
Parallel Empirical Evaluations: Resilience despite Concurrency

Johannes K. Fichte1, Tobias Geibinger2, Markus Hecher3, Matthias Schlögel2

1 AIICS, IDA, Linköping University, Sweden
2 KBS Group, Institute for Logic and Computation, TU Wien, Austria

3 Massachusetts Institute of Technology, USA
johannes.fichte@liu.se, {tobias.geibinger,matthias.schloegel}@tuwien.ac.at, hecher@mit.edu

Abstract

Computational evaluations are crucial in modern problem-
solving when we surpass theoretical algorithms or bounds.
These experiments frequently take much work, and the sheer
amount of needed resources makes it impossible to execute
them on a single personal computer or laptop. Cluster sched-
ulers allow for automatizing these tasks and scale to many
computers. But, when we evaluate implementations of com-
binatorial algorithms, we depend on stable runtime results.
Common approaches either limit parallelism or suffer from
unstable runtime measurements due to interference among
jobs on modern hardware. The former is inefficient and not
sustainable. The latter results in unreplicable experiments.
In this work, we address this issue and offer an acceptable bal-
ance between efficiency, software, hardware complexity, reli-
ability, and replicability. We investigate effects towards repli-
cability stability and illustrate how to efficiently use widely
employed cluster resources for parallel evaluations. Further-
more, we present solutions which mitigate issues that emerge
from the concurrent execution of benchmark jobs. Our exper-
imental evaluation shows that – despite parallel execution –
our approach reduces the runtime instability on the majority
of instances to one second.

Introduction
“Can we please do science again” was a highly provoca-
tive catchphrase by Karem Shakallah in a roadmap talk on
his perspective for the next stage of research in solving
the Boolean satisfiability (SAT) problem (Sakallah 2023).
He argued that we have a limited understanding of certain
aspects of modern solving techniques, that understanding
could be purely driven by empirical competitions catching
for slightly improving another technique or implementation,
and that models and techniques are too complex for grasp.

Still, not just in the SAT community but also in various
combinatorial-solving communities (Bartocci et al. 2019),
empirical evaluations are at heart and certainly a tedious part
of scientific work (McGeoch 2012). Competitions (Bartocci
et al. 2019), obtaining conclusions about practical algo-
rithms (Elffers et al. 2018), verifying proof traces (Heule and
Kullmann 2017), or estimating the benefits of some new al-
gorithm or technical improvement (Müller-Hannemann and

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Schirra 2010) all require in-depth, breadth, and reliable em-
pirical experiments. The sheer amount of required resources
often makes it impossible to execute the experiments on a
single computer. Instead, we use clusters of computers for
experiments, which cannot be used exclusively by single
persons or groups due to cost-efficiency demands. In engi-
neering, complexity, but there referring to complicatedness,
is often seen as an enemy of reliability (Geer et al. 2003).
On computer clusters, the complicatedness of the underly-
ing architecture results in drawbacks and pitfalls during op-
erations for combinatorial solving. Parallel executions, di-
verging runtimes of instances and solvers, shared resources
(network or local), and scheduling efficiency are drawbacks
that might result in unreliable execution and hence irrepro-
ducible empirical results.

In engineering (Henderson and Patel 2002; Force 1993),
standardization is used to control complicatedness and re-
duce uncontrolled parts’ potential side effects. Unfortu-
nately, to our knowledge, no standardization on configur-
ing hardware and software is available in the combinatorial-
solving community. Mistakes are common and far from
easy to spot. Reliable empirical experiments on individ-
ual systems and performance improvements are well inves-
tigated (Georgiou et al. 2014; Beyer, Löwe, and Wendler
2019; Vercellino et al. 2023), and tools focusing on pre-
cise measurements, repeatability, optimal throughput, and
efficiency of participating systems are available for instal-
lation (Beyer, Löwe, and Wendler 2019). However, a pri-
mary disadvantage of most dedicated tools is exclusive and
very permissive system access, which is often hard to estab-
lish or requires dedicated resources for a limited number of
people resulting in extremely unsustainable and inefficient
usage of computer hardware.

Still, cost efficiency demands from a management or re-
source availability perspective, and sustainability require
that resources are shared among many applications. High-
performance computing (HPC) data centers have resources
in the form of computation clusters widely available and are
often very well maintained (Green500 Authors 2022; Strev-
ell et al. 2019). Fortunately, when applying the right restric-
tions, widely developed technology from HPC environments
can be highly useful for computational experiments in vari-
ous combinatorial communities. Furthermore, these systems
allow us to “maximize” throughput and use of shared re-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8004



sources to increase cost efficiency and sustainability.

Contributions Our contributions are as follows:

1. We investigate foundations for stable, parallel, repeat-
able empirical evaluations of computational experi-
ments. In contrast to previous works, we focus on the
memory design in modern computer architecture, which
is a significant factor for variation and irreproducibility.

2. We provide a novel technique for stable and repeatable
experiments. Our main ingredient cache partitioning en-
ables us to eliminate issues that arise from modern mem-
ory architectures. To our knowledge, cache partitioning
as yet not been suggested for repeatable experiments.

3. Our overall approach fits well into standard high-
performance computing (HPC) environments, which en-
courages the use of modern cluster environments that was
previously seen highly problematic for replicability.

Related Works. McGeoch (2012) provides extended in-
sights into setting up experiments. Müller-Hannemann and
Schirra (2010) discuss basic algorithm engineering. Re-
searchers developed techniques to optimize scheduling
within computer clusters (Bridi 2018; Galleguillos et al.
2019). The influence of hardware efficiency and measure-
ments is well established (Georgiou et al. 2014; Beyer,
Löwe, and Wendler 2019; Vercellino et al. 2023). Unfortu-
nately, effective, specialized resource limitation and bench-
marking tools are often impracticable. Highly effective tools
such as BenchExec (Beyer, Löwe, and Wendler 2019) must
be installed deep into the system, require very permis-
sive access, maintaining of different user groups, and ad-
ditional finetuning. These tools often require to run an en-
tire benchmarking toolchain making testing and debugging
hard. Complications of modern hardware on combinatorial
solvers have been studied (Koopmann, Hähnel, and Turhan
2017; Fichte et al. 2021). For algorithm configuration, pit-
falls in empirical work have been previously identified (Boc-
chese et al. 2018) and best practices to avoid them sug-
gested (Eggensperger, Lindauer, and Hutter 2019). Recent
initiatives on reproducible research focus on transparent re-
search artifacts with Guix, a system that enables the build-
ing of computation environments (Vallet, Michonneau, and
Tournier 2022). Software heritage projects aim at preserv-
ing source code and binaries from research software (Cosmo
and Zacchiroli 2017; Audemard, Paulevé, and Simon 2020).
Experiments on SAT solver development over time and
hardware influence exist in the literature (Biere et al. 2023;
Fichte, Hecher, and Szeider 2023).

Basics of Empirical Evaluations
Empirical evaluations are crucial to modern combinatorial
problem-solving when we reach beyond theoretical algo-
rithms or bounds. In practice, we often start from an algo-
rithm, its implementation, and hypotheses about the behav-
ior of the implementation on certain inputs, called instances,
and variations of parameters of the implementation, called
configurations. Then, we decide on a design for the exper-
iment (DOE), which contains information about the imple-

mentations, configurations, instances, and appropriate mea-
sures to evaluate our hypotheses.

Requirements. When we execute a designed experiment,
we need to ensure basic principles to obtain a scientific
value. Two fundamental principles are repeatability and
replicability. The goal of repeatability is to obtain the same
result on the same computer reliably. When repeating a com-
putation of a solver in the same configuration and with the
same instances multiple times, we aim for the identical out-
come assuming that the algorithm is deterministic. Repli-
cability or recomputability encompasses the principle that
we can obtain the same results confidently given the origi-
nal artifacts and comparable hard- and software. To ensure
these fundamental principles, we are interested in determin-
istic hard- and software platforms for our evaluation, which
ensures repeatability and allows us to estimate random er-
rors or study non-deterministic algorithms.

Structuring Work. Since tasks can frequently take up
much work and the sheer amount of required resources
makes it often impossible to execute the experiments on a
single computer, we need scalability of the experiment to
multiple computers. Therefore, we describe the instances,
solvers, and conditions under which the experiment will be
expected to run successfully. We call the execution of this
description a job, which is more generally an allocation of
resources for a specific amount of time to execute a dedi-
cated task. A job may consist of one or more steps, each
consisting of one or more process using one or more CPUs.
Later, we refer to a process by exactly one sequential pro-
cess. This leads us to automated job execution for which we
can formulate natural requirements. Since we are interested
in fast scheduling and high throughput of our experiments,
the system needs to be resource efficient. We need stability
and resilience of the job execution system, as we are inter-
ested in repeatability and recomputability.

Automating Job Execution. Many different job execu-
tion systems exist (Wasik et al. 2016; Stump, Sutcliffe, and
Tinelli 2014; Beyer, Löwe, and Wendler 2019; Ceri et al.
2003; Chappell 2004; Ibsen and Anstey 2018; Luksa 2017).
In academia, the largest available computation power is in
high-performance computing (HPC) (Eijkhout 2022), which
aims for fast, energy efficient, highly parallel, scalable, and
isolated execution of computation tasks (Sterling 2002; Jette
2012; Green500 Authors 2022). HPC uses a set of loosely
coupled computers acting as one system, called cluster, to
solve problems that are computationally hard or highly data
intensive. A single computer of a cluster is usually referred
to as a node. Since the size of a cluster can reach thou-
sands of machines, tools for maintainability, scalable clus-
ter management, and job scheduling are necessary. Today’s
most popular software is the Simple Linux Utility for Re-
source Management (SLURM) (Yoo, Jette, and Grondona
2003; Auble et al. 2023), which contains a scheduling com-
ponent where jobs describe all details of the execution. For
combinatorial experiments, we require certainty and repli-
cability (Beyer, Löwe, and Wendler 2019), which is quite
orthogonal to the HPC’s goals of fast and energy efficient

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8005



Type Issue Example Reference Solution

System Kernel Unexpected performance behavior (Kocher et al. 2019) Monitor
CPU throttling System heats up and reduces performance (Fichte et al. 2021) Governors
CPU load Use of desktop operating systems (Li, Ding, and Shen 2007) Avoid
Overhead Use of virtual machines (Joy 2015) Avoid

Design of Documentation Options not documented (McGeoch 2012) Care
Experiment Measurements core/wall time; virtual/actual memory (Fichte et al. 2021) Decision

Slow runs Proof logging onto slow storage (Beyer, Löwe, and Wendler 2019) shm
Parameters Incomparable parameters (McGeoch 2012; Bocchese et al. 2018) Care

Execution Isolation Resource enforcement fails (Beyer, Löwe, and Wendler 2019) cgroups
Memory Memory paging (Beyer, Löwe, and Wendler 2019) cgroups
Slow I/O Read/write large amounts of data (IBM Team 2021) shm
Cacheline Cores share L2/L3 cache This paper resctrl

Table 1: Listing of pitfalls when running experimental evaluations.

computation and complex storage and memory architectures
in clusters. Thus, we need to be extremely careful when set-
ting up and running an experiment.

Common Pitfalls. When we are interested in reliable em-
pirical evaluations of combinatorial experiments, we can
easily run into numerous pitfalls. We list standard issues that
frequently show up in combinatorial evaluations and provide
references to the literature for more details in Table 1. We
separate these issues into three types depending on the type
or phase when these issues show up: the system, the design
of experiment, and the execution.

Measuring. We use the Linux performance events sub-
system (perf) to measure runtime, memory, and extended
system events (Zijlstra, Molnar, and de Melo 2009; Weaver
2013). perf is part of the Linux kernel and allows to mon-
itor both hardware and software at a fairly low overhead.
For example, perf stat -e cycles -I 1000 cat /dev/urandom

> /dev/null measures the number of cycles, which state
the CPU frequency at the time of measurement and can
be used to quickly spot performance degeneration originat-
ing in varying CPU frequency. The CPU frequency is usu-
ally adjusted by Linux performance governors (Brodowski
et al. 2016). Specialized tools for stressing the system, test
initial system performance, and detect silent performance
degeneration of hardware are sysbench (Zaitsev, Kopy-
tov et al. 2020), stress-ng (Haleem et al. 2023), and
GeekBench (Primate Labs Inc. 2023). Discrepancies in
hardware parameters can be spotted using tools such as
hardinfo (Pereira et al. 2023), dmidecode (Cox et al.
2023), and lshw (Vincent et al. 2023). Resource limits
can be enforced in multiple ways, BenchExec (Beyer,
Löwe, and Wendler 2019) runsolver (Roussel 2011),
and cgroups. We suggest to use a combination of
runsolver and cgroups, as BenchExec can often-
times not be employed in HPC environments. Using the
above mentioned tools, we can tune the system to the best
possible performance. If we run a purely sequential execu-
tion where each process has exclusive access to the entire
hardware and avoid solving multiple instances, many issues
can be circumvented (Beyer, Löwe, and Wendler 2019).

Resource Enforcement. Many issues that we presented
above can already be circumvented by a precise setup of
SLURM in combination with a dedicated job generators and
resource monitoring tooling (Auble et al. 2023). In SLURM,
we can isolate each individual executions of a solver, config-
uration, and instance using the cgroupsv1 plugin (Jack-
son and Lameter 2006; Auble et al. 2022). The cgroups
restriction makes sure that the solver sees only the as-
signed amount of resources (cores and memory) and cores
are pinned automatically when the cluster scheduler spawns
a task on a node. We can strictly restrict cores by set-
ting the ConstrainRAMSpace option. Then, no oversubscrip-
tion is possible. When we enforce memory limits using the
ConstrainRAMSpace option in the cgroups plugin, the kernel
triggers an out-of-memory if the memory limit is reached
and terminates processes.

Concurrency and Resilience
Literature on empirical evaluation oftentimes suggests to run
experiments sequentially where each process has exclusive
access to an entire computer to obtain stable and repeatable
conditions (Beyer, Löwe, and Wendler 2019; Eggensperger,
Lindauer, and Hutter 2019). However, there are two major
shortcomings from this approach (i) even in a sequential set-
ting, runtime variations can be significant; and (ii) cost, time,
and resource-sustainable perspective still calls for solving
multiple instances in parallel since modern computers pro-
vide many cores. In this section, we tackle these shortcom-
ings and stabilize hardware for replicable sequential runs
and enable concurrent execution of processes by a resilient
configurations for cluster schedulers. We take advantage of
the maximum available resources resulting in the execution
of multiple processes.

Before addressing the shortcomings, we need to identify
its origins. The major contributing effect is modern hardware
architecture, which is fairly complicated. While modern pro-
cessors consist of many physical cores access to certain parts
of the memory might be fast, slow, or vary in terms of speed.
Combinatorial solvers and, in particular, SAT solvers have
extensive memory requirements and demand fast memory
access (Zhang and Malik 2004; Fichte et al. 2023b). Over

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8006



90% of the runtime of a modern SAT solver attributes to
a process called unit propagation, which depends on fast
memory access. Less known but well-studied is the effect of
memory cachelines and mapping between virtual and physi-
cal memory to memory bound combinatorial solvers for the
same reasons (Hölldobler, Manthey, and Saptawijaya 2010;
Fichte et al. 2020). Now, a process may have access to a
small or large portion of the memory depending on the cur-
rent resource allocation. If multiple sequential solvers are
executed in parallel, runtime can degenerate quickly.

Processors and Memory Access. To design stable and re-
peatable experiments, we need to revisit basics in hardware
architecture and to understand the structure of modern CPUs
and the interconnection to memory. Modern computer archi-
tecture employs a hierarchy between different types of mem-
ory (Hennessy and Patterson 2011). While this is folklore for
persistent (HDD, SDD) and volatile memory (DRAM), it is
less known that modern processors have only indirect ac-
cess to dynamic random-access memory (DRAM). The rea-
son can be found in the balance between access time and
costs. For DRAM, we see access times of around 10−8s.
But the effective base frequency of a modern processor is
around 2GHz, i.e., one cycle per 5 · 10−10s. In consequence,
DRAM is not fast enough to provide data to a processor core.
To avoid wasting cycles, faster but more expensive memory
is employed, which are called registers. A register provides
the fastest way to access data but is usually very small. For
example, floating point registers of modern processors con-
tain 512 bit. Behind the registers, we find caches that are
slower but larger and still faster than DRAM. Usually, there
are multiple cache levels, L1, L2, and sometimes L3 or L4
that occupy notable parts of the actual microchip. In prac-
tice, the amount of data that can be reused from a cache
(hit) plays an important role in performance. Decreasing the
access time to a cache also boosts performance. However,
before a core can access data from DRAM, data needs to
be fetched into the cacheline. Here, latency matters since a
core that runs out of required data needs to wait for the data
(stalling). In addition, cores have usually fast access only to
a certain part of the DRAM meaning that DRAM on the lo-
cal socket is faster accessible than DRAM that is wired to
another socket. This memory design is called non-uniform
memory access (NUMA) and present in multicore architec-
tures (Majo and Gross 2011).

Example 1. Fig. 1 provides a hierarchical map of involved
elements in the memory hierarchy of a system with an Intel
E5-2650v4. The system contains two physical sockets and 12
physical cores on each socket. Hyperthreading is disabled.
The L1 cache can store 32KB data, the L2 256KB data, and
L3 30MB data. In total, the 12 cores per socket share one L3
cache and from the specification we see that each socket has
4 memory channels (Intel 2016).

Memory-aware Concurrent Job Scheduling
Many modern combinatorial solvers are extremely mem-
ory demanding. Additionally, modern computer architec-
ture consists of multiple processor cores, fairly slow main
memory, and elaborate memory cachelines to compensate

Figure 1: Illustration of a memory cacheline obtained by
lstopo. We see a hierarchical map of the key computing
elements, e.g., NUMA memory nodes, shared caches, pro-
cessor sockets, and processor cores (threads).

Figure 2: Cache partitioning of the L3-cache from Figure 1.

for slow memory access. Hence, when aiming for repeat-
able experiments, we need to eliminate unpredictable mem-
ory access patterns. Furthermore, when solving multiple in-
stances in parallel, we cannot accidentally block caches and
memory, given that modern cores are notably faster than
access to the memory. Therefore, we construct configura-
tions for resilient shared caches and ensure that non-uniform
memory access (NUMA) is reduced to a minimum.

L3 Cache Partitioning. In most modern CPUs, the L3
cache is shared among cores on the same socket. For exam-
ple, assume that two processes, solver A and solver B with
an input instance each, are executed on separate cores but
share a cache, e.g., the L3 cache. If solver A runs in a highly
memory-intensive phase, solver A might cause all shared
caches that are also allocated by solver B to be evicted. Then,
the performance of solver B will very likely be reduced.
Even worse, if solver B is also highly memory-intensive,
both solvers frequently evict each others required caches.
In consequence, when running multiple independent jobs
on a single socket, we observe severe interference among
the cache allocations of those jobs. We tackle this issue by
cache partitioning, which is a technique to make the cache
behavior more predictable. Therefore, we partition a shared
cache into smaller parts to which so-called dedicated re-
source groups or dedicated cores have access. Figure 2 il-
lustrates an equal partition of the L3-cache from Example 1.
We assign a process to a resource group by cache access pat-
terns. For replicable empirical evaluations, we define non-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8007



overlapping parts for all concurrently running processes and
ensure exclusive access to the cache. Thereby, we enforce
more predictable memory access, which in turn makes the
runtime more repeatable. Note that on certain hardware, the
shared caches may have shared buffers or queues that are
not part of the partitioning. In addition, smaller caches re-
sult in increased cache misses, but more predictable runtime
among varying runs.

Enforcing Non-overlapping Caches. Recent Linux ker-
nel implementations allow to manually partition shared
caches by a hardware control component called Resource
Control (resctrl) (Yu, Luck, and Shivappa 2023; Intel
2023). L3 cache partitioning allows us to manually assign
a particular part of the cache memory to a specific process.
Unfortunately, we cannot simply split the cache into equal
parts or directly assign equal parts to particular cores. In-
stead we construct a bitmask consisting of ℓ-bits that spec-
ify how to divide the cache. The number of available bits
depends on the actual hardware, namely, the physical limi-
tation to access the cache, so-called cache ways (Intel 2019).
When the mask is set, a set of cores has access to a defined
part. To that end, let n, ℓ > 0 be positive integers represent-
ing the number n of cores on the socket and the number ℓ
of L3 cache ways, respectively. Now, the idea is that we par-
tition the L3 cache in chunks corresponding to the greatest
common divisor of n and ℓ. Therefore, let gcd(n, ℓ) refer
to the greatest common divisor, which is the largest posi-
tive integer dividing both integers, between n and ℓ. This
results in k := gcd(n, ℓ) partitions of the cache and each of
those partitions will be assigned n/ gcd(n, ℓ) cores. In more
technical details, we set the bitmask as follows. For each in-
teger 1 ≤ j ≤ n representing the core number, we define the
bitmask b1 . . . bm where

bi :=

{
1 if (i−1)·n

gcd(n,ℓ) ≤ j < i·n
gcd(n,ℓ) ,

0 otherwise.
(for i ≤ ℓ)

The full cache bitmask is the disjunction of the bitmasks of
its assigned CPU cores. Whenever a core from a partition is
used by a process (solver), the corresponding cache partition
is made available. By ensuring that processes get assigned to
non-overlapping partitions of cores, we also ensure that the
L3 cache partitions do not overlap.
Example 2. Consider the memory layout as given in Exam-
ple 1 and illustrated in Figure 1. When splitting the L3-cache
according to our formula above, we obtain 4 partitions con-
taining 5 cache ways and 3 cores each.

Core Binding and Memory Channels. Since our cache
partitioning relies on assigning solvers to particular CPU
cores, we bind running processes to a specific set of cores
within a cluster node (Auble et al. 2023). Furthermore, the
available memory channels can have a notable impact on the
runtime of solvers on the exact same instances. Hence, we
limit the number of running solvers by the available memory
channels to avoid over-committing.

Scheduling in Practice
In the previous section, we introduced concepts and methods
to reduce uncertainty in memory access. To obtain actual

replicable experimental results, we need to put these insights
into practice. Therefore, we establish the technical part next.

Scheduling Jobs. We employ the HPC software SLURM
to describe and execute experiments. We compile a detailed
description of the job that is supposed to run on the cluster
including a configuration to enforce resource requirements
and wrappers to monitor occupied system resources. The
cluster scheduler enables us directly to isolate runs, memory,
and avoid oversubscribing of resources when properly con-
figured. However, cache-aware scheduling is not available
and needs additional effort. We employ the runsolver
tool (Roussel 2011) to sample memory consumption and
patiently terminate a processes hierarchy that rans out-of-
memory allowing the solver to write logs and statistics. In
addition, we measure the performance of the task during the
execution with perf. We provide our cluster configuration
including additional comments in the supplement (Fichte
et al. 2023a). We use ansible to deploy configurations
onto nodes (Hochstein and Moser 2017).

Cache Partitioning. We implement caching partitioning
by the resctrl Kernel feature. To set up the configura-
tion for each SLURM job, we utilize a custom prolog script,
which runs prior to the job execution. The script creates a
new restcrl resource group, sets the bitmask according
to the formula stated in the previous subsection, and inserts
the identifier of the process into that group. Child processes
inherit the same restrictions. For more technical details on
resctrl we refer to the documentation (Intel 2023).

Memory Channels as Resource. Since memory channels
can have notable practical impact on the runtime of solvers
on the exact same instances, we introduce additional fea-
tures for the cluster scheduler to enable exclusive access
also for memory channels. We establish this by a fairly un-
conventional approach. SLURM (gres.conf) allows to spec-
ify and configure arbitrary Generic RESources (GRES). On
each compute node, we employ GRES and create mock-
resources, which we call memch-resources. These are sim-
ply empty files memch0, memch1, . . . in the directory /opt/gres/.
GRES recognizes these files as resources. Then, a job can re-
quest the virtual resource and the SLURM scheduler ensures
that no other job accesses our “memch-resources” while it
is in use. In the configuration, we link the resource to cores
according to the hardware system specification. If a user re-
quests the number of cores that matches with a multiple of
the number of cores in a memch-resource, SLURM assigns
all cores according to the memch-resource. Thereby, we en-
sure that job is given cores consecutively according to the
memch-resource definition, which we produce according to
the memory layout of our hardware. We can employ a simi-
lar approach for caches, if we want to take L2 or L3 caches
into our consideration. For simplicity, also a combined re-
source capturing stable behavior for cacheline and memory
channels can be defined. In that way, users can request both
cachelines or memory channels as a resource.

Example 3. For our system described in Section and Fig-
ure 1, we have consecutively numbered cores with L1 and
L2 caches each, one shared L3 cache on each socket and 4

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8008



NodeName=node[1-11] Name=memch File=/opt/gres/memch0

↪→ Cores=0,1,2

...

Figure 3: Scheduler cacheline-aware configuration.

memory channels, where 4 memory modules are present for
each socket. So technically, we could assign set a memch-
resource as each multiple of 24/4/2 = 3. However, we align
the resource with our L3-cache partitioning from Example 2.
Hence, we define the memch-resource memch0 on cores 0–2
and so on (see Figure 3 for details).

Task/affinity. To ensure consistent and stable memory ac-
cess, we employ the task/affinity plugin in SLURM,
which allows us to bind a task to a specific set of cores within
a node (Auble et al. 2023). Using extended parameters,
we can schedule tasks according to present NUMA regions
-cpu-bind=rank_ldom or specify specific orders in which we
aim to use cores. Regardless of specific requests in jobs, the
plugin ensures that a default memory placement policy is
enforced automatically according to the requested cores.

Storage Access. In order to avoid issues that originate in
slow I/O and that file system caches are employed implicitly,
which might slow down or speed up a subsequent execution
of on the same instance, we provide each task with an indi-
vidual copy of the input via the shared memory file system
(/dev/shm). We copy input files into the temporary folder and
provide the actual input from the shared memory file system.

Copperhead. The construction of jobs and configurations,
which implement the techniques established above, can eas-
ily consume precious time for each experiment. In prac-
tice, we aim at reducing user overhead as much as possible.
Therefore, we designed a tool, called copperbench1 that
generates jobs from compact descriptions for experiments.
Our tool creates a script that wraps the experimental task to
resolve the aforementioned issues. After the job finished, we
collect data, parse the output files, and compile a summary.
In that way, experimenting can uniformly be automatized.

Experiments: Concurrent Benchmarking
To investigate effects on memory caches and the execution
of solving multiple instances in parallel, we design a small
experiment. Binaries, instances, and logs can be found in the
supplement (Fichte et al. 2023a). We consider SAT solvers,
which are known to be highly memory demanding. For sim-
plicity, we take the solvers glucose (Audemard and Si-
mon 2019), CaDiCaL (Biere 2019) and Kissat (Biere
et al. 2020), which show robust performance. We take the in-
stance set set-asp-gauss, which contains 200 publicly avail-
able SAT instances from a variety of domains with increas-
ing practical hardness (Hoos et al. 2013). We set timeouts
to 900s and memouts to 10GB, as we are primarily inter-
ested in repeatability on individual instances. In contrast,
SAT competitions restrict the runtime to 5,000s and mem-
ory to 128GB, however, require certificates.

1github.com/tlyphed/copperbench

relative time diff [%]
#cores CaDiCaL Kissat glucose

off on off on off on

1 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
2 0.1 7.0 -0.0 7.5 0.1 4.8
4 -1.6 4.6 -1.7 5.1 -0.7 3.4
6 -3.5 – -3.6 – -1.6 –
8 -5.3 -0.4 -5.4 -0.3 -2.6 -0.4

24 -18.9 – -20.1 – -11.0 –

Table 2: Relative wall clock time difference to baseline for
each solver in relation to 1 occupied core. Lower is better.
on/off refers to cache partitioning. We mark unavailable runs
due to bitmask limitations by “–”.

Solver toff[h] ton[h] ∆[%]

CaDiCaL 8.38 9.01 7.0
Kissat 6.55 6.87 4.7
glucose 7.12 7.69 7.4

Table 3: Comparing the total runtime when a solver has ex-
clusive access to the entire node (1 core occupied). t[h] states
the total wall clock time and on/off refers to L3-cache par-
titioning and limiting the size of the partition to a quarter of
the total cache; ∆[%] gives the relative change in percent.

Environment. We run on a cluster consisting of 11 nodes.
Each node is equipped with two Intel Xeon E5-2650v4 pro-
cessors consisting of 12 physical cores running at a base
frequency of 2.2GHz, 256GB shared RAM in total. Hy-
perthreading is disabled. The operating system is a Ubuntu
22.04.2 LTS running a 5.19.0-41-generic Linux kernel.

Design of Experiment. Next, we test the effect of the
memory cacheline. To this end, we run multiple settings be-
tween purely sequential runs with no interference and mul-
tiple instances solved in parallel. We repeat each instance
5 times per solver. The considered solvers are sequential
and execution means executing a solver on the command
line, i.e., the combination of solver, configuration, instance,
and repetition. We compare varying number of occupied
cores together with activated and deactivated cache parti-
tioning. Both setups implement all other techniques illus-
trated in the previous sections.

Expectations. Our expectations are as follows:
E1 The runtime difference between several repetitions of

each instance is low (average), but can be high on cer-
tain instances regardless of parallel runs.

E2 Parallel execution degenerates the total runtime, number
of solved instances, and results in higher deviation be-
tween repetitions.

E3 If memory requirements are chosen according to avail-
able memory cacheline and channels, variation in the to-
tal runtime and number of solved instances is minimal.

Observation. In Table 2, we find a summary of the results
for the different solvers and settings comparing the relative

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8009



Figure 4: The standard deviation of solving time among the 5 repetitions for the considered settings without (left) and with
L3-cache partitioning (right). Besides on the very right, the x-axis refers to the number of active cores, meaning, on each node
in total x instances are run in parallel while each solver instance occupies one core. The right most setting "S" shows the results
for running a single solver exclusively on one node but with the same cache restriction as running 8 in parallel.

runtime difference. Figure 4 shows the standard deviation of
the solving times among the 5 runs in the different settings.
On the left side, we illustrate the situation without any mod-
ifications to the L3-cache. Whereas, on the right side, we
visualize the results when restricting the L3-cache accord-
ing to our formula in Section and the setting "S" which has
the same cache restriction as the 8 solver setting and shows
that differences in the current load have no impact. Table 3
illustrates the performance loss when activating cache par-
titioning and assigning the same amount of cache as in the
setting of 8 parallel solvers in wall clock time for the base-
line, that is, occupying only one core and having exclusive
access to an entire node (the best possible performance for
an individual solver run). Restricting the cache significantly
affects performance. However, as we have already stated
above this setting produces the same performance as running
8 solvers in parallel. Hence, the performance is marginally
worse but stable. We observe that without cache partitioning
the overall performance of solvers degrades with the num-
ber of simultaneously committed cores (Table 2). Moreover,
the variance in runtime for the exact same solver and in-
put instance 4 increase significantly. The runtime increases
up to 5% when running 8 solvers and 18% when running
24 solvers in parallel on one node and the standard devia-
tion for the exact same instances can be up to a factor of 5
to 7 higher (from 5s to 25 or 35s, respectively). If we en-
able cache partitioning, total runtime is stable even when si-
multaneously committing multiple cores, i.e., running mul-
tiple solvers in parallel on a node. Runtime degeneration is
slightly worse than without cache partitioning (c.f., Table 2
and Table 3). Note that the employed instance set contains
instances with varying runtimes. The effect increases when
the total runtime of an instance increases. Hence, we expect
an even more problematic behavior in experiments, where
instances that were solved extremely fast, are excluded.

Summary. Our experiments show that running multiple
jobs in parallel can severely influence performance and thus
repeatability. As shown in Table 2, running one job per
core (24) can lead to drastically longer solving time and thus
also less solved instances. Further, depending on the current
load when a job was run, its performance can differ. By care-
ful cache partitioning, we obtain stable, resilient, and repli-
cable experiments. Partitioning increases the individual run-
time slightly, but we obtain much more sustainable hardware
usage. To this end, we run 8 processes in parallel, which is
the expected technical maximum on our setting due to the
4 memory channels per socket. Furthermore, if we select a
uniform cache size regardless of the actual occupied cores,
see Figure 4 (right) 8 vs. S, we ensure stable results inde-
pendent of the current hardware load.

Conclusion

We investigate how sustainable, replicable empirical experi-
ments can be designed and established. In contrast to previ-
ous work, we suggest conditions for parallel execution. By
exploring the factor system memory, we eliminate a major
issue that is often neglected as solving focuses on processors
only. We illustrate how widely employed cluster schedulers
can be fruitfully employed for combinatorial evaluations. Fi-
nally, we emphasize that a proper setup of empirical work
should not be trivialized. The effect of a problematic execu-
tion can easily destroy the scientific value of an experiment.

Our work opens up multiple directions for future research.
We believe that an interesting question is to evaluate whether
task isolation, frequency scaling, and further methods that
involve system memory can be employed to design abstract
and reliable execution environments that provide repeatabil-
ity beyond the hardware where it was executed.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8010



Acknowledgments
Authors are ordered alphabetically. The work has been car-
ried out while Fichte and Hecher visited the Simons Institute
at UC Berkeley. Research is supported by ELLIIT funded
by the Swedish government; the Austrian Academy of Sci-
ences (ÖAW), DOC Fellowship; the Austrian Science Fund
(FWF), grant J4656, and the Society for Research Funding
in Lower Austria (GFF) grant ExzF-0004.

References
Auble, D.; et al. 2022. Control Group in Slurm. https://
slurm.schedmd.com/cgroups.html.
Auble, D.; et al. 2023. Slurm Workload Manager. https:
//slurm.schedmd.com.
Audemard, G.; Paulevé, L.; and Simon, L. 2020. SAT Her-
itage: A Community-Driven Effort for Archiving, Building
and Running More Than Thousand SAT Solvers. In SAT’20,
107–113. Springer Verlag.
Audemard, G.; and Simon, L. 2019. Glucose in the SAT
Race 2019. In Proceedings of SAT Race 2019 : Solver and
Benchmark Descriptions, 19–20. University of Helsinki.
Bartocci, E.; Beyer, D.; Black, P. E.; Fedyukovich, G.; Gar-
avel, H.; Hartmanns, A.; Huisman, M.; Kordon, F.; Nagele,
J.; Sighireanu, M.; Steffen, B.; Suda, M.; Sutcliffe, G.;
Weber, T.; and Yamada, A. 2019. TOOLympics 2019:
An Overview of Competitions in Formal Methods. In
TACAS’19, 3–24. Springer Verlag.
Beyer, D.; Löwe, S.; and Wendler, P. 2019. Reliable bench-
marking: requirements and solutions. International Journal
on Software Tools for Technology Transfer, 21(1): 1–29.
Biere, A. 2019. CaDiCaL Simplified Satisfiability Solver.
http://fmv.jku.at/cadical/.
Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
Entering the SAT Competition 2020. In SAT COMPETI-
TION 2020.
Biere, A.; Fleury, M.; Froleyks, N.; and Heule, M. J. 2023.
The SAT Museum. In Proceedings of the 14th International
Workshop on Pragmatics of SAT (PoS’23), volume 3545.
CEUR Workshop Proceedings (CEUR-WS.org).
Bocchese, A. F.; Fawcett, C.; Vallati, M.; Gerevini, A. E.;
and Hoos, H. H. 2018. Performance robustness of AI plan-
ners in the 2014 international planning competition. AI
Communications, 31(6): 445–463.
Bridi, T. 2018. Scalable optimization-based Scheduling ap-
proaches for HPC facilities. Ph.D. thesis, Universida di Bo-
longa.
Brodowski, D.; Golde, N.; Wysocki, R. J.; and Kumar,
V. 2016. CPU frequency and voltage scaling code
in the Linux(TM) kernel. https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.
Ceri, S.; Fraternali, P.; Bongio, A.; Brambilla, M.; Comai,
S.; and Matera, M. 2003. Designing data-intensive Web ap-
plications. Morgan Kaufmann.
Chappell, D. A. 2004. Enterprise service bus: Theory in
practice. O’Reilly.

Cosmo, R. D.; and Zacchiroli, S. 2017. Software Her-
itage: Why and How to Preserve Software Source Code. In
iPRES’17.
Cox, A.; Delvare, J.; Delvare, J.; et al. 2023. dmidecode(8)
- Linux man page. https://linux.die.net/man/8/dmidecode.
Eggensperger, K.; Lindauer, M.; and Hutter, F. 2019. Pitfalls
and best practices in algorithm configuration. Journal of
Artificial Intelligence Research, 861–893.
Eijkhout, V. 2022. The Art of HPC. Lulu Press. https:
//github.com/VictorEijkhout/TheArtofHPC_pdfs/.
Elffers, J.; Giráldez-Cru, J.; Gocht, S.; Nordström, J.; and Si-
mon, L. 2018. Seeking Practical CDCL Insights from The-
oretical SAT Benchmarks. In IJCAI’18, 1300–1308. IJCAI.
Fichte, J. K.; Geibinger, T.; Hecher, M.; and Schlögel, M.
2023a. Dataset: Parallel Empirical Evaluations: Resilience
Despite Concurrency. Zenodo. doi.org/10.5281/zenodo.
10400972.
Fichte, J. K.; Hecher, M.; Le Berre, D.; and Szeider, S.
2023b. The Silent (R)Evolution of SAT. Communications of
the ACM, 66(6): 64–72.
Fichte, J. K.; Hecher, M.; McCreesh, C.; and Shahab, A.
2021. Complications for Computational Experiments from
Modern Processors. In CP’21, 25:1–25:21. Dagstuhl Pub-
lishing.
Fichte, J. K.; Hecher, M.; and Szeider, S. 2023. A Time
Leap Challenge for SAT-Solving. CoRR. arxiv.org/abs/
2008.02215. A preliminary version appeared in CP’20.
Fichte, J. K.; Manthey, N.; Schidler, A.; and Stecklina, J.
2020. Towards Faster Reasoners by using Transparent Huge
Pages. In CP’20, 304–322. Springer Verlag.
Force, I. E. T. 1993. IETF Online Proceedings. https://www.
ietf.org/old/2009/proceedings_directory.html.
Galleguillos, C.; Kiziltan, Z.; Sîrbu, A.; and Babaoglu, O.
2019. Constraint Programming-Based Job Dispatching for
Modern HPC Applications. In CP’19, 438–455. Springer
Verlag.
Geer, D.; Bace, R.; Gutmann, P.; Metzger, P.; Pfleeger,
C. P.; Quarterman, J. S.; and Schneier, B. 2003. Cy-
berInsecurity: The Cost of Monopoly. https://cryptome.org/
cyberinsecurity.htm.
Georgiou, Y.; Cadeau, T.; Glesser, D.; Auble, D.; Jette, M.;
and Hautreux, M. 2014. Energy Accounting and Control
with SLURM Resource and Job Management System. In
Distributed Computing and Networking, 96–118. Springer
Berlin Heidelberg.
Green500 Authors. 2022. The Green500 Supercomputers.
https://www.top500.org/lists/green500/.
Haleem, A.; et al. 2023. stress-ng (stress next generation).
https://github.com/ColinIanKing/stress-ng.
Henderson, J.; and Patel, S. 2002. The Role of Market-based
and Committee-based Standards. Technical report, Babson
College.
Hennessy, J. L.; and Patterson, D. A. 2011. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann,
5th edition.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8011



Heule, M. J. H.; and Kullmann, O. 2017. The Science of
Brute Force. Communications of the ACM, 60(8): 70—79.
Hochstein, L.; and Moser, R. 2017. Ansible: Up and Run-
ning: Automating configuration management and deploy-
ment the easy way. O’Reilly Media.
Hölldobler, S.; Manthey, N.; and Saptawijaya, A. 2010. Im-
proving Resource-Unaware SAT Solvers. In LPAR’16, 519–
534. Springer Verlag.
Hoos, H. H.; Kaufmann, B.; Schaub, T.; and Schneider, M.
2013. Robust Benchmark Set Selection for Boolean Con-
straint Solvers. In LION’13, 138–152. Springer Verlag.
IBM Team. 2021. IBM Debugging disk I/O on Linux
servers. https://www.ibm.com/docs/en/ioc/5.2.0?topic=
resources-debugging-disk-io-linux-servers.
Ibsen, C.; and Anstey, J. 2018. Camel in action. Simon and
Schuster.
Intel. 2016. Specification: Intel® Xeon® Processor E5-2650
v4 30M Cache, 2.20 GHz. https://www.intel.com/content/
www/us/en/products/sku/91767/intel-xeon-processor-
e52650-v4-30m-cache-2-20-ghz/specifications.html.
Intel. 2019. Use Intel® Resource Director Tech-
nology to Allocate Last Level Cache (LLC).
https://www.intel.com/content/www/us/en/developer/
articles/technical/use-intel-resource-director-technology-
to-allocate-last-level-cache-llc.html.
Intel. 2023. User space software for Intel(R) Resource
Director Technology. https://github.com/intel/intel-cmt-cat/
wiki/resctrl/.
Jackson, P.; and Lameter, C. 2006. cgroups - Linux con-
trol groups. https://www.kernel.org/doc/Documentation/
cgroup-v1/cgroups.txt.
Jette, M. 2012. Slurm Workload Manager Architecture,
Configuration and Use. https://www.open-mpi.org/video/
slurm/Slurm_EMC_Dec2012.pdf.
Joy, A. M. 2015. Performance comparison between Linux
containers and virtual machines. In ICACEA’15, 342–346.
Kocher, P.; Horn, J.; Fogh, A.; ; Genkin, D.; Gruss, D.;
Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.; Prescher,
T.; Schwarz, M.; and Yarom, Y. 2019. Spectre Attacks: Ex-
ploiting Speculative Execution. In S&P’19.
Koopmann, P.; Hähnel, M.; and Turhan, A.-Y. 2017. Energy-
Efficiency of OWL Reasoners—Frequency Matters. In
JIST’17, 86–101. Springer Verlag.
Li, C.; Ding, C.; and Shen, K. 2007. Quantifying the Cost of
Context Switch. In ExpCS’07, 2–es. Association for Com-
puting Machinery, New York.
Luksa, M. 2017. Kubernetes in action. Simon and Schuster.
Majo, Z.; and Gross, T. R. 2011. Memory System Per-
formance in a NUMA Multicore Multiprocessor. In SYS-
TOR’11. Association for Computing Machinery, New York.
McGeoch, C. C. 2012. A Guide to Experimental Algorith-
mics. Cambridge University Press.
Müller-Hannemann, M.; and Schirra, S., eds. 2010. Al-
gorithm Engineering. Springer Verlag. ISBN 978-3-642-
14866-8.

Pereira, L. A. F.; et al. 2023. HARDINFO. https://github.
com/lpereira/hardinfo.
Primate Labs Inc. 2023. GeekBench. https://www.
geekbench.com/download/linux/.
Roussel, O. 2011. Controlling a Solver Execution with the
runsolver Tool. J. on Satisfiability, Boolean Modeling and
Computation, 139–144.
Sakallah, K. 2023. A Roadmap for the Next Phase of
SAT Research. https://simons.berkeley.edu/talks/karem-
sakallah-university-michigan-2023-04-18.
Sterling, T. L. 2002. Beowulf cluster computing with Linux.
MIT Press.
Strevell, M.; Lambiaso, D.; Brendamour, A.; and Squillo, T.
2019. Designing an Energy-Efficient HPC Supercomputing
Center. In ICPP Workshops’19. Association for Computing
Machinery, New York.
Stump, A.; Sutcliffe, G.; and Tinelli, C. 2014. StarExec:
A Cross-Community Infrastructure for Logic Solving. In
IJCAR’14, 367–373. Springer Verlag.
Vallet, N.; Michonneau, D.; and Tournier, S. 2022. Toward
practical transparent verifiable and long-term reproducible
research using Guix. Scientific Data, 9(1): 597.
Vercellino, C.; Scionti, A.; Varavallo, G.; Viviani, P.; Vitali,
G.; and Terzo, O. 2023. A Machine Learning Approach for
an HPC Use Case: the Jobs Queuing Time Prediction. Fu-
ture Generation Computer Systems, 215–230.
Vincent, L.; et al. 2023. lshw: HardWare LiSter for Linux.
https://github.com/lyonel/lshw.
Wasik, S.; Antczak, M.; Badura, J.; Laskowski, A.; and Ster-
nal, T. 2016. Optil.Io: Cloud Based Platform For Solving
Optimization Problems Using Crowdsourcing Approach. In
CSCW’16, 433–436. Association for Computing Machinery,
New York.
Weaver, V. M. 2013. Linux perf_event features and over-
head. In The 2nd international workshop on performance
analysis of workload optimized systems (FastPath’13), 5.
Yoo, A. B.; Jette, M. A.; and Grondona, M. 2003. SLURM:
Simple Linux Utility for Resource Management. In
JSSPP’03, 44–60. Springer Verlag.
Yu, F.; Luck, T.; and Shivappa, V. 2023. The Linux Kernel:
User Interface for Resource Control feature. https://docs.
kernel.org/arch/x86/resctrl.html.
Zaitsev, P.; Kopytov, A.; et al. 2020. sysbench. https:
//github.com/akopytov/sysbench.
Zhang, L.; and Malik, S. 2004. Cache Performance of SAT
Solvers: a Case Study for Efficient Implementation of Algo-
rithms. In Theory and Applications of Satisfiability Testing,
287–298. Springer Berlin Heidelberg.
Zijlstra, P.; Molnar, I.; and de Melo, A. C. 2009. Perfor-
mance Events Subsystem. https://github.com/torvalds/linux/
tree/master/tools/perf.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

8012


