned model ϕθ.

Training via Diffusion on y Different from the vanilla
diffusion model, we set the endpoint of the forward pro-
cess or the standpoint of the backward process as pθ(yT |
Ct) = N (ȳ, 1). Here, ȳ is the empirical mean of target
value y (or y0) in the fine-tuning data. More complex choices
to approximate E(y | C) could be used to incorporate
the prior knowledge. With a diffusion schedule {βt}Tt=1 ∈
(0, 1)T , the forward process of the conditional distribu-
tion (Pandey et al. 2022) is specified as q(yt | yt−1, ȳ) =
N (yt;

√
1− βtyt−1+(1−

√
1− βt)ȳ, βt). The closed-form

sampling distribution is q(yt | y0, ȳ) = N (yt;
√
ᾱty0+(1−√

ᾱt)ȳ, (1 − ᾱt)) with ᾱt = Πt
s=1αs = Πt

s=1(1 − βs).
This mean term can be regarded as an interpolation between
true target y0 and the prior assumption ȳ, which gradually
changes from the former to the latter throughout the for-
ward process. The goal of the reverse process is to gradu-
ally recover the distribution of the noise term ϵy ∼ N (0, 1).
The denoising model ϕθ(A′,F′,L′, yt, t) follows the same
EGNN model as the one in the pre-training phase with fixed
clean input crystal structure C′, and the predicted denoising
term is again decoded from the hidden representations of
atoms via another MLP φy

θ .

ϵ̂y = ytφ
y
θ

(
1

N

N∑
i=1

h
(K)
i

)
. (4)

The final training loss in the fine-tuning phase is:

Ly = Eϵy∼N (0,1),t∼U(1,T )

[
∥ϵy − ϵ̂y(C′, yt, t)∥22

]
. (5)

Algorithm 2 presents how we fine-tune the proposed Crys-
Diff model with new labeled data.

Inference via Generation of y To make predictions on
the test data C′, we generate the samples that match the true
conditional p(y | C′) learned by the denoising model in the
fine-tuning stage. The formulation of the forward diffusion
process on y leads to a tractable posterior:

q(yt−1 | yt, y0, ȳ) = N (yt−1; γ0y0 + γ1yt + γ2ȳ, β̃t). (6)

Here, we have γ0 =
βt

√
ᾱt−1

1−ᾱt
, γ1 =

(1−ᾱt−1)
√
αt

1−ᾱt
, γ2 =(

1 +
(
√
ᾱt−1)(

√
αt+

√
ᾱt−1)

1−ᾱt

)
, and β̃t = 1−ᾱt−1

1−ᾱt
βt. The fi-

nal inference procedure in the CrysDiff is carried out in a
standard DDPM manner via sampling as Algorithm 3.

Theoretical Guarantees on Crystal Symmetries
We prove that the learned marginal distribution pθ(C0)
(pθ(L0) and pθ(F0)) satisfies the proposed symmetries of

Algorithm 3: Fine-tuning Phase of CrysDiff (Inference)
q Input: Atom features A′, fractional coordinates F′, lat-
tice L′, empirical mean ȳ, number of diffusion steps T , fine-
tuned model ϕθ.

1: Sample yt ∼ N (ȳ, 1).
2: for t = T to 1 do
3: Sample ϵy ∼ N (0, 1) if t > 1.
4: ϵ̂y ← ϕθ (A

′,F′,L′, yt, t) via fine-tuned model ϕθ.
5: ŷ0 = 1√

ᾱt

(
yt − (1−

√
ᾱt)ȳ −

√
1− ᾱtϵ̂y

)
.

6: yt−1 = γ0ŷ0 + γ1yt + γ2ȳ +

√
β̃tϵy

7: end for
8: return Prediction ŷ0.

crystal structures in the pre-training phase, and the learned
conditional distribution pθ(y0 | C′) also satisfy these two
symmetry properties in the fine-tuning phase. Hence, our
method can explicitly acknowledge these symmetries guar-
anteed by underlying physical principles, leading to more
accurate and interpretable predictions.

Our proposed method, CrysDiff, utilizes the same EGNN
model (Satorras, Hoogeboom, and Welling 2021) as the
backbone of the parameterized denoising model ϕθ in both
phases. Thanks to the symmetry properties of EGNN, we
have the following proposition for the estimated noise terms
by ϕθ, following the previous work (Jiao et al. 2023b).

Proposition 1. ϵ̂L by Eq. (3) is O(3) equivariant. ϵ̂F by
Eq. (3) is periodic translation invariant. ϵ̂y by Eq. (4) is both
O(3) equivariant and periodic translation invariant.

Meanwhile, due to the symmetry of the Markov pro-
cess (Xu et al. 2022), we obtain the following proposition.

Proposition 2. If ϵ̂L is O(3) equivariant, the learned
marginal distribution pθ(L0) is O(3) invariant. If ϵ̂F is pe-
riodic translation invariant, the learned marginal distribution
pθ(F0) is periodic translation invariant. If ϵ̂y is both O(3)
equivariant and periodic translation invariant, the learned
conditional distribution pθ(y0 | C′) is both O(3) invariant
and periodic translation invariant.

From Proposition 1 and 2, we immediately prove that
the learned marginal distribution pθ(C0) in the pre-training
phase is both O(3) invariant and periodic translation invari-
ant assuming the independence of pθ(L0) and pθ(F0). Sim-
ilarly, we obtain that the conditional distribution pθ(y0 | C′)
in the fine-tuning phase also maintains both symmetries.

Experiments
We evaluate how CrysDiff performs on diverse crystal prop-
erties from two popular benchmark materials datasets. We
first briefly discuss the datasets used both in pre-training
and downstream property prediction tasks. Then we com-
pare CrysDiff with various state-of-the-art (SOTA) mod-
els with or without the pretrain-finetune framework on the
downstream property prediction task. Next, we illustrate the
effectiveness of CrysDiff even with sparse fine-tuning data
and little experimental data. We finally conduct some abla-
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Train-from-scratch Models Pretrain-finetune Models
CGCNN

(2018)
GATGNN

(2020)
ALIGNN

(2021)
Matformer

(2022)
Pretrain-GNN

(2020)
CrysXPP

(2022)
CrysGNN

(2023b)
CrysDiff
(Ours)

Formation Energy 0.063 0.047 0.033 0.033 0.764 0.062 0.056 0.029
Bandgap (OPT) 0.200 0.170 0.142 0.137 0.688 0.190 0.183 0.131

Total Energy 0.078 0.056 0.037 0.035 1.451 0.072 0.069 0.034
Ehull 0.179 0.129 0.076 0.064 1.112 0.139 0.130 0.062

Bandgap (MBJ) 0.413 0.513 0.310 0.302 1.493 0.378 0.371 0.287
Bulk Modulus (Kv) 14.47 14.32 10.40 11.21 20.34 13.61 13.42 9.875
Shear Modulus (Gv) 11.75 12.48 9.481 10.76 16.51 11.20 11.07 9.193

SLME (%) 8.022 7.504 5.145 5.260 9.853 5.110 5.452 5.030
Spillage 0.454 0.431 0.389 0.398 0.481 0.363 0.374 0.358

Table 1: The prediction performance (MAE) of nine properties on the JARVIS-DFT dataset for the proposed CrysDiff model
against existing train-from-scratch and pretrain-finetune models.

tion studies to show the influence of different design choices
in predicting the crystal properties.

Experimental Settings
Datasets We collect 800K untagged crystal graph data
from two popular materials databases, Materials Project
(MP) (Jain et al. 2013) and OQMD (Saal et al. 2013),
to pre-train the CrysDiff model. Further, to evaluate the
fine-tuning performance of CrysDiff compared with other
crystal property predictors, we select the 2021.8.18 version
of JARVIS-DFT (Choudhary et al. 2020), another popu-
lar materials database, for the downstream property predic-
tion task. JARVIS-DFT consists of 55,722 materials with
19 properties, like formation energy, bandgap, total energy,
bulk modulus, etc., which depend significantly on crystal
structures and atom features. Moreover, all these properties
in the above datasets are based on DFT calculations of chem-
icals. Therefore, to investigate how our model helps to mit-
igate the DFT error, we also take a small dataset OQMD-
EXP (Kirklin et al. 2015), containing 1,500 available exper-
imental data of formation energy.

Baselines To evaluate the effectiveness of CrysDiff, we
choose four SOTA train-from-scratch models for crystal
property prediction, CGCNN (Xie and Grossman 2018),
GATGNN (Louis et al. 2020), ALIGNN (Choudhary and
DeCost 2021), Matformer (Yan et al. 2022) and three SOTA
pretrain-finetune models, Pretrain-GNN (Hu et al. 2020)
CrysXPP (Das et al. 2022), CrysGNN (Das et al. 2023b).
We report mean absolute error (MAE) of the predicted and
actual value of a particular property to compare the perfor-
mance of different participating methods.

Downstream Task Evaluation
Results Using DFT Data For train-from-scratch models,
we directly train all the baseline models on the tagged
JARVIS-DFT dataset. For pretrain-finetune models, we pre-
train all the baseline models on the curated 800K untagged
crystal data and fine-tune them on nine properties in the
JARVIS dataset. For each property, all the models are trained
on 80% data, validated on 10%, and tested on 10% of the
data. In Table 1, we report the MAE of different predicted
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Figure 4: The prediction performance (MAE) of four prop-
erties on the JARVIS-DFT dataset with sparse data.

crystal properties. We have several insightful observations
from these results in Table 1. First, our proposed Crys-
Diff model achieves the SOTA performance over all nine
properties, outperforming other pretrain-finetune baselines
with large margins. Second, many existing SOTA pretrain-
finetune models cannot beat some strong train-from-scratch
models like Matformer. We speculate that there exists a mis-
match between the pre-trained and fine-tuned dataset. Third,
CrysDiff significantly improves the prediction performance
on some particular properties like Bulk Modulus and Shear
Modulus. The potential reason is that these properties are
heavily dependent on the corresponding crystal structures,
and CrysDiff successfully learns the distribution of crystal
structures in the pre-training phase via the diffusion process.

Results Using Sparse Data To demonstrate the effective-
ness of the pre-training in limited data settings, we con-
duct an additional set of experiments under different train-
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Experiment Settings CrysXPP
(2022)

CrysGNN
(2023b)

CrysDiff
(Ours)

Train on DFT
Test on Expt 0.307 0.253 0.211

Train on DFT + 20% Expt
Test on 80% Expt 0.158 0.135 0.102

Train on DFT + 80% Expt
Test on 20% Expt 0.110 0.096 0.087

Table 2: The prediction performance (MAE) of different
pretrain-finetune models with full DFT data and different
percentages of experimental data for formation energy on
the OQMD-EXP dataset. Expt stands for experimental data.

ing data splits during the fine-tuning phase. To be more pre-
cise, we vary available labeled training data from 20% to
80%, train different models, and check their performance
on the test dataset. We choose two strong baselines, Mat-
former from the train-from-scratch models and CrysGNN
from the pretrain-finetine models. From Figure 4, we ob-
serve that both CrysDiff and CrysGNN can significantly
outperform Matformer when the given labeled training data
are quite limited, like with only 20% or 40% tagged train-
ing data, even though CrysGNN shows inferior performance
than Matformer when the ratio of training data is high. This
demonstrates that the benefits of the pretrain-finetine frame-
work can be revealed under the sparse training data setting
because the knowledge learned with the abundant unlabeled
data during the pre-training phase can be essentially trans-
ferred and adapted during the fine-tuning phase, even with
limited labeled data. Besides, the proposed CrysDiff model
consistently performs the best among the three, with all
training data ratio cases, illustrating our pre-training frame-
work’s extraordinary robustness to spare data.

Results Using Experimental Data One of the fundamen-
tal issues in material science is that experimental data for
crystal properties are scarce. Hence existing SOTA mod-
els rely on DFT-calculated data to train their parameters.
However, mathematical approximations in DFT calculation
lead to erroneous predictions compared to the actual experi-
mental values. CrysXPP has shown that pre-training helps
to remove DFT error bias when fine-tuned with experi-
mental data. Hence, we investigate whether the proposed
CrysDiff can remove the DFT error using a small amount
of available experimental data. We consider the OQMD-
EXP dataset to conduct an experiment, where we train each
pretrain-finetune model with available DFT data and differ-
ent percentages of experimental data for formation energy.
We report the MAE of different methods in Table 2. We ob-
serve, with more amount of experimental training data, all
the models minimize the error consistently. Moreover, we
note a larger degree of improvement with more amount of
experimental training data in almost all the models, and our
proposed model still achieves the lowest MAE in all cases.

Ablation Study
We perform an ablation study to investigate the influence
of some key designed components in the proposed CrysD-
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Figure 5: The prediction performance (MAE) of two prop-
erties for CrysDiff variants on the JARVIS-DFT dataset.

iff model. First, in the pre-training phase, we remove the
joint diffusion of L and F and build two separate denois-
ing models instead. The final representations for atoms in
the unit cell are calculated as the average of the representa-
tions from the two models. We name this variant as CrysD-
iff w/o joint diffusion (JD). Second, we replace the EGNN
model in the denoising model with ts non-equivariant GNN
cousin, and we name it CrysDiff w/o EGNN. Third, we try to
jointly diffuse y, F′ and L′ in the fine-tuning phase without
fixing the clean crystal structure F′ and L′ as C′. We re-
fer to it as CrysDiff w/o fixing structures (FS). Fourth, we
keep the pre-training phase unchanged but freeze the en-
coder EGNN embeddings hi for atoms and only update the
top-level MLP decoder (Eq. (4)) during the fine-tuning. We
call this variant CrysDiff w/o updating EGNN (UE). We re-
port the MAE of all these CrysDiff variants on the JARVIS-
DFT dataset in Figure 5. It clearly shows that all the key
design choices in CrysDiff play significant roles in predict-
ing the target property. Among them, freezing the atom em-
beddings learned from the pre-training phase during the fine-
tuning phase (CrysDiff w/o UE) leads to the most substantial
performance drop. This proves the pretrain-finetune archi-
tecture matters most in the success of CrysDiff because the
abundant unlabeled crystal structure data only lay the foun-
dation for learning hidden representations of the crystal, but
the limited labeled crystal property data can guide the adjust-
ments of these representations, enabling the decoder to pre-
dict the target value more easily and efficiently. We also find
that the design of joint diffusion and the EGNN encoder also
play crucial roles because they make the diffusion model fit
the distribution of crystals with the scientific guidelines.

Conclusion
To conclude, we introduce CrysDiff, a novel pretrain-
finetune framework based on diffusion models for predict-
ing crystal properties from 3D structures. Future endeav-
ors may explore the fusion of CrysDiff with efficient pre-
training techniques. In a broader sense, we could investigate
diffusion models for other graph-related applications (Song,
Zhang, and King 2023c,a,b; Zhang et al. 2023d; Liang et al.
2023a; Song, Ma, and King 2022; Zhang et al. 2023b; Ma
et al. 2023; Song, Zhang, and King 2022; Song et al. 2021b;
Song and King 2022; Yang et al. 2023b,a; Liu et al. 2022;
Chen et al. 2023a,b; Liang et al. 2023b; Zhang et al. 2023c,
2022) as well.
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