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Abstract

Offering a generic approach to obtaining both upper and
lower bounds, decision diagrams (DDs) are becoming an
increasingly important tool for solving discrete optimiza-
tion problems. In particular, they provide a powerful and of-
ten complementary alternative to other well-known generic
bounding mechanisms such as the LP relaxation. A standard
approach to employ DDs for discrete optimization is to for-
mulate the problem as a Dynamic Program and use that for-
mulation to compile a DD top-down in a layer-by-layer fash-
ion. To limit the size of the resulting DD and to obtain bounds,
one typically imposes a maximum width for each layer which
is then enforced by either merging nodes (resulting in a so-
called relaxed DD that provides a dual bound) or by drop-
ping nodes (resulting in a so-called restricted DD that pro-
vides a primal bound). The quality of the DD bounds ob-
tained from this top-down compilation process heavily de-
pends on the heuristics used for the selection of the nodes
to merge or drop. While it is sometimes possible to engi-
neer problem-specific heuristics for this selection problem,
the most generic approach relies on sorting the layer’s nodes
based on objective function information. In this paper, we
propose a generic and problem-agnostic approach that relies
on clustering nodes based on the state information associated
with each node. In a set of computational experiments with
different knapsack and scheduling problems, we show that
our approach generally outperforms the classical generic ap-
proach, and often achieves drastically better bounds both with
respect to the size of the DD and the time used for compiling
the DD.

Introduction
Solving discrete optimization problems is a challenging task
which has kept busy generations of researchers from vari-
ous fields such as Mathematics, Computer Science and and
Operations Research. Given the impressive progress in the
field of Artificial Intelligence (AI) and Machine Learning
(ML) in the recent years, it seems natural that there is an
ever-increasing amount of research that aims at leveraging
the power of ML for solving optimization approaches, see
e.g. the surveys (Bengio, Lodi, and Prouvost 2021; Kotary
et al. 2021; Cappart et al. 2023).
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The vast majority of the research dedicated to employ-
ing ML approaches for discrete optimization either deals
with speeding up exact optimization approaches, e.g. by
learning to take better branching decisions in branch-and-
bound solvers (Khalil et al. 2016), or with using ML to re-
place human-designed algorithmic decisions within heuris-
tic solution approaches. As an example, the recent years
have seen tremendous improvements in so-called Deep Re-
inforcement Learning (DRL) approaches for routing prob-
lems which nowadays come very close to the best hand-
crafted heuristics that build upon decades of research (Hot-
tung, Kwon, and Tierney 2021). While ML-based heuristics
provide high-quality primal bounds for discrete optimization
problems, there are relatively few works focusing on exploit-
ing ML techniques for obtaining strong dual bounds, despite
the fact that dual bounding mechanisms constitute a critical
ingredient in exact discrete optimization solvers.

Perhaps one of the first works aiming at strengthening
dual bounds with the help of ML was (Cappart et al. 2019)
who proposed to employ DRL to improve bounds obtained
with so-called approximate Decision Diagrams (DDs). DDs,
initially introduced for representing boolean circuits, are
layered graphical data structures that can be used for com-
pactly representing the solution space of a discrete opti-
mization problem. In particular, one can construct two types
of limited-size approximate DDs that provide optimization
bounds: Restricted DDs in which certain feasible nodes are
discarded in order to obtain an under-approximation of the
solution space and relaxed DDs in which certain nodes are
merged in order to obtain an over-approximation that pro-
vides a dual bound. As demonstrated by Bergman et al.
(2016), these bounds can be used in a purely DD-based
branch-and-bound algorithm that is able to achieve state-of-
the art performance for certain discrete optimization prob-
lems. In addition to their computational efficiency for cer-
tain problem types, one of the key benefits of DD-based ap-
proaches is that they are highly generic in the sense that in
order to apply them, one basically only needs a Dynamic
Programming (DP) formulation of the problem to be con-
sidered along with the specification of a so-called merge op-
erator. For an excellent survey of the recent advancements
in DD-based approaches for solving discrete optimization
problems, we refer to (Castro, Cire, and Beck 2022).

The quality of the bounds obtained with approximate DDs
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depends on certain heuristic decisions to be taken during the
DD compilation process. It thus seems natural to harness
the power of modern ML approaches for guiding those deci-
sions. Actually, in the above-mentioned paper, Cappart et al.
(2019) use DRL to determine the so-called variable order-
ing, that is, the order in which decision variables are con-
sidered when compiling a DD layer by layer in a top-down
fashion. They show that for a given maximum width of each
layer, the ML-supported approach can substantially improve
the bounds compared to the variable ordering heuristics con-
sidered in the literature. In two follow-up works (Parjadis
et al. 2021; Cappart et al. 2022), the authors show that de-
spite the fact that the ML-based compilation of approximate
DDs is slower than the standard approaches, this bound im-
provement leads to a significant overall speed-up of an exact
DD-based branch-and-bound solver.

In this paper, we follow this line of research by using ML
to guide taking another critical decision when compiling ap-
proximate DDs: The decision of which nodes to merge (in
case of a relaxed DD) or to discard (in case of a restricted
DD) in the case that the number of nodes in a DD layer ex-
ceeds the maximum permitted width. For the rest of this pa-
per, we refer to this decision as node selection. Given the im-
portance of this decision for the quality of the bounds, there
has been considerable research on devising good node selec-
tion heuristics. These heuristics, which will be reviewed in
more detail in the next section, rely on the information asso-
ciated with each node and typically either rely on sorting the
nodes according to some criterion and selecting the “worst”
for discarding / merging, or on based similarity of nodes.
While some existing node selection heuristics are highly
generic (e.g. since they only rely on objective function in-
formation), most of the heuristics considered in the literature
are tailored to the problem under consideration.

The main contribution of this paper is to propose a new
ML-based node selection heuristic that relies on clustering
the nodes according to the state information associated with
each node during the compilation process. One of the ad-
vantages of this approach is that it is highly generic: it does
not require specifying any problem-dependent heuristic or
strategy since it operates with feature information that can
be inferred from the DP formulation of the problem under
consideration. In a set of computational experiments with
five different discrete optimization problems, our approach
consistently outperforms the standard generic node selection
approach from the DD literature, often achieving drastically
better bounds both with respect to the size of the approxi-
mate DD and the time used for its compilation.

Also using clustering within DD-based combinatorial op-
timization, the work most closely related to ours is (Coppé,
Gillard, and Schaus 2023). The authors use state clustering
to obtain an aggregated DP problem that is exactly solved,
and the results are used to guide their DD-based Branch-
and-Bound algorithm in various ways. In particular, they use
the aggregate solution to assign scores to sort nodes in the
node selection problem, which is very different from our ap-
proach that directly uses the node clusters for merging (re-
laxed DD) and for selecting one candidate per cluster to be
kept (restricted DD).

Decision Diagrams for Optimization
A decision diagram D = (N ,A) is a layered directed
acyclic graph with node set N and arc set A. The paths
in D represent solutions to a discrete optimization prob-
lem P with a maximization objective function f and an
n-dimensional vector of decision variables x1, . . . , xn ∈
Z. The node set N is partitioned into n + 1 layers
N1, . . . ,Nn+1, where N1 = {r} and Nn+1 = {t} for a
root node r and a terminal node t. Each arc a = (u, v)
connects two consecutive layers, and is associated with a
decision d(a) representing the assignment xu = d(a). This
means that a path p = (a1, . . . , an) starting from r and end-
ing at t represents the solution x(p) = (d(a1), . . . , d(an)).
We denote the set of all r-t paths with P , and we refer to
the solutions to P represented by P with Sol(D). More-
over, each arc a has length ℓ(a) and

∑n
i=1 ℓ(ai) provides

the length ℓ(p) of path p.
We refer to D as exact if Sol(D) = Sol(P) and for each

path p ∈ P we have ℓ(p) = f(x(p)). In that case, one can
determine an optimal solution to P by determining longest
r-t path in D. An aspect limiting the practical usefulness of
exact DDs is their size which in general is exponential in the
number of variables n. To address this issue, one can resort
to smaller approximate DDs that can be used to obtain upper
or lower bounds for the solutions of P , and that can be used
e.g. in a DD-based branch-and-bound procedure.

There are two types of approximate DDs: In a restricted
DD D, one aims at considering only promising nodes and
arcs, meaning that Sol(D) ⊆ Sol(P), that is, not all fea-
sible solutions to P are represented as paths in D, and
thus, the longest path in a restricted DD provides a lower
bound to P . The second type of approximate DD, the re-
laxed DD, provides an upper bound: In a relaxed DD, we
have Sol(D) ⊇ Sol(P), that is, the set of paths may contain
paths associated with infeasible solutions to P . Regarding
the objective function value, every path a relaxed DD needs
to satisfy ℓ(p) ≥ f(x(p)), that is, the length of a path in a re-
laxed DD is assumed not to underestimate the true objective
function of its associated solution in P . In both restricted
and relaxed DDs, a common approach to control the size of
the DD is to impose a maximum width W for each layer.

As explored in detail in (Hooker 2013), DDs exhibit a
close link to Dynamic Programming (DP): From a DP per-
spective, an exact DD for a discrete optimization problem
P is very similar to the state-transition graph of a DP for-
mulation of P in which every node u is associated with a
state Su and every arc a is associated with a state transition
induced by the decision d(a) associated with a. Su is an el-
ement of the state space S; the state Sr associated with the
root node r is the so-called initial state. The state Sv of the
target node v of the arc depends on the state Su of the arc’s
source node as well as on d and is computed by the state-
transition function f(Su, d). The (possibly state-dependent)
objective function contribution of a decision is computed by
a reward function g(Su, d). Finally, the set of out-arcs of a
node u is determined by the set feasible decisions X(Su)
given state Su.

Given a DP formulation DP comprising the definition of
the state space S including the initial state Sr, the func-
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tions X , f and g, one can compile a decision diagram D
using a top-down compilation algorithm which is akin to
a forward dynamic programming algorithm which is some-
times referred to as DP by reaching (Kellerer, Pferschy, and
Pisinger 2004). A variant of such a top-down compilation
procedure is displayed in Algorithm 1. The procedure takes
a DP formulation DP , a DD D containing only the root node
and the maximum width W . Calling the algorithm with an
unlimited width W will yield an exact DD and depending on
the operation performed in line 8, it will result in a restricted
or relaxed DD.

Algorithm 1: Generic Top-Down compilation algorithm

1: procedure COMPILETOPDOWN(DP , D, W )
2: for j = 1 to n do
3: for all u ∈ Nj do
4: for all d ∈ X(Su) do
5: v = GETORADDNODE(Nj+1, f(Su, d))
6: ADDARC(u,v,d)
7: if |Nj+1| > W then
8: RELAXLAYER(Nj+1) or RESTRICTLAYER(Nj+1)

The algorithm proceeds layer by layer, starting from the
root and ending at layer n which is the last layer before the
terminal node t.

For each layer j, it iterates through all nodes Nj . For each
node u, it considers all feasible decisions, and for each fea-
sible decision d, the function GETORADDNODE is used to
determine the target node v in the next layer j + 1 by ei-
ther retrieving the node associated with the resulting state
f(Su, d) if it already exists, or by creating a new one. If
j = n, GETORADDNODE always returns the terminal node
t. The algorithm then adds an arc associated with decision d
from u to the target node v. After the creation of all nodes in
layer j + 1, it is checked whether the number of nodes ex-
ceeds W . If that is the case, the size of the layer is reduced
by discarding (in a restricted DD) or merging (in a relaxed
DD) nodes.

For the case of compiling a relaxed DD, the reduction of
the size of the layer is achieved by merging nodes, that is by
redirecting the incoming arcs of nodes that are being merged
to the merged node. This way, the partial paths ending at
the merged nodes are still available. In order to ensure that
no feasible completion of any of the merged nodes is lost,
one requires a problem-specific merge operator ⊕ for the
states associated with the two nodes, see (Hooker 2017) for
a discussion of the conditions a valid merge operator needs
to satisfy.

In any case, the node selection strategy, that is, the strat-
egy to select which nodes to discard or merge is critical for
the quality of the bounds, and thus, has been subject to some
amount of research. One of the most popular strategies is to
sort the nodes according to some criterion, to keep the W−1
most promising states and to discard (in case of a restricted
DD) or merge (in case of relaxed DD) the remaining states.
A standard and problem-agnostic criterion is to sort accord-
ing to the objective function value of the partial path ending
at each of the nodes. This approach, which we will use as a

baseline approach later, will be referred to as sortObj in the
rest of this paper. Other criteria being used for sorting the
nodes take the state information associated with the nodes
into account.

Example. Let us consider the problem of scheduling jobs
on two identical machines with the objective of minimiz-
ing the total weighted job completion time. Using standard
scheduling notation (see e.g. Graham et al. 1979), this prob-
lem can be written as P2||

∑
wjCj , and it was proven to be

NP-hard (Bruno, Coffman Jr, and Sethi 1974) and (Lenstra,
Kan, and Brucker 1977). An instance of this problem con-
sists of n jobs each associated with a processing time pi and
a weight wi.

To formulate this problem as a DP, we assume that each
stage is associated with a job i. In each stage, the decision di
corresponds to assigning job i to either machine 1 or to ma-
chine 2. Each state S can be represented as a 2-tuple (s1, s2)
where sm is the total processing time on machine m given a
set of partial assignments, and the transition function f adds
the processing time of job i to the state coordinate associated
with the machine determined by the assignment decision.
The merge operator ⊕ that is required for merging states in
a relaxed decision diagram corresponds to the element-wise
minimum of the state tuple.

In the following numerical example, we consider an in-
stance with 4 jobs with the processing times and weights
given by the vectors p = [4, 2, 5, 6] and w = [2, 3, 2, 2].

Figure 1: A relaxed DD compiled via sortObj for
P2||ΣwjCj with W = 3 gives a solution with 16% gap.

Figure 1 illustrates the construction of a relaxed DD with
a maximum width W = 3 in which the relaxation of each
layer is performed according to the standard approach that is
based on sorting the nodes according to their objective func-
tion values. Solid and dotted arcs show assignment of the job
to machine 1 and 2, respectively. The label of each arc cor-
responds to the cost contribution (corresponding to the com-
pletion time of the job under consideration). The node la-
bels correspond to the state tuple and the objective function
value (displayed in purple) of the partial solution ending at
each node. A shortest path from the root to the terminal node
is highlighted in red, its length is 40, which corresponds to
83 % of the optimal value of 48 of the instance under con-
sideration.
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One of the disadvantages of sorting-based node selection
approaches is that creating a single merged node can lead
to the fact that highly different nodes are merged which can
negatively affect the achievable dual bounds. To address this
issue, some authors aim at grouping nodes to merge accord-
ing to some similarity measure. As an example, (Horn et al.
2021) propose to use so-called collector nodes that aim at
merging states that have the same value with respect to a
labeling function. A similar approach was recently used by
(de Weerdt, Baart, and He 2021) who merge nodes based on
partitioning the state space for a single machine scheduling
problem with release times, deadlines, setup times and re-
jection. The key intuition behind these similarity-based ap-
proaches is that similar nodes should have similar set of fea-
sible completions, and thus, the risk of negatively impacting
the bounds by merging very heterogeneous nodes is smaller.

Clustering-Based Approximate DD Layers
The approach proposed in this paper can also be considered
as a similarity-based approach to node selection. However,
while the papers mentioned above rely on partitioning the
state space, e.g. by devising a labeling function, we pro-
pose to obtain sets of similar nodes by applying standard
clustering approaches to group the nodes in the layer. This
approach has several advantages: First, the modeler does
not need to specify any problem-specific labeling function
or partitioning of the state space S since the clustering al-
gorithms are problem-agnostic and use information that is
readily available in any DP-based DD compilation method.
Note, however, that it is nonetheless possible to adapt the
clustering in different ways by specifying distance functions
or selecting and tuning clustering algorithms. Second, the
approaches mentioned above rely on an “a priori” partition-
ing of the full state space S , which may lead to situations
where similar states end up in different partitions. Since our
clustering approach directly operates with the node states
in the layer Nj+1, we can assume that the grouping of the
nodes is better adapted to concrete set of nodes under con-
sideration. Third, and related to the second point, an a priori
partitioning approach may lead to many “empty buckets”,
and thus one cannot directly control the number of nodes re-
sulting from the partitioning. In our approach, we can con-
trol the size of the layer by employing clustering approaches
such as k-means clustering in which we can directly control
the width of the layer to be constructed.

Observe that our work is not the first to employ ML in
the context of node selection decisions for compiling relaxed
DDs: (Frohner and Raidl 2019) used a binary classification
approach based on information from a limited lookahead
for dynamically determining the merge heuristic to use in a
given layer. While they show that this approach can achieve
better bounds than using only a single merge heuristic, the
reliance on the lookahead results in a large computational
overhead compared to non-ML based approaches. In our ap-
proach, however, ML plays a much more direct role in sup-
porting node selection since the result of the clustering al-
gorithm can be directly mapped to the groups of nodes to be
merged.

Our clustering approach to node selection can in princi-
ple work with almost any clustering algorithm that can op-
erate with the state information defined in the DP model
for the discrete optimization model under consideration. In
this paper, and in our computational results, we resorted
to a standard implementation of a general k-means cluster-
ing algorithm, allowing us to explicitly specify the number
of clusters to be constructed. In case of relaxed DDs, the
clustering-based version of RELAXLAYER proceeds by ap-
plying the clustering algorithm to all the associated nodes in
the layer. Observe that this clustering is performed online,
that is, without any pre-trained clustering model. For each
of the k clusters, we apply the merge operation to obtain the
merged state. In the case of a restricted DD, the same clus-
tering logic applies. However, instead of applying the merge
operator, we select the node with the best objective function
value and discard the other nodes from the cluster.

Example (continued). We illustrate our clustering-based
approach for compiling a relaxed DDs for the example in-
troduced in the previous section. Now, instead of using the
classical sorting-based approach, we cluster the nodes ac-
cording to their states and merge all the nodes being present
in the same cluster. Figure 2 displays the progression of the
top-down compilation based on the clustering for the same
instance that was used in Figure 1. Specifically, the clus-
tering is obtained using the k-means clustering algorithm.
Different clusters are highlighted with different colors.

Figure 2: A relaxed DD compiled via clustering-based ap-
proach for P2||ΣwjCj with W = k = 3 gives a solution
with 8% gap.

It turns out that the clustering leads to a different config-
uration of the layers that need to be relaxed, and that the
bound is much stronger than the bound obtained with the
standard “sortObj” approach illustrated in Figure 1. The rea-
son for this is that in the sorting-based approach, one tends to
merge very different states (e.g. the states (6, 0) and (0, 6),
resulting in the merged state (0, 0)) which has a highly detri-
mental effect on the overall bound, while such a situation is
avoided in the clustering approach to node merging.

Our clustering-based node selection approach can be em-
bedded in the top-down compilation for DDs in different
ways. In the most natural variant, we assume that the number
k of clusters to be created is equal to the maximum width W
of the approximate DD. An alternative approach is to choose

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8085



k < W : Intuitively, this way the algorithm is able to explore
more diverse parts of the solution space. Moreover, choos-
ing k to be much smaller than W will lower the total running
time because the clustering will not be used in every layer
and because the final DD will be smaller.

Computational Results
In this section we present the results from computational ex-
periments with our approach (i.e. clustering-based node se-
lection) and compare it to that of minLP/maxSP approach
(i.e. sortObj) for both variants discussed above, that is, k =
W and k < W , on two knapsack problems and three ma-
chine scheduling problems. We also experimented with al-
ternative generic node-selection heuristics, e.g. random se-
lection, maxState (sort nodes in KP based on state value) and
minState (sort nodes in the scheduling problems based on
minimum value among the time-related state representation
coordinates). The obtained bounds, however, were worse
than sortObj, which is itself dominated by our proposed ap-
proach, and thus are not reported below.

We implemented the approach in the Julia programming
language (code is available here https://github.com/mnafar/
aaai2024 clustering DD), and we ran all the experiments
on a Windows machine with processor 11th Gen Intel(R)
Core(TM) i7-11800H @ 2.30GHz, 2.30 GHz and 16GB
RAM. For the clustering part of the algorithm we use the im-
plementation of the k-means algorithm from the Clustering
package in Julia, setting the number of iterations to 50. We
also performed supplementary experiments (results not re-
ported below) with alternative clustering approaches such as
k-medoids using Euclidean and squared Euclidean distance
which yielded similar average results but showed a high vari-
ance in bound quality.

Note that for every problem presented next, the reported
bounds and running times are the average bound and time
taken over all of the considered instances.

Results for the First Variant: k = W

We start with the main variant in which the number k of
clusters equals the maximum width of the approximate DD
for five different discrete optimization problems. We pro-
ceed by briefly describing the problems including a sketch
of the state information used for compiling the DD (and for
the clustering, if not mentioned otherwise), the merge oper-
ator needed for relaxation, and the instances that were used.
For each problem, we compare the primal and dual bounds
obtained with our clustering approach to those obtained with
the standard sortObj approach.

0/1 Knapsack Problem (KP). Given n items each having
weight wi and profit pi, the goal is to select items that max-
imize the total profit such that the accumulated sum of the
weights of the selected items does not exceed knapsack’s ca-
pacity C. The state for compiling the DD is a positive integer
representing the accumulated weight in a partial solution. A
valid merge operator consists in choosing the state with min-
imum weight. The experiments are run on 100 KP instances
with 200 items per instance taken from (Pisinger 2005). Fig-
ure 3 shows the average bounds obtained by sortObj versus

those of obtained by clustering-based node selection using
different maximum widths 3(a), and their running times in
millisecond 3(b). In this figure, the green line displays the
optimum, the red curves show the lower and upper bounds
using sortObj and black dashed curves represent clustering-
based node selection results. As becomes clear from the
graphs of the experiments, our approach outperforms sor-
tObj in all aspects, meaning it provides substantially better
primal and dual bounds with smaller W (implying a smaller
DD) and in a smaller computation time. Moreover, experi-
menting with instances involving 10000 items even with a
maximum width of 1000, did not show scalability issues.
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Figure 3: Clustering vs sortObj (KP)

Multidimensional Knapsack Problem (MKP). MKP is
a generalization of the KP with multiple capacity con-
straints. An instance of MKP with n items and m dimen-
sions has a capacity bound (C1, · · · , Cm) for every dimen-
sion in which pi and (w1

i , · · · , wm
i ) are profits and weights

for an item i. Similar to KP, the goal is to select a subset of
items whose sum of profits is maximized such that all the ca-
pacity bound constraints hold simultaneously. In a DP model
used for compiling a DD for the MKP, a state is an m-tuple
in which every coordinate is the sum of the corresponding
coordinates of the weights of the items that have been se-
lected in the partial solution associated with the node under
consideration. A valid merge operator for MKP is to take the
element-wise minimum of the coordinates of the states to be
merged. In case of the MKP, we did not only use the state
coordinates as features for the clustering, but also the ob-
jective function value associated with each node in the DD.
All experiments are run on 10 MKP instances where each
of them is a 5-dimensional MKP with 100 items (taken from
(Chu and Beasley 1998), which are publicly available in OR-
LIBRARY at http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/
mknapinfo.html). Figure 4 shows the average bounds ob-
tained by sortObj versus those obtained using clustering-
based node selection for different maximum widths and their
running times in milliseconds. Once again, it turns out that
the clustering-based approach yields much better bounds
than the standard sortObj approach both in relation to DD
size and to the bound quality obtained in a certain amount of
time.

Sum of Cubed Job Completion Times on Two Identical
Machines P2||ΣC3

j . In an instance of P2||ΣC3
j , we are

given n jobs, a job i has processing time pi, and the goal
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Figure 4: Clustering vs sortObj (MKP)

is to schedule these jobs on two identical machines such that
the sum of the cubes of the job completion times is mini-
mized. Every state in a DD for P2||ΣC3

j is a 2-tuple where
each of its coordinates represents the partial completion time
on the corresponding machine. The merge operator is sim-
ilar to that of MKP where a merged state is comprised of
element-wise minimum of coordinates over the states that
are being merged. The instances we ran the experiments
on are from the set wt100 that is publicly available from
the OR-LIBRARY (http://people.brunel.ac.uk/∼mastjjb/jeb/
info.html). They were originally generated for weighted tar-
diness jobs on a single machine problem. We took the pro-
cessing time of the jobs from the instances, and thus, the
experiments are run on 125 instances each of which con-
tains 100 jobs. The results of using sortObj and clustering-
based node selection for building the corresponding DDs are
shown in Figure 5. For this problem again the difference be-
tween performance of the two approaches is significant, i.e.
the approach that uses clustering-based node selection is by
far superior to the other approach.

Total Weighted Job Completion Time on Two Identical
Machines P2||ΣwjCj . A description of this problem is
given in the example in Section . Once again, we performed
experiments with the 125 instances from the OR Library
used in P2||ΣC3

j . Figure 6 shows the performance of the two
approaches for different maximum widths and their running
times. We see that for this problem too our approach once
again outperforms the baseline approach sortObj.

Weighted Number of Tardy Jobs on a Single Machine
1||ΣwjUj . Given n jobs where pi, wi, and di are process-
ing time, weight, and due date of a job i, the goal is to sched-
ule the jobs on a single machine such that the weight of the
tardy jobs is minimized. The state representation consists in
a positive integer which measures the total processing time
of the scheduled early jobs. Moreover, a merge operator for
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Figure 5: Clustering vs sortObj (P2||ΣC3
j )

1||ΣwjUj consists in choosing the state with minimum pro-
cessing time. We experimented with 25 large instances with
500 jobs from (Tanaka, Fujikuma, and Araki 2009). Average
bound and running time of different approaches ran on these
instances are shown in Table 1, and they confirm the superi-
ority of our approach which yields much better bounds with
much smaller DD widths compared to the sortObj approach.
Moreover, we performed experiments to obtain alternative
bounds. We formulated the problem as MILP with positional
variables (Keha, Khowala, and Fowler 2009). In our compu-
tational experiments, after an imposed time limit of 2 min-
utes, Gurobi found feasible solutions for all tested instances,
but the both the primal and the dual bounds were far inferior
than those obtained with our approach in less than one and
two seconds (see Table 1).

clustering-based sortObj IP (Gurobi)
W=100 W=500 W=100 W=1000

time primal time primal time primal time primal time primal
0.1 1.36 1.3 1.2 0.1 2.00 1.1 1.45 120 2.76

time dual time dual time dual time dual time dual
0.1 0.14 1.6 0.30 2 0.05 2.7 0.23 120 0.06

Table 1: Clustering, sortObj, and IP for 1||ΣwjUj

Results for the Second Variant: k < W

Next, we will present the variant in which the number of
clusters k is smaller than maximum width W of the ap-
proximate DD to be compiled. We illustrate the results for
0/1 Knapsack problem, noting that the results for the other
problems follow similar patterns. In the following figures,
the solid red curves represent DDs built using the sortObj
node selection heuristic, and the dashed colorful curves cor-
respond to DDs compiled using clustering-based node se-
lection; every dashed curve corresponds to a specific maxi-
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Figure 6: Clustering vs sortObj (P2||ΣwjCj)

mum width W and different number k of clusters (e.g. W =
200, k ∈ {10, 50, 100, 200} or W = 50, k ∈ {10, 20, 50}).

Figure 7 shows the bounds obtained from using different
W and k for the KP. In the sortObj case, the maximum width
is set to W = 3000, and for the clustering approach different
maximum widths (W ∈ {10, 50, 100, 200, 500}) and differ-
ent numbers k of clusters are taken.
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Figure 7: Clustering (dashed curves for various k) vs sortObj
(red curves for W = 3000) for KP.
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Figure 8: Comparison of the sizes of the DDs

Figure 8 compares the sizes and the bounds for DDs com-

piled using clustering-based node selection and sortObj for
KP. The range of maximum widths considered in the exper-
iments is [10, 500].
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Figure 9: Comparison of the times of the DDs

Figure 9 shows how changing the parameters for sortObj
and clustering-based node selection affects their running
times and compares these running times and the bounds for
the two approaches applied on the KP. The ranges of the
maximum widths are [10, 1000] and [10, 500] for sortObj
and clustering-based node selection, respectively. The rea-
son for having a larger W for sortObj is that we wanted to
have the maximum running times be roughly equal for the
sake of the readability of the graphs.

As it is clear in Figures 7, 8, and 9, making the choice to
set k < W does not decrease the quality of the bounds ob-
tainable via DDs compiled using clustering-based node se-
lection in a noticeable amount. However, it indeed decreases
the required size and running time for providing bounds that
are close to those achievable in the first variant. Therefore,
this variant outperforms the sortObj baseline even more than
the first variant in which k = W .

Conclusion
In this paper, we propose a novel and generic ML-based ap-
proach for node selection in the top-down compilation of
approximate DDs that relies on clustering nodes according
to their state information. We evaluated two variants of this
approach on five different problem types, showing that it is
able to provide substantially stronger bounds in relation to
the size of the DD and the time needed to obtain the bounds
than a similarly generic sorting-based approach that is com-
monly used in the literature.

It is important to note that all the results presented in this
paper were obtained with a standard k-means clustering ap-
proach. In general, if one aims at improving the performance
for certain problems, a natural approach would be to experi-
ment with alternative clustering approaches, and to tune the
parameters of the selected clustering approach.

Another natural extension of this research is to evaluate
our approach within an exact DD-based solution approach,
e.g. DD-based branch-and-bound. This would allow to see if
the bound improvements achieved in this paper translate to a
speed-up for exactly solving discrete optimization problems
with DDs.
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