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Abstract

The ability to combine multiple pieces of existing knowledge
to infer new knowledge is both crucial and challenging. In
this paper, we explore how facts of various entities are com-
bined in the context of knowledge graph completion (KGC).
We use composite reasoning to unify the views from different
KGC models, including translational models, tensor factor-
ization (TF)-based models, instance-based learning models,
and KGC regularizers.
Moreover, our comprehensive examination of composite rea-
soning revealed an unexpected phenomenon: certain TF-
based models learn embeddings with erroneous compos-
ite reasoning, which ultimately violates their fundamental
collaborative filtering assumption and reduces their effects.
This motivates us to reduce their composition error. Empir-
ical evaluations demonstrate that mitigating the composition
risk not only enhances the performance of TF-based mod-
els across all tested settings, but also surpass or is competi-
tive with the state-of-the-art performance on two out of four
benchmarks. Our code, data and supplementary material are
available at https://github.com/zlq147/CompilE

1 Introduction
Diverse paradigms have been developed for knowledge
graph modeling, including translation models (Bordes et al.
2013; Sun et al. 2019; Zhang et al. 2020; Lin et al. 2015),
tensor factorization models (Hitchcock 1927; Trouillon et al.
2016; Yang et al. 2015), instance-based learning (Cui and
Chen 2022), and KGC regularizers (Zhang, Cai, and Wang
2020). Given the diversity of different KGC forms, it is cru-
cial to provide a unified understanding for them. Firstly, this
aids in a deeper understanding of the principles and appli-
cation domains of each method. Secondly, it motivates new
algorithmic innovations.

To this end, we propose a novel paradigm for rep-
resenting knowledge graphs: composite reasoning. Our
motivation for adopting composite reasoning in knowl-
edge graph modeling is straightforward. We aim to lever-
age the known facts about other entities to predict the
target entity. For example, consider a knowledge graph
with composition Alphabet = Google + DeepMind + · · ·.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

If we know the fact Google, employee, Jeff Dean), we can
infer (Alphabet, employee, ?) = Jeff Dean.

The composite reasoning unifies several existing
paradigms for knowledge graph modeling, such as transla-
tion models, tensor factorization models, and instance-based
learning models; as well as knowledge graph regularization
methods like DURA (Zhang, Cai, and Wang 2020). We
show how composite reasoning works in Fig. 1. The results
provides novel insights to interpreting and comparing
different KGC models.

Through a comparative analysis of different KGC models
from the viewpoint of composite reasoning, we have dis-
covered an anomalous characteristic of tensor factorization
(TF) models: a query can be decomposed into several en-
tities that are completely unrelated to the query entity. (see
Fig. 1 and Table 1) This finding unveils a fundamental issue
with traditional factorization-based approaches, namely, the
learned embeddings may violate the collaborative filtering
assumption due to erroneous knowledge composition. More
details of the comparison can be found in Sec 3.5.

To address the erroneous knowledge composition prob-
lem in TF-based models, we propose a measure to mitigate
and reduce the caused generalization risk. In this paper, we
refer to this risk as composite risk. Measuring and reducing
the composite risk pose challenges as obtaining ground truth
for knowledge composition is hard. One of our key observa-
tion is that we can relax the definition of low-risk entities
to neighbor entities, thereby obtaining a lower bound for
the composite risk. Our experiments demonstrate a strong
correlation between prediction quality and the approximated
composition risk (see Sec 4.4).

Comparison with other KGC explanations The embed-
ding spaces of many existing KGC models are designed
according to how humans explain knowledge. For exam-
ple, translational models usually explicitly represent in-
verse/symmetric/transitive relations via embedding trans-
lations. Tensor factorization-based models conform to the
low-rank assumption of real-world knowledge. However,
these explanations are usually only from an intra-triple per-
spective, i.e. explaining a single triplet fact. The compos-
ite reasoning-based explanation provides a novel inter-triplet
view to explain the interactions among different facts.

The main contribution of this paper includes: (1) We pro-
pose a novel composite reasoning perspective to unify dif-
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Figure 1: How composite reasoning unifies and interprets
different KGC models. For each model, we show top 8 en-
tities from the perspective of composite reasoning for query
(Mexico, official language, ?) in FB15k-237. For TransE,
RotatE, and DURA, less αi indicates higher composite de-
pendency. For other models, higher αi indicates higher com-
posite dependency. For ComplEx and CP, entities that are
intuitively unrelated for humans are marked in red.

ferent KGC models. (2) We compare different modeling ap-
proaches under the framework of composite reasoning and
uncover the anomalous knowledge composition in TF-based
models. (3) We quantify how errors in tensor factorization
model’s decomposition affect its generalization capability.
We optimize the TF models by approximating and reducing
the composite risk.

2 The Composite Reasoning Framework for
Knowledge Graph Completion

In this section, we present the formulation of the KGC prob-
lem and demonstrate how it can be represented within the
composite reasoning framework.

ComplEx CP TransE RotatE CIBLE DURA

0.073 ↓ 0.084 ↓ 0.197 0.207 0.211 0.191

Table 1: Composite rationality of different models.

Knowledge Graph Completion: A knowledge graph is a
collection of facts represented as triples in the form of (head,
relation, tail), denoted as KG = (hi, ri, ti)

N
i=1. As the avail-

able facts in the knowledge graph are incomplete, a com-
mon task for evaluating knowledge graph representation is
knowledge graph completion. In this paper, we approach the
task as a link prediction problem, which involves predicting
missing values for queries of the form (h, r, ?) or (?, r, t).

The Composite Reasoning Framework In this frame-
work, we utilize the notation score(h, r, t) to represent the
plausibility of a triple, such that the prediction to (h, r, ?) is
the t with highest plausibility.

To illustrate composite reasoning, consider
the example of score(Alphabet, employee, ?) =
score(Google, employee, ?) + score(DeepMind, employ−
ee, ?) + · · ·. In order to effectively represent this composite
reasoning, it must satisfy the following condition:
∀t, score(Alphabet, employee, t) =

score(Google, employee, t) + score(DeepMind, employee, t)
(1)

Building upon this example, we formally define compos-
ite reasoning as the process of combining known facts about
other entities to model the target entity. Specifically, given
a query (h, r, ?), the composite reasoning framework is for-
mulated as:

∀t, score(h, r, t) =
∑

(hi,r,t)∈KG

αi · score(hi, r, t) (2)

Here, αi represents the weight assigned to the i-th entity hi,
and the constraint (hi, r, t) ∈ KG ensures that the prediction
relies on known facts. In Sec 3, we will demonstrate how
different models can be explained using different αi values
within this framework.

3 Unifying KGC via Composite Reasoning
In this section, we explain how to use the composite rea-
soning framework to unify different KGC models, including
TF-based models (Sec 3.1), translational models (Sec 3.2),
instance-based learning models (Sec 3.3), and the DURA
regularizer (Sec 3.4).

3.1 Explaining TF Models
Tensor Factorization (TF)-based models is a widely stud-
ied class of knowledge graph embedding models. The ba-
sic idea is to represent a triplet as a high-dimensional ten-
sor. TF models approximate the tensor by decomposing it
into the product of tensors corresponding to entities and
relations. More formally, a triple (h, r, t) is encoded into
e(h, r, t) ∈ Rd using:

e(h, r, t) = h⊗ r⊗ t (3)

where h, r, t ∈ Rd represent the tensors for the correspond-
ing head, relation, and tail, and ⊗ denotes the product in
the Euclidean space (CP(Hitchcock 1927), DistMult(Yang
et al. 2015)) or the complex space (ComplEx(Trouillon et al.
2016)). The plausibility of a fact is modeled as the sum of
values across all its dimensions:

score(h, r, t) =

d∑
i=1

e(h, r, t)i (4)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8339



Compositional View We use the composite reasoning
framework to represent TF models based on its linearity.
Specifically, for a given entity h in the knowledge graph,
we represent it as a linear combination of other entities:

h =
∑
i

aihi +∆ (5)

where ai is the weight of hi, and ∆ is the residual.
Since TF is linear, the linear decomposition of h in Eq.(5)

also determines its generalization to unknown relations. This
allows us to model the relationship between entity composi-
tion and model generalization. Specifically, we use this com-
position to transform the model’s prediction of (h, r, ?) into
a combination of known facts from the knowledge graph:

h =
∑

hi∈KG(r)

aihi +∆ (6)

where KG(r) denotes the set of entities whose re-
lation r is known in the knowledge graph, i.e.,
KG(r) = {hi|∃t, (hi, r, t) ∈ KG}.

Then, we can transform the representation of (h, r, ?) into
a combination of known facts from the knowledge graph:

∀t, e(h, r, t) =
∑

hi∈KG(r)

aie(hi, r, t) + e(∆, r, t) (7)

When explaining TF under the composite reasoning
framework, we have:

α
(TF)
i = ai s.t. h =

∑
hi∈KG(r)

aihi +∆ (8)

Representation Capability of the Composition The
ability to connect the composition of entities with model
generalization is that any query (h, r, ?) can be represented
by the facts of known entities. To establish such connec-
tions, we want to minimize the impact of the residual term
e(∆, r, t). We measure the capability of the entity composi-
tion by the residual ratio:

residual ratio = mina
||e(∆, r, t)||
||e(h, r, t)|| (9)

In large-scale knowledge graphs, the number of entities for a
given relation is always greater than the dimension of entity
embeddings (i.e. |KG(r)| > d). For example, in WN18RR,
the mean of |KG(r)| is 3722, while d is usually set to 500 or
2000. This means that we can always find a decomposition a
with residual ratio = 0 for large-scale knowledge graphs. For
smaller datasets, the effect of residual is more significant.
We will empirically analyze the residual ratio in Sec 5.3.

3.2 Explaining Translational Models
Translational Models treat r as a translation in the entity
embedding space. The score function is defined as

score(h, r, t) = ||trans(h, r)− t|| (10)

where trans(h, r) is the translated embedding of h for re-
lation r. For example, TransE (Bordes et al. 2013) defines
the translation function as transTransE(h, r) = h + r. Ro-
tatE (Sun et al. 2019) is another well-known translational

model, which consider the translation as a rotate in the com-
plex space transRotatE(h, r) = h ◦ r.

Compositional View For the query (h, r, ?), we assume
that at least one entity already contain the target t of rela-
tion r. That is, ∃hi, (hi, r, t) ∈ KG. For example, when pre-
dicting (Alphabet, employee, ?) = Jeff Dean, we assume
that a known fact about employee-Jeff Dean is already in
the training knowledge graph (e.g. (Google, employee, Jeff
Dean)). It is noteworthy that one-to-one relations cannot be
represented under such assumption.

We also assume that the high expressiveness of high-
dimensional neural networks leads to very low training loss:

∀(h, r, t) ∈ KG, ||trans(h, r)− t|| = 0 (11)

Given the aforementioned assumptions, for any
query (h, r, ?), we can establish that for all candi-
date answer t, there exists (hi, r, t) ∈ KG such that
||trans(hi, r)− t|| = 0. Therefore, we have:

score(h, r, t) = ||trans(h, r)− trans(hi, r)|| (12)

Taking it further, we use hi to express the prediction re-
sults of the translational model. According to Eq. (11) and
Eq. (12), the top-k tail entities can be represented by:

topktscore(h, r, t) =

argmin kt||trans(h, r)− trans(h(r, t), r)||
(13)

where h(r, t) denotes the head entity h whose relation r is t
in the known KG, i.e., (h(r, t), r, t) ∈ KG.

Based on Eq. (13), we use
||trans(h, r)− trans(h(r, t), r)|| to align translational
models with the composite reasoning framework:

α
(TRANS)
i = ||trans(h, r)− trans(hi, r)|| (14)

3.3 Explaining Instance-based Learning Models
CIBLE (Cui and Chen 2022) is a recently proposed knowl-
edge graph completion model based on instance-based
learning. This model utilizes prototypes modeling to repre-
sent the knowledge graph. Its scoring function for (h, r, ?)
can be formulated by:

score(h, r, t) = β
∑

(p,r,t)∈KB

fhr(p) (15)

where β is a coefficient to normalize the score, fhr(p) de-
notes the plausibility of a candidate prototype p:
fhr(p) = max(γ − ∥transr(emb(h))− transr(emb(p))∥, 0)

(16)
When explaining CIBLE with composite reasoning, we

have:
α
(CIBLE)
i = fhr(hi) (17)

3.4 Explaining the DURA Regularizer
DURA is a recently proposed effective and widely-
applicable KGC regularizer. Its basic form is:

score(h, r, t) = ||h⊗ r− t|| (18)

We noticed that its form is compatible with the transla-
tional model in Eq. (10). Thus, similar to Eq. (14), we rep-
resent DURA under the composite reasoning framework:

α
(DURA)
i = ||h⊗ r− hi ⊗ r|| (19)
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3.5 Understanding and Comparing the
Composite Reasoning of KGC Models

In the preceding discussion, we employed composite reason-
ing to elucidate various KGC models. In this subsection, we
provide a more direct understanding of composite reason-
ing by visualizing how different KGC models combine facts
from diverse entities. To illustrate this, we consider the query
(Mexico, official language, ?) from the FB15k-237 dataset
and present the top eight entities ranked by their correspond-
ing αi values.

The visualization results show that the composite reason-
ing framework provides a convincing explanation for the be-
havior of KGC models. In the majority of cases, the top enti-
ties identified by the framework align closely with human in-
tuition. For instance, the TransE model leverages facts about
Brazil and Canada, which are highly associated with Mex-
ico, as well as Spain, which shares the same official language
as Mexico. These findings demonstrate the effectiveness of
the composite reasoning framework in capturing meaningful
relationships between entities.

However, the composition results obtained by two TF-
based models, CP and ComplEx, yielded unexpected out-
comes. The top entities identified exhibited both low rele-
vance to Mexico and different tail entities, such as Turks and
Caicos Islands (TC Islands) and Macau. Intuitively, these en-
tities are unlikely to contribute to accurate predictions.

This phenomenon is not a mere coincidence. To further in-
vestigate it, we computed the average composite rationality
between the top 8 decomposed entities and the query entity
for all queries in the test set in FB15k-237. The compos-
ite rationality between two entities was measured using the
Jaccard coefficient of their corresponding triplets.

Table 1 presents the results obtained for different mod-
els. Notably, the tensor factorization-based CP and ComplEx
models displayed significantly lower average relevance val-
ues compared to the other models. In Sec 4, we will delve
into the causes behind this phenomenon, discuss its experi-
mental implications, and propose solutions.

4 Modeling and Alleviating Composition
Risk for TF-based Models

4.1 Measuring Erroneous Knowledge
Composition via Composition Risk

Under the composite reasoning framework, the prediction
regarding h is an aggregation of the known facts of other en-
tities. As a result, decomposing into certain entities is more
likely to result in generalization errors than others.

For instance, if the model decomposes Mexico as
Mexico = a1Panama + a2Macau, the predictions for
Mexico’s official language will use Macau’s facts, which
is obviously riskier than using Panama’s facts. Therefore,
we aim to identify and mitigate the impact of entities with
higher risk to generalization errors.

Furthermore, unlike the decomposition into hj, the term
e(∆, headquarters, t) cannot be represented by facts of ex-
isting entities. We posit that this residual term is also riskier.

Motivated by this, we propose the concept of composition
risk for TF models, which refers to the risk of generaliza-
tion errors caused by decomposing into riskier entities or the
residual. More formally, when representing the composition
of h, we divide the entities into two categories: reliable en-
tities and risky entities. For example, Panama is a reliable
entity for Mexico, while Macau is a risky entity. We want
the composite reasoning to rely on reliable entities. This is
illustrated in Fig. 2. Suppose for (h, r, ?), the composition of
h is:

h =
∑

hi∈reliable(h)∩KG(r)

aihi +
∑

hj∈risky(h)∩KG(r)

ajhj +∆

(20)
According to Eq. (7), to make the model’s behavior

be more consistent with entities in reliable(h), we ex-
pect

∑
hi∈reliable(h) aie(hi, r, t) to be close to e(h, r, t) and∑

hj∈risky(h) aje(hj, r, t) + e(∆, r, t) to be close to zero.
We formulate the composition risk formally as the ratio as-
sociated with the risky composition and the residual:

cra(h, r, t) =
||e(h, r, t)−

∑
hi∈reliable(h)∩KG(r) aie(hi, r, t)||

||e(h, r, t)||
(21)

By minimizing this ratio, we effectively reduce the impact
of risky decompositions and the residual.

It should be noted that for a fixed TF model, there are
multiple compositions a for h. As long as there exists an
a such that cra(h, r, t) is minimized, the model’s predic-
tion for (h, r, t) will depend maximally only on the entities
in reliable(h), which is the desired outcome. Therefore, we
take the a that minimizes the cfa(h, r, t) to define the com-
position risk.

Definition 4.1 (Composition risk). Composition risk w.r.t.
(h, r, t) is defined as:

cr(h, r, t) = min
a

cra(h, r, t) (22)

4.2 Composition Risk Leads to the Violation of
Collaborative Filtering Assumption

The concept of using tensor factorization is based on the
principle of collaborative filtering (Koren, Bell, and Volin-
sky 2009). One of the central assumption of collaborative
filtering in knowledge graphs (KGs) is that entities that share
similar relationships are likely to have similar characteristics
in other relationships as well. For example, Alphabet and
Google share the same CEO, so they are likely to have the
same headquarters.

However, we found that traditional TF models can easily
fit the training data while violating the collaborative filter-
ing assumption. The learned embeddings of similar entities
are not necessarily similar and may even be orthogonal. This
phenomenon has already been reported in (Zhang, Cai, and
Wang 2020). In this paper, we aim to further explain how
this phenomenon leads to generalization errors from the per-
spective of composite reasoning.

We illustrate this by the example in Table 2. Despite fit-
ting all the training data, the TF model does not adhere to
the collaborative filtering assumption. Although Google and
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Figure 2: Motivation of modeling and alleviating composition risk. The composite of the original TF-model may rely on risky
entities (e.g. Macau for Mexico since they are disconnected). By alleviating composite risk, we encourage the composite to rely
on reliable entities (e.g. Panama for Mexico since they are connected.)

Google [1,0] Alphabet [0,1]

CEO, Sundar Pichai [1,1] 1 (cr = 1) 1 (cr = 1)
headquarters, Mountain View [1,0] 1 (cr = 1) pred = 0

Table 2: An example of how TF models can violate the col-
laborative filtering assumption and result in incorrect pre-
dictions. The goal is to predict the value in the bottom right
corner. The values in square brackets represent the corre-
sponding tensors.

Alphabet have the same CEO, their embeddings are orthog-
onal. This results in the model not being able to predict
that Alphabet’s headquarters is in Mountain View using the
knowledge of Google’s headquarters.

We link the violation of the collaborative filtering assump-
tion to composition risk. The high expressive capacity of
high-dimensional TF models can cause the model to neglect
learning effective entity compositions. We show the compo-
sition risk of the facts in Table 2. Even though the model fits
the training data perfectly, it still has a high composition risk
because Alphabet and Google are connected. Reducing the
composition risk encourages the model to learn the associa-
tion between Google and Alphabet, and thus make accurate
predictions.

4.3 Approximating and Minimizing the Lower
Bound of Composition Risk

Minimizing composition risk requires accurate estimation of
reliable(hi) and risky(hi). In this subsection, we will ex-
plain how to estimate and optimize the lower bound of the
composition risk as an alternative to directly optimizing it.

reliable(h) is a set of entities that have highly consistent
facts with h and can be used for prediction. It is reasonable
to assume that these entities have at least one identical fact
with h from the KG.

connected(h) = {hi|h ̸= hi, ∃r1, r2, t, (h, r1, t) ∈ KG,

(hi, r2, t) ∈ KG}
(23)

Based the linearity of TF models, the lower bound of the
composition risk can be calculated in Theorem 4.2.
Theorem 4.2 (Lower bound of composition risk). Assuming
that connected(h) is a weaker restriction of reliable(h), i.e.
reliable(h) ⊆ connected(h), we have:
cr(h, r, t) ≥

mina
||e(h, r, t)−

∑
hi∈connected(h)∩KG(r) aie(hi, r, t)||

||e(h, r, t)||
(24)

We use the lower bound as the approximated composition
risk, denoted as ĉr(h, r, t). See the proof in the supplemen-
tary material.

4.4 The Impact of (Approximated) Composition
Risk on Generalization Errors

To demonstrate the relationship between composition risk
and generalization errors, we examined the correlation be-
tween the approximated composition risk and the accuracy
of predictions for entities in real-world datasets.

Specifically, we investigate the relationship between the
model’s prediction quality, as measured by the mean recip-
rocal rank (MRR), and the composition risk (CR) of queries
in the test set. We use Spearman’s rank correlation coeffi-
cient to quantify the correlation, with a stronger correlation
indicating a greater impact of ĉr on the model’s generaliza-
tion ability. Additionally, we compare this correlation to the
relationship between the frequency of an entity in the knowl-
edge graph and the MRR, as a baseline. This is because the
predictions for more frequent entities tend to be easier. The
results are presented in Fig. 3(a) 3(b). We also plot the direct
impact of ĉr on MRR in Fig. 3(c) 3(d).

It can be seen that the correlation of the approximated
composition risk ĉr is significantly stronger. This verifies ĉr
brings generalization errors. Since ĉr is a metric that can be
optimized, this motivates us to decrease it during training.

4.5 Alleviating Composition Risk in Training
Incorporating Composition Risk into TF Models To min-
imize the composition risk in TF models, we incorporate it
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Figure 3: Correlation between composition risk and prediction performance for fact in test sets. For N3 and DURA, we use
ComplEx as their base models.

as a penalty term in the training loss. Specifically, we use the
following loss function:

L = Lorigin + β
∑

(h,r,t)∈KG

ĉr(h, r, t) (25)

where Lorigin is the original loss function for the TF
model(Zhang, Cai, and Wang 2020; Lacroix, Usunier, and
Obozinski 2018), and β is the weight for the composition
risk term. We denote this model as CompilE (composition
risk alleviation)

Finding the Optimal Composition In Eq. (24), we need
to compute a to minimize ĉr. This can be done by solving
a least squares problem, as the equation is a classical linear
regression problem.

5 Effect of Reducing Composition Risk in TF
models

5.1 Setup
Baselines We compare our proposed method with sev-
eral state-of-the-art models and regularization techniques as
baselines. These include classic tensor factorization mod-
els such as ComplEx(Trouillon et al. 2016), DistMult(Yang
et al. 2015), and CP(Hitchcock 1927), regularization meth-
ods like N3(Lacroix, Usunier, and Obozinski 2018) and
DURA(Zhang, Cai, and Wang 2020), and other state-of-
the-art KGC models like TransE(Bordes et al. 2013), Ro-
tatE(Sun et al. 2019), NeuralLP(Yang, Yang, and Cohen
2017), RNNLogic(Qu et al. 2020), CIBLE(Cui and Chen
2022), and NBFNet(Zhu et al. 2021). We use ComplEx as
our default model and also incorporate traditional regular-
ization techniques to reduce parameter complexity. We refer
to our model with N3 regularization as CompilEN and with
DURA regularization as CompilED.

Dataests We use four datasets of different scales, includ-
ing two larger datasets (FB15k-237 and WN18RR), and two
smaller datastes (UMLS and Kinship).

Evaluation We use standard evaluation metrics com-
monly used in KGC, including Mean Rank (MR), Mean Re-
ciprocal Rank (MRR), and Hits@k under the filtered setting.

5.2 Main Results
The main results for the four benchmarks are presented in
Table 3 and Table 4. It can be observed that CompilE out-
performs all other baselines on smaller datasets. On larger
datasets, it also achieves better performance than other base-
lines, except for the GNN-based NBFNet. This confirms the
effectiveness of our approach.

Effect improvement across different datasets and
baselines Our method shows improvement over both DURA
and N3 on all four datasets. This suggests that traditional TF-
based models need to optimize their knowledge composition
in addition to using state-of-the-art regularizers. This is also
supported by the results shown in Fig.3.

Effect on knowledge-sparse datasets Our method
demonstrates higher effectiveness on small-scale datasets.
For example, on Kinship, the MRR of CompilEN improved
by 3.2% over other TF-based models. We believe this is be-
cause overfitting is more likely to occur on smaller datasets,
making effective composition more crucial. This supports
the value of our proposed method in knowledge-sparse sce-
narios.

5.3 Capabilities of the Composite Reasoning
In Sec 3.1, we explained that the effectiveness of the entity
decomposition framework can be assessed using the resid-
ual ratio. We plot the residual ratios of various models on
different datasets in Fig. 4. Consistent with our analysis in
Sec 3.1, the residual ratios are close to zero on large-scale
knowledge graphs, which suggests that entity decomposition
is more effective in these cases. Even on small-scale knowl-
edge graphs, CompilE effectively reduces the residual ratios
and thus improves the capability of entity decomposition.

6 Related Work
Researchers have discovered that the representation of
knowledge graphs can be improved by optimizing the way
different facts are composited. Prior studies have implic-
itly optimized the compositionality between entities by de-
creasing model complexity (Lacroix, Usunier, and Obozin-
ski 2018). More recent efforts, however, have focused on di-
rectly optimizing specific compositions between facts, such
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FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.294 - - 0.465 0.226 - - 0.501
RotatE† 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571

NeuralLp† 0.237 0.173 0.259 0.361 0.381 0.368 0.386 0.408
RNNLogic+† 0.349 0.258 0.385 0.533 0.513 0.471 0.532 0.579

CIBLE† 0.341 0.246 0.378 0.532 0.490 0.446 0.507 0.575
NBFNet† 0.415 0.321 0.454 0.599 0.551 0.497 0.573 0.666

TF-based models

DistMult 0.343 0.251 0.376 0.525 0.440 0.410 0.451 0.499
CP 0.332 0.244 0.364 0.509 0.438 0.416 0.444 0.482

ComplEx 0.350 0.259 0.386 0.531 0.460 0.429 0.471 0.521
DURA 0.371 0.276 - 0.560 0.491 0.449 - 0.571

N3 0.367 0.271 0.403 0.558 0.488 0.441 0.503 0.581
CompilED 0.372 0.277 0.408 0.563 0.495 0.453 0.510 0.579
CompilEN 0.368 0.272 0.404 0.559 0.492 0.447 0.506 0.582

Table 3: Effect on larger benchmarks.†: the results are from (Cui and Chen 2022).

UMLS KINSHIP

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RotatE† 0.744 0.636 0.822 0.939 0.651 0.504 0.755 0.932
NeuralLP† 0.483 0.332 0.563 0.775 0.302 0.167 0.339 0.596

RNNLogic† 0.842 0.772 0.891 0.965 0.722 0.598 0.814 0.949
CIBLE† 0.856 0.787 0.916 0.970 0.728 0.603 0.820 0.956
NBFNet† 0.778 0.688 0.840 0.938 0.606 0.435 0.725 0.937

TF-based-models

DistMult 0.725 0.615 0.788 0.954 0.456 0.270 0.537 0.892
CP 0.819 0.718 0.910 0.964 0.653 0.507 0.755 0.937

ComplEx 0.840 0.765 0.902 0.968 0.660 0.513 0.762 0.938
DURA 0.841 0.767 0.900 0.966 0.670 0.526 0.773 0.941

N3 0.842 0.767 0.905 0.969 0.697 0.560 0.796 0.953
CompilED 0.861 0.792 0.920 0.972 0.724 0.593 0.830 0.962
CompilEN 0.868 0.802 0.924 0.973 0.713 0.579 0.813 0.955

Table 4: Effect on smaller benchmarks. The improvement brings by CompilE is more significant.
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Figure 4: Representation capabilities of the entity decompo-
sition for model generalization.

as equal and inverse relations (Minervini et al. 2017), com-
positions between entities of the same category (Guo et al.
2015; Cao et al. 2022), and compositions between entities
under the same head-relation (Zhang, Cai, and Wang 2020).

However, these works lack a general framework to model
one-to-many fact composition and do not accurately de-
pict the connection between composition regularization and
model generalization.

7 Conclusion

This study provides a comprehensive understanding of com-
posite reasoning for KGC models, including TF-based mod-
els, translational models, instance-based learning models,
and KGC regularizers. We take advantage of the compos-
ite reasoning to uncovers a novel issue with TF-based mod-
els where irrelevant entities can be incorporated into the in-
ference process, causing generalization errors. This issue is
rooted in the models’ violation of the low-rank assumption
due to inaccurate composite learning. We propose to miti-
gate this composition risk, effectively enhancing the perfor-
mance of these models.
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