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Abstract

To enhance the efficacy of multi-scenario services in in-
dustrial recommendation systems, the emergence of multi-
domain recommendation has become prominent, which en-
tails simultaneous modeling of all domains through a uni-
fied model, effectively capturing commonalities and differ-
ences among them. However, current methods rely on man-
ual domain partitioning, which overlook the intricate do-
main relationships and the heterogeneity of different domains
during joint optimization, hindering the integration of do-
main commonalities and differences. To address these chal-
lenges, this paper proposes a universal and flexible frame-
work D3 aimed at optimizing the multi-domain recommen-
dation pipeline from three key aspects. Firstly, an attention-
based domain adaptation module is introduced to automati-
cally identify and incorporate domain sensitive features dur-
ing training. Secondly, we propose a fusion gate module that
enables the seamless integration of commonalities and diver-
sities among domains, allowing for implicit characterization
of intricate domain relationships. Lastly, we tackle the is-
sue of joint optimization by deriving loss weights from two
complementary viewpoints: domain complexity and domain
specificity, alleviating inconsistencies among different do-
mains during the training phase. Experiments on three public
datasets demonstrate the effectiveness and superiority of our
proposed framework. In addition, D3 has been implemented
on a real-life, high-traffic internet platform catering to mil-
lions of users daily.

Introduction
To cater to diverse user interests and business needs, mod-
ern recommendation systems are designed to handle mul-
tiple scenarios concurrently (Wang et al. 2023b), such as
the homepage and the item detail page on e-commerce plat-
forms. Data from these scenarios exhibit both commonali-
ties and diversities. On one hand, users and items overlap
across different scenarios, resulting in similar data distribu-
tions. On the other hand, users exhibit inconsistent behav-
ioral patterns when facing different scenarios, leading to dis-
tinct data distributions. Traditional approaches can be cate-
gorized into two types (Sheng et al. 2021): (1) constructing
separate models for each scenario, significantly increasing
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Figure 1: Three aspects on domain adaptation.

maintenance and training costs, and (2) simply training a
single model using data from all scenarios, thereby failing
to capture the commonalities and diversities, resulting in a
notable loss of effectiveness.

To address these challenges, multi-domain recommenda-
tion (MDR) has been proposed and has garnered significant
attention. MDR offers a solution to reduce maintenance and
training costs by employing a unified model while effec-
tively handling domain adaptation through specifically de-
signed network structures. As depicted in Figure 1, three
crucial aspects should be considered in domain adaptation:

• Domain Division. Domain division significantly influ-
ences the data distribution across different domains, thus
impacting the efficacy of MDR modeling. Existing re-
search typically uses business scenario IDs as a direct
means of dividing domains, without considering more nu-
anced approaches (Sheng et al. 2021; Jiang et al. 2022;
Shen et al. 2021). Alternatively, some studies (Zhang et al.
2022a; Chang et al. 2023) employ manually selected do-
main sensitive features for domain division. However,
these approaches require high experiential expertise and
lack dynamic updating mechanisms to adapt to novel data.

• Domain Modeling. Capturing commonalities and diver-
sities across domains presents core challenges in domain
modeling. Some works adopt the shared-specific network
paradigm (Sheng et al. 2021; Jiang et al. 2022; Shen
et al. 2021), where shared networks capture commonali-
ties, while different domains possess independent specific
structures to capture their respective diversities. Another
approach utilizes the dynamic weight paradigm (Zhang
et al. 2022a; Chang et al. 2023; Li et al. 2023b), where
weights generated from domain sensitive features are
directly applied to the backbone network. While these
methodologies have achieved promising results, they over-
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look modeling the interconnections between domains and
the intricate mechanism of integrating commonalities and
diversities.

• Domain Balance. During the training process, the diffi-
culty and progress of training differ across different do-
mains, and this inconsistency greatly hinders achieving
the optimal state of joint optimization. Presently, specific
research on domain adaptation in the joint optimization
process of MDR is lacking. Although some efforts in
multi-task learning (Wang et al. 2023a; Liu et al. 2023;
Li et al. 2023a) offer reference value (Chen et al. 2018;
Liu, Johns, and Davison 2019; Guo et al. 2018; Kendall,
Gal, and Cipolla 2018), they have not directly addressed
the complexity and specificity of domains due to different
research settings.
To tackle the aforementioned challenges related to multi-

domain recommendation, we present a unified framework
D3, focusing on three crucial aspects – Domain Division,
Domain Modeling, and Domain Balance – in domain adap-
tation in the multi-domain recommendation. Specifically, we
introduce three key components in our proposed framework.
First, a domain sensitive feature selection (DSFS) module
is designed based on the attention mechanism to automati-
cally select domain sensitive features and perform domain
division accordingly. Second, a domain fusion (DF) module
generates fusion weights for shared and specific parts, im-
plicitly capturing complex relationships among multiple do-
mains. Third, a domain balance optimization (DBO) mod-
ule calculates the loss weights of each sample based on the
domain’s complexity and specificity, effectively addressing
the inconsistency in the joint optimization process. Experi-
mental evaluations are performed on three public datasets,
demonstrating the consistent improvement of our proposed
framework across multiple backbones. Comparative experi-
ments with other similar methods further showcase the su-
periority of our approach. Importantly, this framework is de-
signed as a plug-and-play plugin, offering high extensibility
and convenience. The key contributions of our work can be
summarized as follows:
• We present a generic and easily applicable plug-in for do-

main adaptation in multi-domain recommendation. To the
best of our knowledge, this is the first work that jointly
considers domain division, domain modeling, and domain
balance in multi-domain recommendation, making it a
novel contribution to the field.

• Our framework includes a domain sensitive feature se-
lection module for domain division, and a domain fusion
module to integrate shared and specific parts and implic-
itly capture complex relationships between domains. Ad-
ditionally, we introduce a domain balance optimization
method to alleviate training inconsistency across domains
during the joint optimization.

• Evaluation experiments conducted on three public
datasets demonstrate the effectiveness of our proposed
method. Moreover, D3 has been deployed on a real-world,
large-scale internet platform, serving millions of users
daily. These results highlight the practicality and scalabil-
ity of our approach.

Preliminaries
Problem Definition
Traditional Click-through Rate (CTR) prediction models
take x including user features, item features, and context fea-
tures as inputs and predict the probability ŷ of the user click-
ing on the item. The process can be formalized as ŷ = f (x).
In MDR, a unified model is trained to serve multiple scenar-
ios simultaneously. We distinguish between the meanings of
scenario and domain in this paper for ease of understanding:

Definition 1 Scenario. Let S denote the set of senarios.
Scenarios are the criterion for partitioning when evaluat-
ing model performance, such as the commonly used slotID
in the commercial advertising platform.

Definition 2 Domain Sensitive Features.F denotes all fea-
tures in model inputs x and DF denotes domain sensitive
features, whereDF ⊆ F . Domain sensitive features are se-
lected for domain division.

Definition 3 Domain. LetD denote the set of domains. Do-
mains are the criterion for partitioning in the modeling pro-
cess and are divided based on domain sensitive features
DF . Domains can be equal to scenarios or more com-
plicated than scenarios. For example, if only the scenario
IDs (Sheng et al. 2021) used for model evaluation are se-
lected as domain sensitive features , the division between do-
main and scenario remains consistent. If more domain sen-
sitive features are chosen for domain partition, the domain
will become far more complex than the scenario (Zhang
et al. 2022a).

With the above definitions, multi-domain CTR estimation
can be represented as the following equation:

ŷi = f (xi, d fi) (1)
where ŷi is the predicted CTR of the ith sample, xi is the ith

model input, and d fi is the domain sensitive features for ith
sample. Please note that in this paper, the domain sensitive
features vary for different data samples, whereas in previous
studies, the domain sensitive features d f remain consistent
across all data samples.

Methodology
In this section, we will detail the architecture of our pro-
posed framework. An introduction to framework overview
is given in Section and we introduce the backbone network
in Section . The specific demonstration of the framework
modules is from Section to Section , and the optimization is
illustrated in Section .

Framework Overview
Figure 2 showcases the framework’s overall architecture.
There are three modules proposed in this paper: the domain
sensitive feature selection module, the domain fusion mod-
ule, and the domain balance optimization module. The do-
main sensitive feature selection module adaptively selects
domain sensitive features for different data samples and
generates a weight matrix containing domain information,
which is then utilized in the backbone network. The domain
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Figure 2: Framework Architecture.

fusion module aims to capture implicit correlations between
divergent domains, assigning weights to the shared and spe-
cific parts in the fusion process. The domain balance op-
timization module utilizes the attention matrix and fusion
weights from the first two modules to generate loss weights
on domain complexity and specificity, alleviating inconsis-
tencies during optimization.

Backbone Network
To ensure the universality of our framework, we adopt a
simple backbone network structure consisting of two main
parts: the embedding layer, and the transformation layer.
Embedding Layer. The embedding layer is a commonly
used component in recommender systems. It improves the
stability and efficiency of network operation by discretiz-
ing input features into high-dimensional sparse vectors and
mapping them to low-dimensional dense vectors:

f ′j = onehot( f j) (2)

e j = M · f ′j (3)

x = concat(e1 | e2 | . . . | en) (4)

where f j is the jth feature of F , f ′j is the discretized vector,
e j is the embedding of the jth feature, and x is the model
inputs. M is the trainable embedding matrix.
Transformation Layer. Transformation layer consists of a
feed-forward network enhancing the expressive ability and
one sigmoid function mapping the output value to CTR. The
procedures are formalized as below:

ŷ = sigmoid(σ(x ·W1
tr + b1

tr) ·W
2
tr + b2

tr) (5)

where ŷ is the predicted CTR, σ is the activation function,
and x is the model inputs.

Domain Sensitive Feature Selection Module
Domain sensitive features are essential in multi-domain rec-
ommendations because they dominate how domains are di-

vided. Former works mainly depend on experimental knowl-
edge to select these features, which require high expertise
and lots of labor cost. Furthermore, preset feature combina-
tions cannot be dynamically updated to adapt to the latest
data, which is important in modern recommendation sys-
tems. To address the above challenges, we design the domain
sensitive feature selection module (DSFS). This module is
adept at selecting domain sensitive features dynamically at
the instance level through end-to-end training. These fea-
tures are then utilized to generate weight and bias for the
backbone network to introduce domain information.

To select the domain sensitive features adaptively, we use
the following attention mechanism (Fu et al. 2019) at the
feature-level, and the selection is processed by multiplying
the attention matrix with all model inputs.:

Q,K ,V =WQ · x,WK · x,WV · x (6)

A = so f tmax(Q · K⊤) (7)
x′ = A · x + x (8)

where Q,K ,V are the query, key, and value, and
WQ,WK ,WV are the corresponding weights. A is the atten-
tion matrix, and it is multiplied with the model inputs x to
process feature selection. A residual connection is further
applied to generate the attention mechanism’s output x′.

The remain parts are designed to capture diversities based
on the domain divided by the selected domain sensitive fea-
tures. For ease of understanding, we only describe the pro-
cess of weight generation in this subsection, and the gen-
eration process of bias is the same as weight. Equation (9)
shows independent linear transformations of each feature to
reduce the mutual influence. To generate finer-grained repre-
sentations related to domain specific information, we choose
nonlinear transformations and residual connections to learn
domain diversities, as shown in Equation (10).

H = concat(FC1(x′1) | FC2(x′2) | . . . | FCn(x′n)) (9)

W spec = σ(H + σ(H ·W1
d f s + b1

d f s)) ·W
2
d f s + b2

d f s (10)

where x′j is the jth feature representation of transformed in-
puts x′. Wd f s and bd f s are the parameters of linear transfor-
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mation, σ is the activation function, and W spec denotes the
specific weight matrix.

Domain Fusion Module
To implicitly model the complex relationships between do-
mains overlooked in previous work (Sheng et al. 2021;
Zhang et al. 2022a; Chang et al. 2023), we introduce a
gate mechanism to fuse the shared and specific informa-
tion in a finer-grained perspective. Traditional fusion meth-
ods (Sheng et al. 2021) typically aggregate shared and spe-
cific information through simple addition or multiplication.
However, we argue that different domains may overlap with
shared information to varying degrees. Specifically, shared
information tends to be closer to major scenarios, and sim-
ply fusing shared and specific information will impair the
performance of other scenarios. Therefore, dynamic fusion
weights should be proposed to incorporate shared and spe-
cific information, implicitly modeling the specificity of the
current domain alongside the relationship with other do-
mains. To achieve the above objectives, we propose the do-
main fusion module (DF) to derive a vector of length two
that learns the proportional relationship between the shared
part and the specific part of the current domain in fusion.
The processes are shown below:

v = MLP(x′) (11)

gi =
exp(vi)∑1

j=0 exp(v j)
, g = [gsp, gsh] (12)

where g is the gate vector, gsp is the gate value for specific
part and gsh is the gate value for shared part. x′ ∈ Rn×dim is
the attention mechanism’s output.

The output of the DSFS represents the specific part, and
we introduce a random initialized matrix Wglob that rep-
resents the shared part. They are fused according to the
weights vector g, indicating different proportions of the
shared and specific information involved in the current do-
main.

W = (gsp ·W spec) ⊗ (gsh ·Wglob) (13)

where W spec is the output of DSFS and Wglob is the global
weight matrix. W is the weight matrix after fusion, gsp and
gsh are the gate scalars. ⊗ is the element-wise multiplication.

To integrate domain information into the backbone, the
fused weight W and bias b will be employed in the transfor-
mation layer of the backbone model, which is illustrated in
Section . The process can be formulized as follows:

ŷ = sigmoid(σ(x ·W + b) ·W2
tr + b2

tr) (14)

Domain Balance Optimization Module
The complexity of the difference in data volume and data
distribution of different domains leads to inconsistency in
the training process, reflected in the difference in training
difficulty and training progress. In the domain balance opti-
mization module (DBO), we model this inconsistency from
two perspectives: domain complexity and domain speci-
ficity. These two parts are associated with the domain sensi-
tive feature selection module and the domain fusion module.

Domain Complexity. The complexity of a domain is deter-
mined by the domain sensitive features selected. The more
complex domain is usually more challenging to train. We
utilize the entropy of the attention matrix for each data sam-
ple in the domain sensitive feature selection module to ex-
press the degree of intricacy of domains. Higher entropy of
the attention matrix means the present domain focuses on
more domain sensitive features, effectively characterizing
the complexity. We derive the degree of domain complex-
ity c with the attention matrix A in DSFS:

ci =
1
n

n∑
m=1

n∑
k=1

Ai,m,klog(Ai,m,k) (15)

where Ai,m,k denotes the element in the attention matrix in m
row, k column for ith data sample.

To achieve a discriminative weight distribution, we first
normalize the entropies and then filter the weights to en-
hance training stability. The weights corresponding to do-
main complexity are derived as follows:

c′ = F(
c − c̄
2 · σc

+
1
2

), F(x) =


l , x < l
x , l ⩽ x ⩽ u
u , x > u

(16)

wcpl = λ1 + α1 · c′ (17)

where c′ denotes the vector of normalized entropies, c̄ is the
mean value, σc is the standard deviation of c, l and u are the
lowerbound and upperbound for the output of function F(x),
λ1 and α1 are the shift and scale hyperparameters, and wcpl

is the loss weight related to domain complexity.
Domain specificity. Domain specificity expresses the de-
gree of irrelevance between the current domain and shared
information. Domains with a higher specificity often possess
less data, requiring more attention during training. Accord-
ing to the domain fusion module in Section , gsp and gsh
represent the ratios of the specific and shared parts during
fusion. We argue that a higher gsp indicates less overlap with
the shared information, so there is a necessity to emphasize
the specificity of these data.

wsp f = λ2 + α2 · gsp (18)

where wsp f is the loss weight related to domain specificity,
λ2 and α2 are the shift and scale hyperparameters tuning the
range of weights, and gsp is the gate scalar for specific parts
in the fusion module.

Optimization
We regard the entire task as a binary classification task, uti-
lizing the following formula as the optimization objective.

LCTR = wcpl
i ·w

sp f
i ·[−(yi · log(ŷi)+(1−yi) · log(1− ŷi))] (19)

The objective function is the weighted cross entropy loss
function. y and ŷ are the ground truth and prediction CTR,
and the loss function is weighted by the weight related to
domain complexity wcpl and domain specificity wsp f .
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Experiments
In this section, we will answer the following research
questions with a series of experiments:
RQ1: how does the proposed structure perform with
different backbone networks?
RQ2: how do the components perform compared to other
state-of-the-art methods?
RQ3: what are the specific effects of each component?

Experimental Settings
Dataset. We conduct experiments on three public datasets:
Aliccp (Ma et al. 2018b), Movielens-1M, and ADC (Zhou
et al. 2018). Aliccp has 3 scenarios divided by the feature
of categorical expression of goods position. For Movielens-
1M, we use the age feature to divide the whole dataset into
three different domains. ADC has 2 scenarios according to
the ads scenario. We utilize Aliccp’s standard partitioning
ratio of 5:5 for dividing the dataset into training and test-
ing sets. Moreover, an 8:2 split ratio is adopted for splitting
training and testing sets in Movielens-1M and ADC.

Backbone models and Compared Methods. To validate
the efficacy of our proposed framework, we conducted ex-
periments on two fronts. 1) we examine the compatibility
of our framework by incorporating it into various backbone
models. 2) we compare the components of our framework to
other available optional methods within the same backbone
model to demonstrate its superiority. We select the following
backbone models for the first experiment: Shared-Bottom,
MMOE (Ma et al. 2018a), M2M (Zhang et al. 2022a),
ADI (Jiang et al. 2022), STAR (Sheng et al. 2021), SAR-
Net (Shen et al. 2021); Other methods with functionalities
similar to the components for the second experiment: M2M-
WG (weight generation method in M2M) and PEPNet-WG
(weight generation method in PEPNet (Chang et al. 2023)
for weight generation; DWA (Liu, Johns, and Davison 2019)
and DT (Guo et al. 2018) for loss adaptation.

Evaluation Metrics. We assess the performance of mod-
els with AUC (Cheng et al. 2016; Guo et al. 2017) and
Logloss metrics in CTR prediction. According to previous
studies (Lian et al. 2018; Wang et al. 2021; Song et al. 2019),
even a small numerical improvement of 0.001 in AUC can
also produce significant positive benefits online.

Implementation Details. In the training phase, we use the
AdamW (Loshchilov and Hutter 2017) optimizer with β1 =
0.9, β2 = 0.999, and ϵ = 1 × 10−8. The learning rate is
set to 0.001, the batch size to 2048, and the embedding size
dim to 16. ReLU is chosen as the activation function. We
set the lower bound l as 0.1 and the upper bound u as 1. We
tune λ1, λ2, α1, and α2 from {0, 1e-1, ..., 1}, and the ratio
of introducing loss adaptation during training from {0, 0.25,
0.5, 0.75}.

Overall Performance
Compatiable experiment performance with different
backbone models (RQ1). In this subsection, we will an-
swer the RQ1 by comparing the performance of different

backbone models with and without our proposed framework.
For Shared-Bottom and MMOE, we replace their towers
with a feed-forward network equipped with D3. For M2M
and ADI, we replace their modules related to learning sce-
nario knowledge (i.e., meta unit, domain-specific networks
and shared networks) with a feed-forward network equipped
with D3. STAR and SAR-Net incorporate the partial compo-
nents we proposed (i.e., domain fusion module and the do-
main balance optimization method related to domain speci-
ficity). According to Table 1, we can observe the following
information: 1) Incorporating our framework, all backbones
demonstrated substantial improvements in performance on
both public datasets. This highlights the effectiveness of
our framework in terms of domain sensitive feature selec-
tion, integration of commonality and diversity, and allevi-
ating domain inconsistency during the training stage. Ad-
ditionally, it underscores the flexibility and universality of
our framework, which can be directly applied to most back-
bone models to enhance their performance. 2) For scenarios
with limited data, such as Scenario 2 in the Aliccp dataset,
the benefits from our proposed framework are more pro-
nounced compared to other scenarios, resulting in greater
performance improvements. This can be attributed to (i) the
more granular exploration of the domain through the do-
main sensitive feature selection module and the domain fu-
sion module and (ii) the domain balance optimization mod-
ule emphasizes data samples with high domain complexity
and specificity, alleviating the data sparsity problem.

Overall performance against different weight generation
and loss adaptation methods (RQ2). This subsection an-
swers RQ2 by comparing our proposed components to other
weight generation (M2M-WG, PEPNet-WG) and loss adap-
tation (DWA, DT) methods. In Table 2, we take ADI as the
backbone model (BM). BM+D2 is the BM with domain sen-
sitive feature selection module and domain fusion module,
and BM+D3 is the BM with all our proposed components.
Weight Generation. In the weight generation aspect, the
backbone model equipped with the domain sensitive feature
selection module and domain fusion module outperforms
BM+M2M-WG and BM+PEPNet-WG. There are two rea-
sons: (1) the attention mechanism is utilized to automati-
cally select domain sensitive features in our framework, thus
avoiding the bias of manually selecting features (i.e., miss-
ing informative features or selecting ineffective features),
and (2) the proposed gate module implicitly captures the re-
lationships between different domains by adaptively fusing
shared and specific part with discriminative weight.
Loss Adaptation. In the loss adaptation aspect, BM+D3
is superior to BM2+DWA and BM2+DT. There are three
reasons: (1) our method considers both domain complexity
and domain specificity, mitigating training inconsistencies in
joint modeling from more dimensions and perspectives that
are more in line with multi-scenario modeling settings. (2)
Previous studies do not focus on the task’s attributes but de-
rive loss weights based on the magnitude of loss and metric
values. (3) The method we propose operates at the domain-
level, and compared to other scenario-level methods, it fo-
cuses on finer-grained domain differences.
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Datasets Metrics Shared-Bottom MMOE M2M ADI STAR SAR-Net
w/o w w/o w w/o w w/o w w/o w* w/o w*

Aliccp

AUC
S#1 0.6234 0.6237 0.6236 0.6246 0.6223 0.6240 0.6214 0.6261 0.6222 0.6233 0.6237 0.6248
S#2 0.6006 0.6011 0.5921 0.6021 0.5923 0.5975 0.5995 0.6029 0.5980 0.6005 0.5905 0.5942
S#3 0.6180 0.6211 0.6185 0.6211 0.6176 0.6206 0.6175 0.6230 0.6180 0.6191 0.6196 0.6210

Logloss
S#1 0.1652 0.1649 0.1656 0.1654 0.1651 0.1650 0.1655 0.1651 0.1653 0.1651 0.1653 0.1650
S#2 0.1785 0.1781 0.1792 0.1790 0.1787 0.1786 0.1789 0.1784 0.1793 0.1781 0.1810 0.1795
S#3 0.1593 0.1588 0.1598 0.1596 0.1597 0.1591 0.1598 0.1594 0.1600 0.1600 0.1598 0.1595

Movie
lens-1M

AUC
S#1 0.7693 0.7772 0.7773 0.7845 0.7543 0.7757 0.7741 0.7830 0.7693 0.7806 0.7677 0.7744
S#2 0.7958 0.7967 0.7967 0.7977 0.7899 0.7928 0.7939 0.7992 0.7961 0.7981 0.7922 0.7971
S#3 0.7877 0.7890 0.7845 0.7879 0.7814 0.7816 0.7791 0.7909 0.7876 0.7876 0.7873 0.7924

Logloss
S#1 0.5652 0.5544 0.5548 0.5472 0.5904 0.5589 0.5589 0.5510 0.5630 0.5570 0.5732 0.5612
S#2 0.5367 0.5352 0.5358 0.5346 0.5443 0.5387 0.5387 0.5331 0.5372 0.5349 0.5418 0.5353
S#3 0.5265 0.5243 0.5302 0.5261 0.5360 0.5350 0.5350 0.5232 0.5249 0.5271 0.5273 0.5235

ADC
AUC S#1 0.5822 0.5836 0.5822 0.5838 0.5768 0.5826 0.5775 0.5840 0.5806 0.5836 0.5826 0.5847

S#2 0.5864 0.5890 0.5861 0.5884 0.5835 0.5869 0.5831 0.5888 0.5856 0.5859 0.5878 0.5893

Logloss S#1 0.2662 0.2644 0.2653 0.2657 0.2642 0.2586 0.2696 0.2676 0.2686 0.2620 0.2669 0.2616
S#2 0.2504 0.2477 0.2500 0.2495 0.2481 0.2413 0.2570 0.2511 0.2556 0.2448 0.2502 0.2484

Table 1: Experimental results for different multi-domain models without (w/o) or with (w) our framework on three public
datasets. w∗ denotes the backbone model can only incorporate the partial components we proposed (i.e., domain fusion module
and the domain balance optimization method related to domain specificity). The best results are highlighted with bold fonts.
All improvements are statistically significant (i.e., two-sided t-tests with p < 0.05).

AUC S#1 S#2 S#3

BM 0.6214 0.5995 0.6175
BM+M2M-WG 0.6230 0.5978 0.6204

BM+PEPNet-WG 0.6233 0.5996 0.6203
BM+D2 0.6248 * 0.6018 * 0.6221 *

BM+D2+DWA 0.6156 0.5942 0.6124
BM+D2+DT 0.6229 0.5952 0.6122

BM+D3 0.6261 * 0.6029 * 0.6230 *

Table 2: Experimental results for our proposed components
compared to other similar methods on Aliccp. The best re-
sults are bolded. “*” indicates the statistically significant im-
provements (i.e., two-sided t-test with p < 0.05) over the
best baseline.

Ablation Study (RQ3)
In this subsection, we conduct experiments to verify the ef-
fectiveness of each component in our proposed framework.
The variants are listed below:

• BM We select ADI as the backbone model.
• BM+D1 Backbone model with DSFS (domain division).

Replace the shared-specific networks with a transforma-
tion layer equipped with the DSFS module.

• BM+D2 Backbone model with DSFS (domain division)
and DF (domain modeling).

• BM+D3 Backbone model with all proposed components
(domain division, domain modeling, domain balance).

Through Table 3, it can be concluded that each component
has a positive effect on the backbone model, and more im-
portantly, their contributions to the prediction performance
can be accumulated. By comparing BM with BM+D1, it

Metrics BM BM+D1 BM+D2 BM+D3

AUC
S#1 0.6214 0.6240 0.6248 0.6261
S#2 0.5995 0.6000 0.6018 0.6029
S#3 0.6175 0.6209 0.6221 0.6230

Logloss
S#1 0.1655 0.1654 0.1653 0.1651
S#2 0.1789 0.1788 0.1785 0.1784
S#3 0.1598 0.1596 0.1595 0.1594

Table 3: Ablation study on Aliccp.

can be concluded that the domain sensitive feature selec-
tion module can automatically select domain sensitive fea-
tures at the instance level, assisting in domain division. The
experimental results comparing BM+D1 and BM+D2 vali-
date the effectiveness of the domain fusion module. It can
more accurately fuse shared and specific parts and implic-
itly model the complex relationships between domains. The
comparison between BM+D2 and BM+D3 confirms the va-
lidity of the domain balance optimization module. By cal-
culating loss weight based on both domain complexity and
specificity, it alleviates training inconsistencies in the joint
optimization process of different domains.

Hyperparameter Analysis
In this subsection, we visualize the effects of introducing
loss adaptation in different training processes across differ-
ent scenarios. The x-axis represents the training process to
introduce loss adaptation (e.g., 0 means introduce loss adap-
tation from the start of training, and 1.0 means do not in-
troduce loss adaptation during training), and the y-axis rep-
resents the AUC score. Figure 3 demonstrates the consider-
able influence of the timing of loss adaptation introduction
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Figure 4: Attention vector across different scenarios.

into the training process on the overall performance. The key
factor behind this could be that the loss weight is contin-
gent upon both the attention mechanism and the gate mech-
anism. However, these mechanisms are incapable of effec-
tively capturing intricate domain patterns during the initial
phases of training, let alone representing the complexity and
specificity of the domains. As depicted in Figure 3, imple-
menting loss adaptation between 50% and 75% of the entire
training duration proves to be the most productive. This is
attributable to the relative stability of both the attention and
gate mechanisms at this stage, which in turn provides crucial
data for expressing domain complexity and specificity.

Visualization
In the following subsection, we seek to exemplify the pro-
ficiency of the Domain Sensitive Feature Selection (DSFS)
module via the visualization of attention mechanisms across
a range of scenarios. As visualized in Figure 4, we present
attention mechanism heatmaps across three distinct scenar-
ios within the Aliccp dataset. The x-axis represents differ-
ent features, while the y-axis illustrates the three scenar-
ios present within the dataset. A significantly darker square
within the graph illustrates a higher attention weight. Upon
evaluation of the figure, it becomes apparent that domain
sensitive features display significant alterations across di-
verse scenarios, affirming the DSFS module’s precision in
effectually capturing these discrepancies. Furthermore, it is
important to note that Feature 18, represented by the red
box, acts as the scenario indicator, assigned a high atten-
tion weight. This noteworthy assignment further underpins
DSFS’s efficacy in selecting domain-sensitive features.

Related Work
Multi-Domain Recommendation
Multi-Domain Recommendation (Tan et al. 2021; Xu et al.
2023; Wang et al. 2022; Zhang et al. 2022b; Luo et al.
2022; Gao et al. 2023) aims to capture the commonalities
and diversities of various scenarios with a unified model. In
recent times, a multitude of relevant endeavors has emerged,

propelling the advancement of this field. STAR (Sheng
et al. 2021) proposes a star topology that divided common-
alities and diversities into shared networks and specific
networks and a partitioned normalization method trans-
forming data distributions according to their domains.
SAR-Net (Shen et al. 2021) introduces multiple experts
networks and a multi-scenario gate structure to model
capture the commonalities and diversities. ADI (Jiang et al.
2022) applies domain-specific batch normalization, domain
interest adaptation layers, and a self training strategy to
capture relationships between scenarios. On the other hand,
M2M (Zhang et al. 2022a) introduces the meta units, to in-
corporate scenario knowledge by producing the weights for
the backbone model. PEPNet (Chang et al. 2023) proposes
a Gate Neural Unit to personalized network parameters.

Loss Adaptation
In the realm of multi-domain recommendation, limited at-
tention has been given to loss adaptation. While SAR-
Net (Shen et al. 2021) introduces weighted loss for dif-
ferent samples, the focus was on addressing intervention
bias rather than mitigating the inconsistencies across differ-
ent domains during the training process. However, in other
fields, such as multi-task learning, numerous relevant stud-
ies have been conducted. Adatask (Yang et al. 2023) ap-
proaches the issue from a task-centric perspective, separat-
ing the accumulated gradients of tasks within shared param-
eters. Autoloss (Zhao et al. 2021) employs a controller struc-
ture to generate weights for multiple losses, selecting the op-
timal one through a hard selection process. Gradnorm (Chen
et al. 2018) addresses the issue by recognizing the imbal-
ance in gradients during backpropagation, considering both
the dominance of gradients and the ratio of loss reduction.
DWA (Liu, Johns, and Davison 2019) aims to facilitate equal
learning rates across tasks by calculating the relationship
between loss reduction differences among tasks at adjacent
time steps. DT (Guo et al. 2018) combines example-level
and task-level strategies with focal loss to alleviate task im-
balance, assigning greater weight to more challenging tasks.

Conclusion
In this paper, we proposed a universal and flexible frame-
work D3 to optimize the multi-domain recommendations
from domain division, modeling, and balance. Specifically,
we introduce an attention-based domain adaptation mod-
ule to divide domains automatically and capture diversities
across different domains. The fusion gate module is pro-
posed for integrating commonalities and diversities of do-
mains and implicitly characterizing the intricate relation-
ships between domains. In addition, we embarked upon an
exploration into loss adaptation, a seldom-explored area in
multi-domain recommendations, crafting weights based on
the domain complexity and specificity and helping balance
domains in the training process. Experiments on three pub-
lic datasets showcase the effectiveness and superiority of our
proposed framework. In addition, D3 has been implemented
on a real-life, high-traffic internet platform catering to mil-
lions of users daily.
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