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Abstract

In this paper, we present a novel Amplitude-Modulated
Stochastic Perturbation and Vortex Convolutional Network,
AMSP-UOD, designed for underwater object detection.
AMSP-UOD specifically addresses the impact of non-ideal
imaging factors on detection accuracy in complex underwa-
ter environments. To mitigate the influence of noise on ob-
ject detection performance, we propose AMSP Vortex Con-
volution (AMSP-VConv) to disrupt the noise distribution, en-
hance feature extraction capabilities, effectively reduce pa-
rameters, and improve network robustness. We design the
Feature Association Decoupling Cross Stage Partial (FAD-
CSP) module, which strengthens the association of long and
short range features, improving the network performance
in complex underwater environments. Additionally, our so-
phisticated post-processing method, based on Non-Maximum
Suppression (NMS) with aspect-ratio similarity thresholds,
optimizes detection in dense scenes, such as waterweed
and schools of fish, improving object detection accuracy.
Extensive experiments on the URPC and RUOD datasets
demonstrate that our method outperforms existing state-of-
the-art methods in terms of accuracy and noise immunity.
AMSP-UOD proposes an innovative solution with the po-
tential for real-world applications. Our code is available at:
https://github.com/zhoujingchun03/AMSP-UOD.

Introduction
Recently, underwater object detection (UOD) has gained at-
tention in the fields of marine technology, deep-sea explo-
ration, and environmental protection. Precise detection of
biological, geological, and man-made structures in deep-sea
environments is vital for human society and environmental
conservation (Xu et al. 2023) (Zhuang et al. 2022). However,
challenges in seawater, such as transparency, color, tempera-
ture, and suspended particles, combined with varying marine
environments and target object types, reduce the accuracy of
object detection.

*These authors contributed equally.
†Corresponding author
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Due to light absorption and scattering (Zhou et al. 2023b;
Zhang et al. 2022), underwater imaging often suffers from
quality degradation compared to object detection in high-
quality images. This impacts the performance of Convolu-
tional Neural Network (CNN)-based object detectors. The
key challenges include 1) the lack of underwater object de-
tection datasets hindering the training of deep learning mod-
els, 2) degradation factors, such as light absorption and scat-
tering, leading to low contrast and color distortion (Zhou
et al. 2023a) (Guo et al. 2022), 3) the difficulty in extracting
rich details from small and clustered underwater objects, and
4) class imbalance, making the challenging for object detec-
tors to learn features for classes with a small-sample size (Fu
et al. 2023). To address these challenges, new detectors ca-
pable of accurate localization and classification in complex
underwater environments are required. This research aims to
advance ocean science and deep-sea exploration technology
and holds practical value in environmental protection and
resource development.

In this paper, we propose the AMSP-UOD network,
crafted to tackle non-ideal imaging factors in underwater
environments. Utilizing the optical imaging model I =
H(J,B, t) + N (I represent observed image, J represent
raw scene, B represents backscatter, and t represent trans-
mission map), we discern that underwater images combine a
degradation function H with noise N . To remove noise, we
propose the AMSP-VConv. This strategy not only reduces
parameters but also bolsters the network’s robustness. We
further implement the FAD-CSP to improve feature extrac-
tion in degraded environments. Our post-processing strat-
egy, which relies on NMS, is designed to optimize the detec-
tion of dense clusters of underwater objects. Experimental
results on the URPC (Liu et al. 2021) and RUOD (Fu et al.
2023) datasets showcase the effectiveness of our method.
Overall, AMSP-UOD presents an innovative solution for
UOD with potential real-world applications.

The main contributions of this paper are as follows:
(1) We propose a novel single-stage UOD network. In the

backbone, we design the AMSP-VConv to address the im-
pact of noise and other degradations in underwater object
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detection. In the neck, the FAD-CSP boosts long and short
distance feature connection, enhancing performance in com-
plex underwater environments. Furthermore, an NMS-based
post-processing method is introduced to enhance the detec-
tion performance of the network in complex underwater sce-
narios like dense waterweed clusters and fish schools.

(2) Our AMSP strategy refines network through param-
eter adjustments, enhancing detection by distinguishing be-
tween ideal and non-ideal imaging factors.

(3) Experimental results on public datasets and UOD
competition datasets reveal that our method outperforms
state-of-the-art UOD techniques in terms of both detec-
tion accuracy and speed. Ablation studies demonstrate that
AMSP-VConv possesses superior noise resistance and inter-
pretability, offering a novel solution for noise processing in
detection tasks and computer vision.

Related Work
The UOD task focuses on detecting objects in underwater
images. Deep learning has significantly advanced informa-
tion fusion (Ma et al. 2023), image enhancement (Liu et al.
2023), and object detection (Chen et al. 2022). In many
cases, these methods outperform traditional approaches, in
terms of speed and accuracy (Liu et al. 2016; Ren et al. 2015;
Redmon et al. 2016). However, underwater environments
introduce image degradations due to factors like light at-
tenuation. Underwater robots also need efficient algorithms
due to limited resources. Existing UOD techniques are ei-
ther anchor-based or anchor-free, with variations in their ap-
proach.

Anchor-Based Methods
Single-Stage Methods: These methods predict the ob-
ject’s location and type directly, ensuring faster perfor-
mance. Examples include SSD (Liu et al. 2016) that lever-
ages feature pyramids for multi-scale perception, RetinaNet
(Lin et al. 2017) using Focal Loss for sample weight adjust-
ment, and NAS-FPN (Ghiasi et al. 2019) that refines fea-
ture pyramid network structures. While efficient, they can
struggle with precise object boundary localization in UOD
tasks, especially in challenging conditions or with limited
data. Data augmentation is often used to enhance general-
ization.

Multi-Stage Methods: These techniques split detection
into two stages: region proposal and object classification
with bounding box prediction. Examples include Faster R-
CNN (Ren et al. 2015), Cascade R-CNN (Cai and Vascon-
celos 2018), DetectoRS (Qiao, Chen, and Yuille 2020), and
Dynamic R-CNN (Zhang et al. 2020a). They enhance ac-
curacy using cascaded detectors, novel pyramid networks,
and balanced learning (Ren et al. 2015; Cai and Vasconce-
los 2018; Qiao, Chen, and Yuille 2020; Zhang et al. 2020a).
However, their computational demands pose challenges for
on-the-go applications.

Anchor-Free Methods
Key-Point Based Methods: These techniques use key-
points, either predefined or self-learned, for detection, of-

fering finer object boundary detail. Examples are Reppoints
(Yang et al. 2019) for learning object-related features, Grid
(Tian et al. 2019) for grid-guided detection, and Center-
Net (Zhou, Koltun, and Krähenbühl 2020) and ExtremeNet
(Zhou, Zhuo, and Kr”ahenb”uhl 2019) that use multiple
key-points. While effective in general OD, their application
in UOD is challenging due to limited underwater datasets
(Fu et al. 2023), manual annotations, and computational de-
mands conflicting with UOD’s typical scenarios.

Center-Point Based Methods: These methods focus on
predicting object center points, ideal for dense and fast de-
tections. Notably, YOLO (Redmon et al. 2016) approaches
detection as a single regression task, optimizing dense object
detection. Enhancements include per-pixel prediction and
feature abstraction (Redmon et al. 2016; Tian et al. 2019;
Zhu, He, and Savvides 2019; Kong et al. 2020; Liu et al.
2019). However, their scalability for various object sizes is
limited, and they may not excel in tasks needing precise
boundary localization, like specific underwater robot oper-
ations.

Proposed AMSP-UOD Network
The underwater environment is marked by complexity due
to various regular and irregular degradation factors, includ-
ing marine biological activity, human activity and current
movement (Chou et al. 2021). These factors create unpre-
dictable noise patterns, posing challenges to models attempt-
ing to perceive and model underwater degradation scenes.
Underwater noise is complex compared (Li et al. 2019)
to typical noise conditions and requires a higher parame-
ter count to denoise, but this increases the risk of overfit-
ting. Instead of focusing on modeling noise, we propose
a novel UOD network, namely ASMP-UOD (in Figure 1).
Our approach aims to disrupt noise and reduce parameters,
focusing on extracting ideal features rather than increasing
the burden of noise analysis. Unlike previous methods that
struggled with complex scenarios, ASMP-UOD is designed
to better adapt to regular underwater scenes.

Anti-Noise Capability of AMSP and VConv
Convolution and its variants (Chollet 2017)(Han et al. 2020)
are crucial for feature extraction but often struggle in scenar-
ios with noise interference or complex scenarios. The chal-
lenge lies in distinguishing between background features
and target object features, limiting detection accuracy. To
deal these issues, we design a novel AMSP-VConv to miti-
gate noise interference, enhancing the network’s adaptability
in underwater scenarios.

Inspired by the vortex phenomenon in turbulent wa-
ter flows, which disrupts continuity through rapid rotation,
AMSP-VConv introduces ’vortices’ in the information flow
to break the interference caused by noise. This innovation
improves the network’s ability to differentiate background
and target features, enhancing detection in complex under-
water environments.

In Figure 2, we present the complete structure of AMSP-
VConv. Starting with an input tensor Fin of the size
[b, c, h, w] (b: batch size, c: number of channels, h: height,
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Figure 1: AMSP-UOD network architecture: AMSP-VConv for underwater noise elimination; FAD-PAN for information anal-
ysis, FAD-CSP for semantic feature decoupling; NMS-Similar for merging traditional and Soft-NMS for efficient dense scene
detection.

Figure 2: AMSP Vortex Convolution. (a) The AMSP-VConv
structure, (b) an expanded diagram of VConv, featuring the
uniquely designed Shared Conv with BN, complemented by
the SiLU activation function.

w: width), it is processed by the combination of convolu-
tion, batch normalization, and the SiLU activation function
(CBS) structure. This structure is designed to capture latent
associations. By utilizing a kernel size of size 3 and a step
size of 1, yielding an output tensor X of size [b, c//2, h, w].
The transformation can be expressed as follows:

X = CBS(Fin) = δ(BatchNormal(Conv(Fin))) (1)

where δ represents the SiLU activation function. As illus-
trated in Equations (2) and (3), we introduce the Amplitude
Modulation and Shuffling Perturbation (AMSP) strategy in
the subsequent steps. This strategy infuses random pertur-
bations into the original grouped structure of associated fea-
tures within X , thereby disrupting the association between
noise and regular features. It is crucial to highlight that,
while the AMSP strategy introduces these perturbations, it
does not annihilate the features. Instead, it preserves a ma-

jority of the feature associations and induces a random shuf-
fling among channels. This mechanism effectively serves the
connection between noise samples and regular features, es-
pecially in the higher-level channels.

T = AMt(X) =

 c1 c2 . . . ct
ct+1 ct+2 . . . c2t
. . . . . . . . . . . .

ckt+1 ckt+2 . . . ckt+t

 (2)

Y = SPt(T ) =

ca0t+1 ca0t+2 . . . ca0t+t

ca1t+1 ca1t+2 . . . ca1t+t

. . . . . . . . . . . .
cakt+1 cakt+2 . . . cakt+t

 (3)

{a0, a1, . . . , ak} = {0, 1, . . . , k} (4)

As depicted in Equations (2) and (3), the process involves
two primary operations: Amplitude Modulation (AM) and
Shuffling Perturbation (SP). AM is responsible for mapping
the information to higher dimensions, SP perturbs these fea-
tures. Here, we divide the channels into k + 1 groups of t
channels each, ci denotes the i-th channel, and Y is the out-
put of the AMSP, which is aligned with the dimensions of
the intermediate variable T .

Z = Concat(V Conv(Y )) (5)

Z
′
= δ(BatchNormal(Z)) (6)

The VConv processes the reconstructed result Z to opti-
mize the extracted features. Drawing a parallel with the ideal
state of water vortices, vortex convolution comprises mul-
tiple spiral lines (group convolutions) with a fixed spacing
(shared convolution parameters). These group convolutions
capture and extract features according to global and local
imaging rules, removing isolated noise.

Fout = Concat(X,Z
′
) (7)
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Figure 3: FAD-CSP structure. The FAD-CSP module is built
on a cross-stage network, comprising an efficient Global
Feature-Aware (GFA) and a local decoupling-focused Rep-
Bottleneck. The essence of FAD-CSP lies in creating an ef-
ficient decoupling network through the interaction of long
and short distance features.

To ensure the integrity of the correct feature semantic in-
formation, we employ residual connections to concatenate
the original associated features X and Z

′
to obtain the final

output Fout, with shape [b, c, h, w]. This method can better
adapt to feature attenuation and noise effects, thereby ac-
quiring complete and correct features of the ideal degrada-
tion scenario under the guidance of the gradient optimizer.

Feature Association Decoupling CSP
In order to extract features at different distances for enhanc-
ing adaptability to underwater environments, we introduce
a feature association and decoupling module based on a
cross-stage network (FAD-CSP). This module is designed
to incorporate the novel global feature-aware approach to
extract long-range global features, while utilizing the opti-
mized RepBottleneck as a sampling module to capture short-
range local features.

Global Feature-Aware Representation: In convolutional
operations for global feature processing, a deeper network
structure is usually required to extract rich feature infor-
mation. This often increases the likelihood of the network
getting trapped in local optima. To address this issue, we
devised an efficient global feature-aware module and seam-
lessly integrated it into the FAD-CSP network using an at-
tention mechanism. The structure of the proposed global
feature-aware module is depicted in Figure 3. For a given in-
put tensor Fin, we processing it through a bar-shaped pool-
ing group, which compresses salient features into a one di-
mensional space. This method not only trades longer dis-
tance feature correlations, but also exhibits much lower com-
putational overhead compared to convolution. This process
can be expressed as follows:

vhc = AvgPoolh(Fin) +MaxPoolh(Fin) (8)
vwc = AvgPoolw(Fin) +MaxPoolw(Fin) (9)

The variables vh and vw are introduced into the subse-
quent stage of global feature-aware processing. Utilizing the
AMSP strategy, they undergo a random alternation. This

Figure 4: (a) The represents the RepBottleneck structure
with n=3, and (b) the detailed design of Bottleneck, a resid-
ual structure composed of pointwise convolution and depth-
wise convolution.

procedure generates a distribution map highlighting global
prominent features as follows:

yf = CBS(AMSP (Catc([v
h
c , v

w
c ]))) (10)

yhc/r, y
w
c/r = splitc(yf ) (11)

where c denotes the channel count of this intermediary value
and r is the scaling ratio. The CBS is employed and Catc
denotes concatenation by channels to rebuild feature rela-
tionships yf , extracting accurate long-distance feature asso-
ciations.

yhc = Conv(yhc/r), y
w
c = Conv(ywc/r) (12)

To capture long-range features from the attention map, we
incorporate a weighted gradient flow. This ensures the re-
tention of valuable information in the output and upholds
the consistency within the original feasible solution domain.
Specifically, the adaptive weighting stems from redistribut-
ing two distinct linear feature sets sourced from indepen-
dent conventional mappings and harnessing the capabilities
of the Sigmoid function. This method allows for adaptive
weighting of the features, according to the disparities in fea-
ture importance within specific regions, ensuring a refined
adjustment to feature changes across different areas.

Af = Sigmoid(yhc × ywc ) (13)

Fout = Af

⊙
Fin (14)

Ultimately, the global attention Af , obtained by weight-
ing the product of the strip attention maps yhc × ywc followed
by the Sigmoid function, is multiplied with the input Fin.
This generates an expanded solution domain Fout, reinter-
preted by the global feature perception decoupling module.
It provides the network with a richer and optimized feature
representation. Introducing the attention map allows the net-
work to better understand and process features from differ-
ent regions while retaining key information. This aids the
network in achieving global optima, enhancing the perfor-
mance of the UOD task.

RepBottleneck: This is an efficient residual structure, as
shown in Figure 4 (b), which uses a combination of depth-
wise separable convolutions and residual connections to re-
duce the number of network parameters, aggregating local
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features within the receptive field. Our RepBottleneck is an
optimization over the Bottleneck List, addressing the defi-
ciency in global feature-awareness. RepBottleneck focuses
on local representations at a short distance. The proposed
RepBottleneck is depicted in Figure 4(a), which intercon-
nects multiple Bottlenecks and ShortCuts, to enhance the
degree of association between local features. It is expressed
as follows:

In =

{
Bottleneck((I0), if n = 1

Bottleneck(Cat(In−1, In−2)), if n ̸= 1
(15)

where In represent the output of RepBottleneck and I0 rep-
resent the input of RepBottleneck.

Eventually, FAD-CSP obtains rich local features, abstract
global features, and separated primitive features. As shown
in Figure 3, FAD-CSP uses CBS to associate long and short
distance features related to the target, decoupling irrelevant
degraded features and realizing the improvement of detec-
tion accuracy.

Non-Maximum Suppression-Similar
In dense underwater environments, two primary challenges
in detection are overlapping objects with similar features
and overlapping bounding boxes for the same target, lead-
ing to inaccuracies in traditional NMS methods. While Soft-
NMS (Bodla et al. 2017) retains more boxes, it increases
computational time. To overcome these issues, we propose
an NMS method based on aspect ratio similarity, called
NMS-Similar. This method combines traditional NMS’s
speed with SoftNMS’s precision, using a unique aspect ra-
tio threshold and optimized greedy strategy. The suppression
mechanism for each object is as follows:

Si = Sie
−IoU(M,bi)

2/σ (16)

L′ = (IoU(bi, L) <= Nt) and (Sim(M,L) > Ns) (17)

Sim(M, bi) =
M⃗ · b⃗i

∥M⃗∥∥b⃗i∥
(18)

where Si is the current detection box’s confidence, M is the
highest confident box, Intersection over Union (IoU) mea-
sures overlap between predicted and ground-truth boxes, Nt

is the preset IoU threshold, Sim calculates the aspect ratio
similarity, M⃗ represents the length and width of M . Ns is
the preset similarity threshold, and σ is a Gaussian weight-
ing function. L and L′ represent the remaining and recalcu-
lated detection boxes, respectively. Equation (17) adjusts the
suppression counts for non-maximum confidence boxes by
introducing an aspect ratio threshold to exclude similar de-
tection boxes. The threshold strategy takes into account that
object detection boxes for the same object at different scales
share similar aspect ratios. During the computation process,
similar detection boxes are precluded in advance, reducing
the suppression time in dense scenes while ensuring detec-
tion accuracy.

Experimental Results
We elaborate on our experimental setup and comparative
analyses. Experiments reveal that our approach significantly

enhances the network’s accuracy and resistance to noise, es-
pecially in challenging underwater conditions.

Implementation Details
Our experiments run on an Intel Xeon E5-2650 v4 @ 2.20G
CPU and an Nvidia Tesla V100-PCIE-16GB GPU with
the Ubuntu 20.04 LTS operating system and Python 3.10
environment built on Anaconda, with a network architec-
ture based on Pytorch 2.0.1 build. The hyperparameters are
shown in Table 1.

In addition, if not specified, the comparison experiments
are performed using the traditional NMS method.

Type Setting Type Setting
Image size 640 Weights None
Batch-size 16 Seeds 0
Optimizer SGD LR 0.01

Epochs 300 Early-stop True

Table 1: Hyperparameter settings

Evaluation Metrics and Datasets
We adopt AP and AP50 as the primary metrics for model ac-
curacy evaluation, with precision (P) and recall (R) as sup-
plementary indicators. To showcase the generalizability of
our network, we trained it on the URPC (Zhanjiang) (Liu
et al. 2021) dataset, from the 2020 National Underwater
Robotics Professional Competition and the extensive RUOD
dataset. The URPC dataset contains 5,543 training images
across five categories, with 1,200 images from its B-list an-
swers serving as the test set. The RUOD dataset (Fu et al.
2023) contains various underwater scenarios and consists of
10 categories. It includes 9,800 training images and 4,200
test images.

Visual Comparisons
Figure 5 visualizes the object detection results of differ-
ent detection frameworks on the URPC (Zhanjiang) dataset.
Many of these frameworks struggle to accurately detect
smaller objects, with some even mistakenly identifying the
background as a target. The Faster R-CNN (Ren et al. 2015),
RetinaNet (Lin et al. 2017), and PAA methods exhibit false
positives by detecting kelp as seagrass. In contrast, the
YOLO methods (Redmon et al. 2016) miss some objects,
failing to detect certain starfish. Our method excels in de-
tecting smaller objects without any false positives or missed
detections.

Quantitative Comparisons
In Table 3, the performance of various versions of AMSP-
UOD on the URPC and RUOD datasets is presented. No-
tably, while our AMSP-VConv version indicates slightly re-
duced stability and precision compared to the Our-Standard
version in balanced scenarios, it showcases enhanced de-
tection capability in more degenerative conditions (URPC).
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Figure 5: Visualization of object detection results of different object detection methods on URPC (Zhanjiang). (a) YOLOv3
(Redmon and Farhadi 2018), (b) YOLOv5s (Jocher 2020), (c) YOLOv6s(Li et al. 2022), (d) YOLOv7-tiny (Wang, Bochkovskiy,
and Liao 2023), (e) Faster R-CNN (Girshick 2015), (f) Cascade R-CNN (Cai and Vasconcelos 2018), (g) RetinaNet (Lin et al.
2017), (h) FCOS (Tian et al. 2019), (i) ATSS (Zhang et al. 2020b), (j) TOOD (Feng et al. 2021), (k) PAA (Kim and Lee 2020),
(l) Ours-Standard, (m) Ours-AMSP-VConv, (n) Ours-AMSP-VConv + NMS Similar.

Baselines Time Memory P R mAP 0.95
0.5

DSC 15s 4.61G 0.824 0.510 0.371
GC 52s 5.10G 0.796 0.637 0.396

VC (w/o SW) 14s 5.36G 0.730 0.694 0.386
VC (w/o AMSP) 14s 4.65G 0.833 0.631 0.397
AMSP-VConv 14s 4.65G 0.845 0.612 0.398

Table 2: Ablation of AMSP-VConv. Time: Inference Time
(per epoch), DSC: Depthwise Separable Conv, GC: Ghost
Conv, SW: Shared Weight, VC: AMSP-VConv, P: Precision,
R: Recall.

This observation is also substantiated by subsequent abla-
tion studies. We believe this significant improvement can be
attributed to the noise suppression capability of the VConv
design combined with the outstanding feature perception
ability of FAD-CSP. Especially in intricate underwater en-
vironments, our method adeptly boosts the recognition ac-
curacy of waterweeds, which are treated as a small-sample
target, to a remarkable 99.3%. Furthermore, the integration
of the NMS-Similar strategy imparts a clear enhancement
in detection rates for the Vortex version. This strategy effi-
ciently curtails false positives and misses, thus ensuring the
integrity and accuracy of object detection. In comparison
with the series of YOLO models and other leading detec-
tion techniques, our method consistently manifests marked
superiority on a foundation of high precision. In conclusion,
our method exhibits exemplary efficiency and adaptability
in UOD, underscoring its profound potential for real-world
underwater applications.

Ablation Studies
In order to verify the impact of the proposed module on the
network performance, we conducted a series of ablation ex-
periments.

Ablation of AMSP-VConv: In Table 2, we find that the
combination of VConv with the AMSP strategy provides
an optimal balance, in terms of precision, recall, and mAP,

while maintaining reasonable inference time and mem-
ory usage. Compared to Depthwise Separable Convolution
(DSC) and Ghost Convolution (GC), AMSP-VConv demon-
strates superior performance in complex object detection
tasks, particularly in intricate scenarios that need to balance
multiple performance metrics. The ablation experiments fur-
ther reveal the importance of shared parameters and the
AMSP strategy for enhancing both accuracy and efficiency.
Ultimately, the integration of VConv and the AMSP strat-
egy proves its potential in improving object detection tasks,
providing robust support for real-world applications.

Underwater scenarios are susceptible to noise interfer-
ence, and noise robustness is a crucial metric for evaluat-
ing UOD methods. Ensuring all operations that influence
network metrics are equivalent, Gaussian noise was used to
simulate the underwater noise environment, creating multi-
ple noise levels (i.e., the original scenario augmented with
Gaussian noise of varying standard deviations). We trained
our network using the URPC dataset. As shown in Fig-
ure 6, our network’s mAP score remains stable under the
influence of noise level 4. In contrast, the mAP@0.5 of
YOLOv5s, serving as the Baseline, decreased by 16.3%. In
high-noise scenarios, our AMSP-VConv demonstrates supe-
rior noise robustness, while the accuracy of Our-Standard,
which merely replaces the AMSP-VConv module with stan-
dard convolutions, aligns closely with that of the Baseline.
This indicates that AMSP-VConv in the Backbone network
provides AMSP-UOD with strong noise robustness, validat-
ing the effectiveness of AMSP-VConv. It offers an excellent
solution for denoising and complex underwater scenarios.

Ablation of NMS-Similar: From Table 4, it is evident
that NMS-Similar achieves a commendable balance between
accuracy and efficiency. Compared to Soft-NMS, NMS-
Similar retains similar detection accuracy while significantly
reducing computation time. Especially in challenging under-
water detection scenarios, where closely located or overlap-
ping objects are frequent, the performance of NMS-Similar
stands out, underscoring its immense value in real-world ap-
plications.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7664



Method
URPC URPC Categories AP50 RUOD

AP↑ AP50↑ Ho↑ Ec↑ St↑ Sc↑ Wa↑ AP↑ AP50↑
YOLOv3 29.7 58.9 63.5 83.1 68.1 46.4 33.2 49.1 80.3
YOLOv5s 38.6 66.2 67.3 84.7 76.7 57.2 43.0 53.8 81.4
YOLOv6s 36.1 62.8 61.4 85.2 68.1 49.0 50.1 60.1 84.9

YOLOv7-tiny 35.9 62.2 57.9 84.9 72.3 50.1 66.3 57.9 84.3
Faster R-CNN 31.0 59.0 66.9 85.9 72.1 55.4 14.7 49.1 80.3

Cascade R-CNN 31.6 59.1 67.1 86.0 71.3 56.2 14.7 53.8 81.4
RetinaNet 26.3 51.1 61.3 81.8 66.2 46.2 0.00 48.0 77.8

FCOS 29.2 58.1 61.8 83.5 68.8 53.9 22.3 49.1 80.3
ATSS 29.0 55.6 64.0 84.8 71.4 55.8 2.20 53.9 82.2
TOOD 30.1 56.7 65.0 86.1 72.7 58.3 1.30 55.3 83.1
PAA 34.2 62.3 65.1 85.2 70.9 55.9 34.6 53.5 82.2

Ours (Standard) 45.0 73.4 69.1 86.6 75.3 53.1 83.0 62.1 85.9
Ours (AMSP-VConv) 36.6 74.8 62.9 87.1 72.9 51.6 99.3 61.4 85.3

Ours (AMSP-VConv + NMS-Similar) 40.1 78.5 67.3 87.5 77.5 60.6 99.5 65.2 86.1

Table 3: Comparison with existing methods on the URPC and RUOD datasets. Ho: holothurian’s AP50, Ec: echinus’s AP50,
St: starfish’s AP50, Sc: scallop’s AP50, Wa: waterweeds’s AP50. AP: AP@[0.5:0.05:0.95], AP50: AP@0.5. Bolding and un-
derlining is highest, underlining only is second-highest.

Baselines Time(ms) mAP0.5 mAP 0.95
0.5 APechinus

NMS 14.20 0.748 0.366 0.477
Soft-NMS 337.3 0.785 0.400 0.509

NMS-Similar 46.90 0.785 0.401 0.509

Table 4: Ablation of NMS-Similar

Baselines P R mAP0.5 mAP 0.95
0.5

a 0.836 0.610 0.675 0.397
b 0.734 0.625 0.640 0.370
c 0.720 0.658 0.679 0.377
d 0.858 0.612 0.681 0.369

All 0.844 0.681 0.748 0.366

Table 5: Ablation of FAD-CSP

Ablation of FAD-CSP: In Table 5, we evaluated the con-
tributions of various components in the FAD-CSP. Four con-
figurations are tested: a) Without the GFA module. b) Re-
placing the Pooling Groups with Individual Pooling Lay-
ers. c) Removing the AMSP strategy from the GFA mod-
ule in FAD-CSP. d) Replacing Repbottleneck with Bottle-
neck. Among the tested configurations, using the FAD-CSP
method achieves the best results, with the highest mAP of
0.748 and an improved recall rate of 0.681. This underscores
the importance of each component in enhancing the detec-
tion performance. In particular, removing the GFA module
(a) or the AMSP strategy from GFD (c) leads to a decrease
in performance, highlighting their critical roles in the frame-
work. Additionally, using Repbottleneck (as opposed to the
standard Bottleneck) further bolsters the detection results,

Figure 6: Noise robustness ablation for AMSP-VConv. (a)
and (b) show mAP@0.5 and mAP@0.5:0.95 under varied
noise levels. Numbers 0-10 represent noise (0 + Gaussian
noise standard deviation). Level 0 represents original un-
derwater scene. Methods are not pre-trained on noisy im-
ages. Blue is AMSP-VConv, red is Standard Conv, green is
YOLOv5s model, and purple is depthwise-separated Conv.

emphasizing its effectiveness in the context of the FAD-CSP
method.

Conclusion

In this work, we proposed AMSP-UOD, a novel network for
underwater object detection, addressing non-ideal imaging
factors in complex underwater environments. With our in-
novative AMSP Vortex Convolution, we enhance feature ex-
traction and network robustness, while our FAD-CSP mod-
ule improves performance in intricate underwater scenarios.
Our method optimizes detection in object-dense areas and
outperforms existing state-of-the-art methods on the URPC
and RUOD datasets. The practical evaluations highlight the
potential applicability of AMSP-UOD to real-world under-
water tasks, making it a promising contribution to UOD.
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