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Abstract

With the rapid development of Internet and Web techniques,
Cross-Domain Recommendation (CDR) models have been
widely explored for resolving the data-sparsity and cold-start
problem. Meanwhile, most CDR models should utilize ex-
plicit domain-shareable information (e.g., overlapped users
or items) for knowledge transfer across domains. However,
this assumption may not be always satisfied since users and
items are always non-overlapped in real practice. The per-
formance of many previous works will be severely impaired
when these domain-shareable information are not available.
To address the aforementioned issues, we propose the Joint
Preference Exploration and Dynamic Embedding Transporta-
tion model (JPEDET) in this paper which is a novel frame-
work for solving the CDR problem when users and items
are non-overlapped. JPEDET includes two main modules,
i.e., joint preference exploration module and dynamic embed-
ding transportation module. The joint preference exploration
module aims to fuse rating and review information for mod-
elling user preferences. The dynamic embedding transporta-
tion module is set to share knowledge via neural ordinary
equations for dual transformation across domains. Moreover,
we innovatively propose the dynamic transport flow equipped
with linear interpolation guidance on barycentric Wasserstein
path for achieving accurate and bidirectional transformation.
Our empirical study on Amazon datasets demonstrates that
JPEDET outperforms the state-of-the-art models under the
CDR setting.

Introduction
Cross-Domain Recommendation (CDR) has been widely in-
vestigated nowadays since it is an effective approach for
tackling data sparsity and cold-start issues in the recom-
mender system (Zang et al. 2022; Lu et al. 2015; Zhu
et al. 2021a). Leveraging useful knowledge (e.g., user-
item ratings and reviews) across domains can enhance the
model performance. Meanwhile, most current CDR mod-
els (Man et al. 2017) assume that users or items are over-
lapped across domains for knowledge sharing. However, ex-
plicit domain-shareable information (e.g., overlapped users
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or items) might be difficult to obtain, and thus, the contribu-
tions of these CDR models might be insignificant (Li, Yang,
and Xue 2009; Moreno et al. 2012; Gao et al. 2013; Choi
et al. 2022). How to obtain preeminent recommendation re-
sults without explicit domain-shareable information has be-
come an urgent problem.

In this paper, we focus on the dual-target non-overlapped
CDR problem. That is, we aim to provide source (or tar-
get) users with target (or source) items according to prefer-
ence characteristics. We further assume that both source and
target users are non-overlapped. Meanwhile, each domain
has multiple types of information, e.g., user-item ratings and
reviews information, which is commonly available in real
practice (Yi and et al 2018; Wang, Ounis, and Macdonald
2021; Chen et al. 2019; Dong et al. 2020). This problem is
rather challenging since (1) there is no explicit transferring
bridges (e.g., via overlapped users) for dual knowledge shar-
ing and (2) the existence of embedding discrepancy across
domains that strongly hurdles the model performance.

Previous CDR models cannot better resolve these chal-
lenges well, resulting in limited performance. On the one
hand, most CDR models should rely on overlapped users
or items to develop reliable representations via embed-
ding mapping and alignment mechanism (Zang et al. 2022).
However, these model performance could be severely de-
graded when explicit domain-shareable information (e.g.,
overlapped users) are not available. What is worse, different
domains with diverse kinds of items are always heteroge-
neous which always involves domain bias (Guerraoui et al.
2017; Li et al. 2021). Although commonly-used Maximum
Mean Discrepancy (MMD) is easier to be implemented for
domain adaptation without overlapped users, it fails to pro-
vide accurate matching results among complicated latent
embedding spaces (Korba et al. 2021). Meanwhile previous
papers have pointed out that adversarial training with do-
main discriminators could be unstable under some circum-
stances (Shu et al. 2018) which degrades the model perfor-
mance. On the other hand, recent CDR models (Yu et al.
2020; Li et al. 2023) still mainly focus on unidirectional
mapping from rich to sparse domains. However, unidirec-
tional mapping cannot satisfy dual-target recommendation
task which limits their potentials. Thus how to fully exploit
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accurate and bidirectional domain alignment method for
recommendation still needs more investigation.

To address the aforementioned issues, in this paper, we
propose Joint Preference Exploration and Dynamic Em-
bedding Transportation model (JPEDET) for solving dual-
target non-overlapped cross domain recommendation prob-
lem. We devise two modules in JPEDET, i.e., joint pref-
erence exploration module and dynamic embedding trans-
portation module for fusing users’ rating and review infor-
mation and share general knowledge across domains. The
joint preference exploration module fuses rating and review
information via dual autoencoder frameworks for exploit-
ing user general preference. The dynamic embedding trans-
portation module aims to share general but implicit prefer-
ence among non-overlapped users across domains. To fulfill
this task, we innovatively propose dynamic transport flow
with matching regularization and moving correction stages.
Specifically, dynamic transport flow provides an accurate
and bidirectional transformation across domains via linear
interpolation guidance on barycentric Wasserstein path, pro-
viding monotonous and straight trajectories with a constant
moving speed. Utilizing these two modules, we can enhance
recommendation performance for both domains via realiz-
ing the embedding mapping and transportation process of
non-overlapped users across domains. We summarize our
contributions: (1) We propose a novel framework consisting
of the joint preference exploration module and dynamic em-
bedding transportation module, i.e., JPEDET, for solving
the dual-target non-overlapped cross domain recommenda-
tion problem. (2) We are the first to propose accurate and
bidirectional transformation via dynamic embedding trans-
portation, for enhancing dual transferring user embeddings
across domains with theoretical guarantees. (3) Extensive
empirical studies demonstrate that JPEDET significantly
improves the state-of-the-art model.

Related Work
Cross Domain Recommendation. Cross Domain Recom-
mendation (CDR) mainly involves source and target do-
mains for solving data sparsity and cold-start problem
(Zhao and et al 2021; Khan and et al 2017; Sun et al.
2022). Existing CDR approaches have two main types,
i.e., overlapped-based methods and non-overlapped-based
methods. Overlapped-based methods assume that users or
items are overlapped across domains and regard them
as the bridge for knowledge sharing. Most overlapped-
based methods (Man et al. 2017; Zhu et al. 2022; Kang
et al. 2019) utilize linear or non-linear mapping func-
tions on the overlapped users to transfer useful informa-
tion. Some overlapped-based methods also adopt cross-
connection components (Hu, Zhang, and Yang 2018) or
orthogonal transformation unit (Chen et al. 2023; Li and
Tuzhilin 2020, 2021) to enhance the model performance.
Non-overlapped-based methods investigate the more gen-
eral and challenging case when users and items are non-
overlapped. Most non-overlapped-based methods utilize
some other auxiliary useful information (e.g., reviews) (Yu
et al. 2020; Choi et al. 2022) to enhance the model perfor-

mance with MMD (Long and et al 2015), and domain adver-
sarial training strategy (Ganin et al. 2016; Zhang et al. 2021).
Nonetheless, MMD fails to obtain reliable estimation when
domains are biased, while adversarial learning is proven to
too unstable to provide promising results (Korba et al. 2021;
Shu et al. 2018). How to provide more accurate predictions
under non-overlapped scenario still needs more exploration.
Dynamic Flow and Optimal Transport. Dynamic flow
aims to provide an accurate and invertible transformation ap-
proach between different probability distributions. Discrete
normalized flow (Rezende and Mohamed 2015; Tabak and
Turner 2013) was first been proposed for density estima-
tion with logarithm probability calculation. RTQ Chen et
al. (Richter-Powell and et al 2022) further adopted neural
ordinary equation into dynamic flow which made it sim-
pler for dual forward and backward processes. To make
the continuous trajectory become simpler for faster conver-
gence, researchers have utilized dynamic optimal transport
techniques for achieving straight and smooth results (Onken
et al. 2021; Finlay et al. 2020; Huang and Yeh 2021; Tong
and et al 2020; Yang and Karniadakis 2020; Huguet and et al
2022; Liu and et al 2023; Tong and et al. 2023). However,
these models requires either heavy computation on gradient
and matrix trace, or non-trivial estimation for domain distri-
bution, which is not practical for real applications.

Methodology
First, we describe notations. We assume there are two do-
mains, i.e., a source domain a and a target domain b. We
assume each domain have Nx

U users and Nx
V items where

x ∈ {a, b}. rx ∈ RNx
U×Nx

V is the observed rating matri-
ces in x-th domain. For the i-th user and j-th item in the
x-th domain, it consists of the tuples (ux

i , v
x
j , r

x
ij , h

x
ij). Here

rxij and hx
ij denote the rating and review information respec-

tively. Meanwhile, the source and target users/items are non-
overlapped. We aim to provide dual transfer cross domain
recommendation for non-overlapped users, i.e., providing
items in domain b to users in domain a who they did not
have rating interactions in domain b and vice versa. The task
is more general and challenging since (1) rating and review
are diverse and heterogeneous for user modeling, and (2)
no explicit domain-shareable information, e.g., overlapped
users/items, is available to serve as the bridge for knowledge
sharing. We then introduce the overview of JPEDET frame-
work. JPEDET mainly has two modules, i.e., joint pref-
erence exploration module and dynamic embedding trans-
portation module. The joint preference exploration module
aims to better exploit user general preference embeddings
according to the rating and review information. The dynamic
embedding transportation module is set to dual transform
the users across different domains. To achieve this goal, we
firstly propose dynamic transport flow with the combina-
tion of neural ordinary equation and optimal transport tech-
nique. Specifically, dynamic transport flow includes match-
ing regularization and moving correction stages to learn an
accurate and bidirectional domain adaptation approach. The
model framework is shown in Fig. 2 and we will introduce
JPEDET in details.
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Figure 1: The toy examples of dynamic embedding transportation from domain a to domain b with two-dimension data

The Framework JPEDET
Joint Preference Exploration Module. Firstly, we provide
the details of the joint preference exploration module. In
this module, we aim to combine both rating and auxiliary
review information for generating user general preference
embeddings. To start with, we first adopt the rating encoder
Ex

R(·) to obtain the user rating preference embeddings as
Ex

R(r
x
i∗) = zx

R,i ∈ Rd where d denotes the dimension.
Then we can utilize the rating decoder Dx

R(·) to recon-
struct the user-item rating information as r̃xi∗ = Dx

R(z
x
R,i).

For the single review information hx
ij , we first adopt the

sentence segmentation component Sentencizer to split hx
ij

into several individual sentences following (Pugoy and Kao
2021). After that we adopt SentenceBERT (Reimers and
Gurevych 2019) to obtain the embeddings for each sentence.
Then we average these sentence embeddings to obtain the
review representations on hx

ij . Finally, we average all re-
view representations belonging to the i-th user in domain
x as Hx

i . Likewise, we adopt the review encoder Ex
H(·),

decoder Dx
H(·) to model the user review preference embed-

dings as Ex
H(Hx

i ) = zx
H,i ∈ Rd and reconstruct the re-

view via H̃x
i = Dx

H(zx
H,i). Besides, we further exploit the

user general preference embeddings which contain both rat-
ing and review information. To fulfill this task, we concate-
nate the user review and rating information and use a full-
connected network W x(·) to obtain the user general prefer-
ence as ux

i = W x(rxi∗ ⊕ Hx
i ). Inspired by the multi-view

consensus learning strategy (Zhang, Liu, and Fu 2019), we
regard ratings and reviews information as multiple views for
representing the user tastes and characteristics. Thus we tend
to learn the neural networks Gx

R(·), Gx
H(·) for modeling the

relationship between user general and specific (e.g., rating
and review) preference embeddings. Then we propose the
preference exploration loss Lx

R as:

Lx
R =

1

N

N∑
i=1

[
||rx

i − r̃x
i ||

2
2 + ||Hx

i − H̃x
i ||

2
2

]

+
1

N

N∑
i=1

[
||zx

R,i −Gx
R(ux

i )||
2
2 + ||zx

H,i −Gx
H(ux

i )||
2
2

]
.

where N denotes the batchsize. The first and second terms in
Lx
R represent the reconstruction loss on ratings and reviews.
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Figure 2: The framework of JPEDET

The others denote the regression loss among the user general
and rating/review preference embeddings. We adopt average
weights among these terms following (Xin et al. 2022). Lx

R
will be applied in both source and target domains to explore
user general preference ua and ub.
Dynamic Embedding Transportation Module. After we
obtain the user general preference, we should consider how
to provide proper recommendation results on the j-th item
in domain b to the i-th user in domain a, and vice versa. That
is, one can directly adopt Db

R(G
b
R(u

a)) or Da
R(G

a
R(u

b))
to make the cross-domain predictions. However, we can-
not obtain satisfactory results since different domains al-
ways exist the domain discrepancy and it will lead to poor
model performance (Li et al. 2021; Yu et al. 2020). It has
been shown in Fig. 1(a) where red and green dots denote
the preference of source and target users, respectively. The
red and green dots are separated which indicates the exis-
tence of the domain discrepancy among source and target
users. Since we cannot obtain explicit bridge (e.g., over-
lapped users) for knowledge sharing, we should learn an
accurate and bidirectional embedding transportation mod-
ule across source and target domains to reduce the discrep-
ancy for solving dual-target non-overlapped CDR problem.
To fulfill this task, we propose Dynamic Transport Flow
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(DTF) in the dynamic embedding transport module. DTF is
equipped with neural ordinary equations (Chen et al. 2018;
Grathwohl and et al 2018) which further includes two stages,
i.e., matching regularization stage and moving correction
stage. DTF first adopts discrete optimal transport mecha-
nism among the user embeddings in the matching regular-
ization stage, then utilizes moving correction stage to obtain
a more smooth trajectory.

Neural Ordinary Equations of DTF. To start with, we
first introduce the neural ordinary equations of DTF which
includes the forward and backward process. Specifically, the
forward process denotes the procedure that transports the
source user embeddings ua to target domain. We utilize a
neural ordinary equation with learnable parameters f(·, θ)
to fulfill the task as ua

i,t+∆t = ua
i,t + f(ua

i,t, t;θ) ·∆t and
ua
i,T = F(ua

i,0) = ODE.forward(ua
i,0) where ua

i,t denotes
the transformed source user embedding at the t-th iteration
and ∆t denotes the step size. ua

i,T denotes the final trans-
formed user embedding from source to target domains at the
T -th iteration. Note that ua

i,0 equals to the initial i-th user
embeddings ua

i and ua
i,T denotes the final transformed user

embeddings where T denotes the total number of iterations.
We regard the whole forward moving process, i.e., F(·), as
the transferring bridge, which can be shown in Fig. 1(b) for a
more intuitive reflection. Specifically, the red and pink dots
represent the ua

i,0 user embeddings and ua
i,T transformed

user embeddings respectively. The purple line denotes the
moving trajectory from ua

i,0 to ua
i,T . Likewise, we can not

only transport user embeddings from domain a to b, but
also make reverse transport from domain b to a using back-
ward process as ub

j,t−∆t = ub
j,t − f(ub

j,t, t;θ) · ∆t and
ub
j,T = F−1(ub

j,0) = ODE.backward(ub
j,0) where ub

j,T
denotes the j-th user’s final transformed embeddings from
domain b to domain a. It is obvious that utilizing the neural
ordinary equations can satisfy the bidirectional conditions.

Matching Regularization Stage of DTF. Although we
have obtained the final transformed user embeddings ua

·,T
and ub

·,T via neural ordinary equations, they still have bias
and discrepancy among the origin user embeddings ua and
ub, respectively. Therefore, we aim to match the final trans-
formed user embeddings ua

·,T and ub
·,T with original user

embeddings ub
·,0 and ua

·,0 respectively in the matching stage
of DTF. To tackle this issue, previous methods (Chen et al.
2018; Onken et al. 2021; Richter-Powell and et al 2022; Fin-
lay et al. 2020) always adopted continuous normalizing flow
which can be formulated as below:

log P(ux
i,T ) = log P(ux

i,0)−
∫ T

0

tr(
∂f(ux

i,t, t; θ)

∂ux
i,t

)dt, (1)

where P(·) denotes the probability distribution. However, it
is difficult to obtain the probability distribution on domain
a or b, since these distributions are empirically observed
but unknown. Although one can adopt some non-parametric
methods (e.g., Kernel Density Estimation) to estimate the
probability distribution, it is sensitive to find a suitable
hyper-parameters to obtain accurate results. As the example
in Fig. 1(b), the pink dots (transformed source user embed-
dings) and green dots (target user embeddings) are still not

well aligned, when they are directly optimized via continu-
ous normalized flow and kernel density estimation. What is
worse, they are easier to obtain arbitrary mapping across do-
mains while degrading the model performance (Korotin and
et al 2019; Onken et al. 2021). To overcome such obstacles,
we further utilize the optimal transport techniques for dy-
namic domain adaptation with Theorem 1 on optimizing the
moving trajectories (Seguy et al. 2018; Makkuva and et al
2020; Huang and et al 2020; Mikami and Thieullen 2008).
Theorem 1. Given the probability densities of µa and µb in
the source and target domains respectively, the dynamic op-
timal transport problem can be formulated as follows (Fin-
lay et al. 2020; Onken et al. 2021; Tong and et al 2020):

min
(ρ,f)

∫ T

0

∫
Rd

1

2
∥f(ux, t)∥22 · ρ(ux, t)dux dt,

s.t.
dρ(ux, t)

dt
+∇ · [ρ(ux, t) · f(ux, t)] = 0, ρ(·, 0) = µa, ρ(·, T ) = µb,

where ρ(·, t) denotes the probability densities of the trans-
formed user embeddings at the t-th step. f(ux, t) has the
optimal solution as f(ux, t) = −∇λ(ux, t) where λ(ux, t)
denotes the potential function. Optimizing dynamic optimal
transportation problem is equivalent to minimize the follow-
ing two loss functions, i.e., continuity constraint loss ℓM and
path-length constraint loss ℓS as follows:

ℓM =

∫ T

0

∫
Rd

∣∣∣∣dλ(ux, t)

dt
− ∥∇λ(ux, t)∥22

∣∣∣∣ duxdt,

ℓS =

∫ T

0

∫
Rd

1

2
∥f(ux, t)∥22dux dt.

(2)

Based on Theorem 1, one should first consider path-length
constraint by figuring out the optimal mapping between the
source and target domains to determine the moving direc-
tions. However, previous methods (Onken et al. 2021; Yang
and Karniadakis 2020; Zhang, Weinan, and Wang 2018)
should involve complex gradient and trace computation dur-
ing the optimization. Meanwhile Discrete Optimal Trans-
port (DOT) with entropy regularization term (Courty and
et al 2017; Flamary et al. 2016) enjoys the benefits of pro-
viding cyclic monotonous mapping efficiently for providing
accurate matching results (Makkuva and et al 2020; Paty,
d’Aspremont, and Cuturi 2020; Villani et al. 2009). There-
fore, we adopt DOT on ua and ub as follows:

min
π∈Γ

J =

N∑
i,j=1

[πi,j · ||ua
i − ub

j ||
2
2 + ϵπi,j(log(πi,j)− 1)], (3)

where Γ = {
∑N

i=1 πi,j = 1/N,
∑N

j=1 πi,j = 1/N} de-
notes the constraints on π. πi,j denotes the coupling matrix
between ua

i and ub
j accordingly. ϵ is the balanced hyper pa-

rameter and
∑N

i,j=1 πi,j ·(log(πi,j)−1) denotes the entropy
regularization term. We can adopt Sinkhorn algorithm (Cu-
turi 2013) to solve the problem on π iteratively with time
complexity of O(N2). Note that the matching solution based
on discrete optimal transport is monotonous. We depict the
optimal matching solution between user in domain a (red
dots) and user in domain b (green dot) with blue lines in
Fig. 1(b).
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Moving Correction Stage of DTF. After we obtain the
optimal solution of coupling matrix πi,j , we achieve the
moving directions for each user. Meanwhile, we wish these
data sample embeddings will travel in straight lines to other
domains since it is the optimal trajectory for convex cost ide-
ally as illustrated in Theorem 1. However, the moving trajec-
tory depicted as the purple lines between the original and
transformed user embeddings will rapidly vary and bring
truncation error as shown in Fig. 1(b). Apparently, it will
bring about noise and lead to inaccurate transportation plans
across domains, resulting in the limited model performance
(Finlay et al. 2020; Onken et al. 2021; Tong and et al 2020).
The main reason is there always exists many possible trans-
porting solutions across domains. The models may find out
an arbitrary transporting result among all possible solutions
and make the trajectory become fluctuated with poorly con-
ditioned (Korotin and et al 2019). Previous methods (Finlay
et al. 2020; Yang and Karniadakis 2020; Onken et al. 2021)
mainly used kinetic (energy) and potential regularization to
enforce the straight trajectories. However, these constraints
only guide the model implicitly with heavy computation.
How to provide a simple but efficient way for guiding the
model to obtain straight trajectories explicitly is still chal-
lenging. To alleviate such issues, we propose moving cor-
rection stage of DTF which can provide a robust and smooth
moving trajectory. For achieving this goal, we first propose
Barycentric Wasserstein Path to represent an ideal straight
trajectory. Then we propose Linear Interpolation Guidance
to further constrain the moving trajectory.

Barycentric Wasserstein Path. To start with, we first in-
troduce the newly proposed barycentric Wasserstein path
which is the basis of moving correction stage. We first ap-
ply the matching regularization stage of DTF to exploit
the mapping solution across domains. Then we figure out
the barycentric mapping embeddings ũa

i and ũb
j across do-

mains respectively. Specifically, barycentric mapping is set
to project the user embeddings ux in domain x to another
domain via discrete optimal transport which can be com-
puted as ũa

i = Nπi∗u
a
∗ and ũb

j = Nπ⊤
∗ju

b
∗ respectively.

We then define the line segment vectors between the orig-
inal user embeddings ua

i and barycentric mapping embed-
dings ũa

i as the corresponding barycentric Wasserstein path
Wa

i in source domain. Likewise, we obtain the barycentric
Wasserstein path Wb

j in target domain which can be de-
picted as:

Wa
i := ũa

i − ua
i , and Wb

j := ũb
j − ub

j . (4)

Apparently, Wa
i and Wb

j can be viewed as an ideal straight
trajectory that transforms the user embeddings across do-
mains. We can utilize the corresponding barycentric Wasser-
stein path for optimizing our coarse trajectory during the
training stage.

Linear Interpolation Guidance. Then we will introduce
our proposed Linear Interpolation Guidance strategy on
barycentric Wasserstein path for optimizing the trajectory.
Theorem 2. Given the probability densities of µa and µb in
source and target domains respectively, data samples should
move at a constant speed for achieving optimal solutions.

Based on Theorem 2, we not only enforce the transformed
user embeddings moving towards a straight and smooth tra-
jectory, but also let them move at a constant speed to achieve
the optimal solution. Suppose that the source and target do-
mains have the probability densities of µa and µb respec-
tively, McCann and Moser proposed a simple but efficient
interpolation method αη = (1− η)µb + ηµa for mass trans-
portation where η ∈ [0, 1] and αη denotes the interpolant
(Dacorogna and Moser 1990; McCann 1997; Lei and Gu
2021; Rozen et al. 2021; Moser 1965; Gu and Yau 2020).
This method also gives geodesics in Wasserstein space with
lower transportation cost (Lei and Gu 2021; Liu and et al
2023). Based on the above observations, we first uniformly
divide the barycentric Wasserstein path Wa

i and Wb
j into T

segments as follows:

γa
i,t = ua

i + (t/T ) ·Wa
i , γb

j,t = ub
j + (t/T ) ·Wb

j , (5)

where γa
i,t and γb

j,t denote the linear interpolation points at
the t-th time step on Wa

i and Wb
j , respectively. Then we

aim to reduce the distance between the transformed user
embedding (ua

i,t, u
b
j,t) and the linear interpolation points

(γa
i,t, γ

b
j,t) simultaneously. Therefore, we propose interpo-

lation guidance loss for minimizing the pairwise distance as
below:

minLG =

N∑
i,j=1

T∑
t=1

(||γa
i,t − ua

i,t||
2
2 + ||γb

j,t − ub
j,t||

2
2). (6)

The linear interpolation on barycentric Wasserstein path is
easy to compute and provides explicit guidance for training
straight moving trajectories with a constant speed for opti-
mization. That is, interpolation guidance loss satisfies both
continuity constraint loss ℓM and path-length constraint loss
ℓS as mentioned in Theorem 1 and Theorem 2.
Model Summary. We first minimize the preference explo-
ration loss Lx

R for model pretraining in both source and tar-
get domains to obtain user preference embeddings. Then we
minimize the interpolation guidance loss LG for learning the
dynamic transport flow. After the training procedure, we can
make accurate and bidirectional cross domain predictions
via Db

R(G
b
R(F(ua))) or Da

R(G
a
R(F−1(ub))) respectively.

Empirical Study
Datasets and Tasks. We conduct extensive experiments
on the popularly used real-world Amazon datasets (Ni, Li,
and McAuley 2019). Amazon dataset has five domains,
i.e., Movies (Movies and TV), Books (Books), CD (CDs
and Vinyl), Phone (Cell Phones and Accessories), and Elec
(Electronics) which are commonly used in the cross domain
recommendation (Liu et al. 2022; Yu et al. 2020; Fu et al.
2019; Zhao et al. 2020). Specifically, we conduct four corre-
sponding tasks as (T1) Book ↔ CD, (T2) Book ↔ Movie,
(T3) Movie ↔ CD, and (T4) Phone ↔ Elec. We filter out
users whose number of interactions is less than 5 in each do-
main following (Chen et al. 2023; Zhu et al. 2021b; Yuan,
Yao, and Benatallah 2019). We keep the origin user-item
ratings and set the unobserved or not clicked as 0. To estab-
lish the non-overlapped datasets, we first figure out the over-
lapped users among the source and target domains. Then we
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Book->CD CD->Book Book->Movie Movie->Book Movie->CD CD->Movie Phone->Elec Elec->Phone
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NeuMF 4.720 4.216 3.697 3.044 3.525 3.227 3.683 3.251 4.862 4.311 4.102 3.531 4.977 4.013 4.469 3.540
DeepCoNN 4.275 4.080 3.101 2.469 2.902 2.734 2.856 2.743 4.453 4.022 3.264 2.519 4.382 3.500 3.974 3.192
VCM 4.123 3.969 2.758 2.202 2.591 2.435 2.660 2.353 4.312 3.904 3.048 2.282 4.174 3.395 3.623 3.017
NARRE 4.044 3.871 2.632 2.152 2.474 2.360 2.376 2.133 4.198 3.871 2.850 2.226 4.034 3.162 3.523 2.807
UBERT 3.811 3.723 2.140 1.964 2.152 1.935 2.093 1.854 3.666 3.579 2.284 1.895 3.772 2.943 3.153 2.501
ESCOFILT 3.756 3.694 2.115 1.863 2.080 1.859 2.101 1.792 3.710 3.608 2.326 1.953 3.741 2.893 3.130 2.465
RC-DFM 3.919 3.825 2.303 1.936 2.314 2.001 2.087 1.812 3.786 3.632 2.431 2.012 3.945 2.920 3.397 2.539
GA-DTCDR 3.762 3.704 2.146 1.881 2.159 1.803 2.032 1.768 3.754 3.615 2.243 1.920 3.713 2.851 2.962 2.278
Rec-DAN 3.502 3.267 1.968 1.725 2.086 1.874 1.922 1.703 3.521 3.349 2.005 1.866 3.620 2.658 2.742 1.973
DDTCDR 3.431 3.303 2.094 1.755 2.047 1.792 1.823 1.576 3.253 3.115 1.964 1.801 3.456 2.327 2.633 1.842
TDAR 2.918 2.483 1.835 1.583 1.903 1.665 1.731 1.459 3.042 2.856 1.909 1.774 3.195 2.032 2.521 1.734
DisAlign 2.342 2.139 1.907 1.628 1.793 1.505 1.664 1.430 2.751 2.352 1.653 1.302 3.242 2.119 2.407 1.686
CATN 2.287 1.950 1.714 1.514 1.704 1.426 1.580 1.362 2.153 1.917 1.718 1.484 3.002 1.745 2.390 1.556
CFAA 1.902 1.498 1.751 1.541 1.631 1.349 1.548 1.211 1.832 1.551 1.696 1.265 2.813 1.297 2.104 1.303
SRTrans 1.765 1.245 1.493 1.380 1.552 1.204 1.463 1.147 1.692 1.274 1.500 1.163 2.762 1.204 1.961 1.187
SER 1.456 1.031 1.420 1.047 1.382 1.050 1.465 1.087 1.435 1.040 1.396 1.059 2.798 1.173 1.975 1.148
JPEDET-B 3.685 3.539 2.023 1.810 2.264 1.713 1.982 1.770 3.684 3.538 2.045 1.832 3.616 2.700 2.205 1.531
JPEDET-M 1.714 1.352 1.585 1.396 1.521 1.299 1.606 1.187 1.626 1.203 1.680 1.296 2.869 1.258 2.047 1.361
JPEDET-A 1.596 1.168 1.551 1.261 1.469 1.188 1.524 1.125 1.507 1.163 1.400 1.180 2.954 1.385 2.121 1.423
JPEDET-M1 1.388 0.973 1.357 0.976 1.358 0.968 1.403 1.035 1.383 0.945 1.353 0.961 2.641 1.109 1.867 1.103
JPEDET-M2 1.374 0.965 1.362 0.980 1.362 0.975 1.408 1.038 1.362 0.936 1.347 0.958 2.607 1.096 1.875 1.110
JPEDET-M3 1.310 0.918 1.313 0.931 1.310 0.927 1.297 0.947 1.320 0.926 1.277 0.940 2.581 1.072 1.782 1.034
JPEDET 1.267 0.879 1.273 0.919 1.206 0.893 1.264 0.923 1.203 0.854 1.235 0.917 2.556 1.064 1.769 1.023

Table 1: Experimental results on Amazon datasets with different tasks.

randomly select users to appear in source domain and the
others in target domain, so that the users of the two domains
are non-overlapping following the setting of (Wang, Niepert,
and Li 2019). We only use (a) source user-source item rating
and review information and (b) target user-target item rating
and review information during the training phase.

Experiment Settings. We set batch size N = 128 for source
and target domains during the training. The latent dimension
of user rating/review/general preference embeddings is set
to d = 128. We set the step size as ∆t = 0.01 and the total
number of iterations as T = 30 in the moving stage of dy-
namic transport flow. We set the balanced hyper-parameter
ϵ = 0.1 in matching stage of dynamic transport flow for cal-
culating the discrete optimal transport. For all experiments,
we perform five random experiments and report the aver-
age results. We choose Adam as optimizer and set the learn-
ing rate as 0.01. We adopt the commonly-used Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) as
the evaluation metrics following previous papers (Fu et al.
2019; Zhu et al. 2022; Zhao et al. 2020).

Baseline. We compare JPEDET with the following mod-
els. (1) Single domain models: NeuMF (He et al. 2017),
DeepCoNN (Zheng and et al 2017), VCM (Cui et al. 2018),
NARRE (Chen et al. 2018), UBERT (Qiu et al. 2021), ES-
COFILT (Pugoy and Kao 2021). (2) Cross domain models:
RC-DFM (Fu et al. 2019), GA-DTCDR (Zhu et al. 2021b),
Rec-DAN (Wang, Niepert, and Li 2019), DDTCDR (Li and
Tuzhilin 2020), TDAR (Yu et al. 2020), DisAlign (Liu et al.
2021), CATN (Zhao et al. 2020), CFAA (Liu et al. 2022),
SER (Choi et al. 2022), SRTrans (Li et al. 2023).

Recommendation Performance. The comparison results

on several datasets are shown in Table 1. From them, we
can find that: (1) Single domain recommendation models
equipped with ratings and reviews (e.g., DeepCoNN and
NARRE) can obtain better results than the models which
only use ratings (e.g., NeuMF). However, they cannot pro-
vide satisfactory results since they cannot reduce the domain
bias and discrepancy. (2) Conventional cross-domain recom-
mendation models (e.g., RC-DFM and GA-DTCDR) can
obtain better results than most single domain recommen-
dation models. However, they mainly rely on the domain-
shareable information for knowledge transfer which lim-
its the performance when users are non-overlapped. (3)
Some latest cross-domain recommendation models (e.g.,
Rec-DAN, TDAR and SER) also utilize adversarial learn-
ing strategy to reduce domain discrepancy when users and
items are non-overlapped. Nonetheless, adversarial learning
with domain discriminator is unstable and hard to train in
practice (Shu et al. 2018) and thus they cannot achieve bet-
ter results. (4) JPEDET achieves more satisfied results than
the runner-up models (e.g., SER) with improvement from
7.4% to 17.9%, which proves that joint preference explo-
ration and dynamic embedding transportation can boost the
model potential.

Ablation. To study how does each module of JPEDET con-
tribute on the final performance, we compare JPEDET with
its several variants, including JPEDET-B, JPEDET-M,
JPEDET-A, JPEDET-M1, JPEDET-M2 and JPEDET-
M3. JPEDET-B only adopts the joint preference explo-
ration module during the training procedure and it di-
rectly applies Db

R(G
b
R(u

a)) or Da
R(G

a
R(u

b)) for testing.
JPEDET-M and JPEDET-A replace the dynamic embed-
ding transportation module with MMD and domain ad-
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Figure 3: The model extension and effect of hyper-parameters
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Figure 4: The T-SNE visualization of DTF in JPEDET

versarial training respectively. JPEDET-M1, JPEDET-M2
and JPEDET-M3 replace the dynamic embedding trans-
portation module with OT-Flow (Onken et al. 2021), TPR
(Huang and Yeh 2021) and Rectified Flow (Liu and et al
2023) respectively. The comparison results are shown in Ta-
ble 1. From it, we can observe that (1) JPEDET-B can-
not reduce biases and discrepancy and reaches poor perfor-
mance which indicates the significance of embedding trans-
formation across domains. (2) JPEDET-M and JPEDET-
A both achieve better results than JPEDET-B. However
MMD only provides ambiguous matching and thus it can-
not better reduce domain discrepancy. JPEDET-A is dif-
ficult to train with domain discriminator in real practice,
leading to the limited performance of JPEDET-A. (3) Al-
though JPEDET-M1 and JPEDET-M2 both achieve better
results than JPEDET-B, these methods cannot well adapt to
the scenario when the probability distribution of source and
target domains are hard to estimate then leading to limited
performance. (4) JPEDET-M3 achieves competitive results
than JPEDET while JPEDET-M3 should involve multiple
iterations for re-training. When the source and target prob-
ability distributions are rather complex, it could be difficult
for JPEDET-M3 to fulfill the rectification. (5) The above
ablation study shows that our proposed JPEDET is effec-
tive in solving the cross-domain recommendation problem.
Model Extension. We further analyse the general exten-
sion of JPEDET on the scenario that some source and tar-
get users are overlapped. Specifically, we randomly choose
5% users as overlapped across domains. The cross-domain
user-item rating and review information for the rest of non-
overlapped users are removed during the training phase
and they will be used for evaluation in the testing phase.

Then we add a new alignment loss for these overlapped
users as minLN =

∑
i∈OU ||ua

i,T − ub
i,0||22 + ||ub

i,T −
ua
i,0||22 and the total loss for domain adaptation is given as

min[LG + LN ]. We conduct the experiment on Amazon
Book ↔ Amazon Movie and report the result of RMSE,
MAE in Fig. 3(a)-(b). From that we can observe utilizing
overlapped users as domain-shareable information can fur-
ther boost the model performance. Moreover, our proposed
JPEDET even achieves the best performance against some
other baseline models, indicating that JPEDET can also be
used when users are overlapped.

Effect of hyper-parameters. We finally study the effects of
hyper-parameters ϵ on JPEDET empirically. We vary the
ϵ ∈ {0.01, 0.1, 1, 10, 100, 1000} in DTF of dynamic em-
bedding transportation module on Movie ↔ CD, Book ↔
Movie and report the results Fig. 3(c)-(d). From that we can
observe that JPEDET is not sensitive to ϵ especially when
ϵ = {0.01, 0.1, 1}. Meanwhile, smaller ϵ could lead to rel-
atively sparse and robust solutions on π. When ϵ becomes
larger (e.g., ϵ = {100, 1000}), the coupling matrix π will
become dense and thus provides less accurate matching re-
sults. Therefore, we set ϵ = 0.1 for DTF in JPEDET.

Visualization. To provide a more comprehensive insight
into JPEDET, we adopt T-SNE to visualize the origin and
transformed user embeddings on Movie ↔ CD as shown in
Fig. 4(a)-(b). We observe that DTF provides accurate and
bidirectional transformation across domains for reducing the
discrepancy, showing the efficacy of DTF in JPEDET.

Conclusion and Future Work

In this paper, we propose Joint Preference Exploration
and Dynamic Embedding Transportation model (JPEDET),
with the joint preference exploration module and the dy-
namic embedding transportation module. The dynamic em-
bedding transportation module aims to provide an accurate
and invertible embedding transformation approach between
the source and target domains. We propose a simple but effi-
cient approach namely Dynamic Transport Flow (DTF) with
matching regularization stage and moving correction stage.
Moreover, we adopt barycentric Wasserstein path with linear
interpolation guidance to obtain straight moving trajectories.
We conduct experiments to show the superior performance
of JPEDET on several tasks.
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