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Abstract

Document layout analysis is a crucial step for intelligent doc-
ument understanding. However, many existing methods pri-
marily focus on the visual aspects and overlook the textual
features of documents. Although document pre-trained mod-
els utilize multi-modal features during the pre-training phase,
they tend to operate as a unimodal pipeline when it comes
to layout analysis tasks. Furthermore, current multi-modal
methods perform worse than unimodal detectors on complex
layout analysis datasets. To address these limitations, we pro-
pose an effective and pluggable multi-modal fusion approach
named M2Doc, which fuses visual and textual features for
better layout detection. M2Doc contains two pluggable multi-
modal fusion modules, early-fusion and late-fusion, which
align and fuse visual and textual features at the pixel level
and block level. Benefitting from the concision and effective-
ness of M2Doc, it can be easily applied to various detectors
for better layout detection, including two-stage and end-to-
end object detectors. Our experimental results demonstrate
significant performance improvements in detectors equipped
with M2Doc on datasets such as DocLayNet (+11.3 mAP)
and M6Doc (+1.9 mAP). Furthermore, through the integra-
tion of the DINO detector with M2Doc, we achieve state-
of-the-art results on DocLayNet (89.0 mAP), M6Doc (69.9
mAP), and PubLayNet (95.5 mAP). The code will be pub-
licly released at https://github.com/johnning2333/M2Doc.

Introduction

Document layout analysis (DLA) is a fundamental task
in document understanding (Namboodiri and Jain 2007),
which aims to detect and segment different types of regions
and analyze their relationships within document image.
DLA can be divided into two categories, physical and logi-
cal layout analysis (Lee et al. 2019). Physical layout analysis
focuses on detecting the fundamental blocks within a docu-
ment, such as text, figure, and table. Representative datasets
include PubLayNet (Zhong, Tang, and Jimeno Yepes 2019)
and PubMed (Li et al. 2020a). Logical layout analysis re-
quires a finer-grained layout detection based on the docu-
ment’s structures and content semantics, where representa-
tive datasets include PRImA (Antonacopoulos et al. 2009),
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Figure 1: The mAP curves on DocLayNet test set for our
method and previous methods.

DocBank (Li et al. 2020b), DocLayNet (Pfitzmann et al.
2022), and M®Doc (Hiuyi et al. 2023).

Many current DLA models, such as TransDLANet (Hi-
uyi et al. 2023), SelfDocSeg (Subhajit et al. 2023), and
SwinDocSegmenter (Ayan et al. 2023) focus on enhancing
generic object detectors to more suitably match layout anal-
ysis tasks. However, these models tend to rely solely on
visual features while overlooking textual features of docu-
ments. In recent years, self-supervised models such as Lay-
outLM (Yupan et al. 2022) and StructText (Yu et al. 2023)
have demonstrated remarkable progress in a variety of Doc-
ument Al tasks. These models primarily focus on developing
better pre-training tasks to align cross-modal features and
enhance models’ ability to represent multiple modalities.
Despite incorporating various modality inputs and applying
multiple pretext tasks during the pre-training phase, these
models are only used to initialize the backbone of generic
object detectors when transferred to layout analysis tasks.
Essentially, these pipelines treat DLA as an image-centric
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Figure 2: The overall framework of M2Doc plugs into detectors.

object detection problem rather than a multi-modal problem.

Currently, numerous multi-modal DLA models are in the
process of being developed, with VSR (Peng et al. 2021)
being a representative example. VSR employs a complex
network, incorporating multiple granularity textual modality
inputs, a two-stream backbone, and Transformer layers for
relation modeling. However, VSR exhibits limited effective-
ness and occasionally performs worse than unimodal object
detectors when applied to complex logical layout analysis.

Considering the aforementioned limitations and issues,
we have rethought the distinctions between generic object
detection and DLA, and have identified two main distinc-
tions: (1) DLA scenarios mostly involve rich text docu-
ments, which makes it more appropriate and intuitive to
use multi-modal methods; (2) The textual instances in doc-
uments contain connectivity and logical relationships. For
instance, text positioned beneath an image is likely to be a
caption, while instances that are contextually connected are
likely to belong to the same category. Considering the abun-
dant textual content and logical relationships in the majority
of DLA application scenarios, a multi-modal model of com-
bining visual and textual features is a promising solution.

To this end, we propose an effective and pluggable multi-
modal fusion approach named M2Doc, which aims to con-
vert unimodal detectors into multi-modal detectors for DLA
tasks. As illustrated in Fig 2, it can be easily implemented
on both two-stage and end-to-end detectors. Firstly, we ob-
tain textual grid representations using a pre-trained language
model BERT (Jacob et al. 2019). As textual representation is
aligned to visual representation at pixel level, we use a single
backbone to extract both textual and visual features. Specif-
ically, we densely fuse each scale visual and textual feature
using early-fusion module. Additionally, we use late-fusion
module to explicitly align block-level visual and textual fea-
tures. By combining these early-fusion and late-fusion mod-
ules within the M2Doc approach, we effectively align and
fuse visual and textual features at both pixel and block lev-
els, enabling improved performance in DLA tasks.

To validate the effectiveness of our proposed approach,
we conducted extensive experiments on physical and logical
layout analysis datasets. Our results demonstrate that Cas-
cade Mask R-CNN (Cai and Vasconcelos 2018) and DINO
(Hao et al. 2023) show promising improvements with the
use of M2Doc on the DocLayNet dataset, as shown in Fig.
1. Moreover, ablation study results show that various detec-
tors can benefit from M2Doc.
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The contributions of this paper are summarized as fol-
lows:

* To endow existing unimodal detectors with multi-modal
capabilities when handling DLA tasks, we propose a
pluggable multi-modal fusion approach M2Doc.

M2Doc can be easily integrated into existing two-stage
and end-to-end detectors. Our experimental results indi-
cate that many detectors benefit from M2Doc, showcas-
ing its versatility and wide applicability.

Our experimental results demonstrate that DINO with
M2Doc outperforms previous models by large margin
and achieves state-of-the-art performance on complex
logical layout analysis datasets.

Related Work

This paper analyzes the document layout analysis task from
the perspective of the modalities used, including unimodal
and multi-modal models.

Unimodal Document Layout Analysis

Unimodal layout analysis utilizes visual features to analyze
document layout. Several approaches attempt to utilize ob-
ject detection and instance segmentation methods to detect
and segment document regions.

PubLayNet (Zhong, Tang, and Jimeno Yepes 2019) di-
rectly use Faster R-CNN (Ren et al. 2015) and Mask-RCNN
(He et al. 2017) for paper layout analysis. Lee et al. (Lee
et al. 2019) propose a trainable multiplication layers com-
bined with U-Net (Ronneberger, Fischer, and Brox 2015).
Li et al. (Li, Yin, and Liu 2020) add a domain adaptation
module based on Faster R-CNN. TransDLANet (Hiuyi et al.
2023) uses three parameter-shared multi-layer-perception
(MLP) on top of ISTR. SwinDocSegmenter (Ayan et al.
2023) utilizes both high-level and low-level features of doc-
ument images to initialize the query of DINO. SelfDoc-
Seg (Subhajit et al. 2023) generates pseudo-layouts to pre-
train the image encoder before fine-tuning on layout analysis
datasets following BYOL (Grill et al. 2020).

Although researchers have attempted to improve the per-
formance of original models, these approaches unable to uti-
lize the semantic information of document.

In recent years, many researchers have attempted to intro-
duce multi-modal information from a self-supervised per-
spective. Such as LayoutLM (Yupan et al. 2022), BEiT
(Hangbo et al. 2022), DiT (Li et al. 2022), UDoc (Jiuxiang
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et al. 2021), and StrucText (Yu et al. 2023). The training
of these models comprises two phases: (1) the pre-training
phase, where models are self-supervised training on mas-
sive unlabeled data utilizing multi-modal inputs; (2) the fine-
tuning phase, in which models are supervised training on la-
beled data to complete downstream tasks using pre-trained
weights. With sufficient pre-training on enormous document
data, these models perform well when transferred to vari-
ous downstream document Al tasks, including image clas-
sification, layout analysis, and information extraction. For
instance, DiT is self-supervised trained on 42 million docu-
ment data using Masked Image Modeling (MIM) as its pre-
training objective. However, during the fine-tuning phase,
it merely integrates the well-pre-trained model as a feature
backbone of Cascade R-CNN (Cai and Vasconcelos 2018).
Despite detector benefiting from DiT, it remains essentially
an unimodal pipeline, without utilizing semantic features as-
sociated with the downstream DLA datasets.

Multi-Modal Document Layout Analysis

Multi-modal DLA models focus on utilizing the multi-
modal features of text blocks. For instance, MFCN (Yang
et al. 2017) uses skip-gram to obtain sentence-level tex-
tual features and combines textual and visual features in the
decoder. VSR (Peng et al. 2021) combines three granular-
ity: Chargrid (Katti et al. 2018), Wordgrid, and Sentence-
grid (Denk and Reisswig 2019), into the full text embed-
ding maps as textual input. It then uses two backbones to
extract visual and textual features, which are fused in the
multi-scale-adaptive-aggregation (MSAA) module. Further-
more, VSR emphasizes the importance of relation modeling
for layout analysis, which uses Transformer layers (Vaswani
et al. 2017) to model the relation of text blocks for further
feature enhancement.

These methods have the problem of shallow modal-
ity fusion or complex network structure, which makes
their robustness and effectiveness compromised on complex
datasets.

Method

M2Doc is a pluggable approach that can be directly applied
to enhance the existing document layout analysis detectors,
as shown in Fig 2. The detail architecture of M2Doc is de-
picted in Fig. 3 (a). The main pipeline of our method consists
of four phases: (1) Textual Grid Representation, where a pre-
trained BERT is utilized to convert images to textual grid
representations; (2) Feature Extraction, employing a single
backbone to extract both visual features and textual features;
(3) Early Fusion, where textual and visual features are fused
at corresponding scales; (4) Late Fusion, fusing the visual
features and textual features of text blocks, which is deter-
mined based on the Intersection over Union (IoU) of the
candidate bounding boxes and optical character recognition
(OCR) bounding boxes. Finally, the layout bounding boxes
and categories are predicted based on the fused features.

Textual Grid Representations

Considering a document image I € R7*XWx3 with N
words, where [ and W represent the height and width
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of image. And we have follow-up labels (w;,b;), for
i € {1,...,N}, where w; originating from the OCR
result, it signifies the i-th word or sentence. And b; =
[(z},y}), (#2,y?)] indicates the coordinates of the top-left
and bottom-right corners of the bounding boxes correspond-
ing to the i-th word. To obtain the textual representation of
the document, we refer to the information extraction method
BERTgrid (Denk and Reisswig 2019). We align the OCR re-
sults one by one and input them into the pre-trained BERT
to generate sequential text embeddings 7; € R?*!, where d
represents the feature dimension of the BERT model, with a
value of 768, as shown in Eq.(1).

(Tl,...,TN)ZBERT(wl,...,’U)N) (1)

Finally, we transform the sequential text embeddings 7T; into
a 2D grid representation G € R¥>*W>d baged on b;, which
is defined as follows,

T;
ey |

This grid representation maximizes the preservation of the
documents’ layout and aligns the textual grid representation
G with the original image I at pixel level.

if(z,y) € b;
otherwise

2)

Feature Extraction

We employ a single backbone to extract both textual and vi-
sual features, as shown in Fig. 3. In contrast to VSR, we
contend that the utilization of two distinct backbones is un-
necessary due to the precise pixel-level alignment between
the visual and textual inputs. Consequently, our proposed
method has better generality and demands fewer model pa-
rameters in comparison to VSR.

We use convolution layers to align the channel dimensions
of visual and textual inputs before feeding them into the first
ResNet block (Kaiming et al. 2016). Subsequently, down-
sampling operations are performed in four ResNet blocks to
obtain features at different scales, where each scale becomes
{1/4,1/8,1/16,1/32} of the original input. And we obtain
the corresponding visual features Py and textual features Sy,
where 6 € {1,2,3,4}.

Early Fusion

Due to end-to-end detectors requires the utilization of fea-
tures extracted by the backbone for generating anchors, and
two-stage detectors necessitates the application of RolAlign
to select appropriate features from backbone. So modality
fusion is essential before inputting the features to the Region
Proposal Network (RPN) (Ren et al. 2015) or Transformer
encoder.

We adopt the gate-like mechanism from the referring im-
age segmentation model LAVT (Zhao et al. 2022) to obtain
fusion scores that can adaptively vary with Sp.

ag = 1(5) 3)

Fy = LayerNorm(cg © Sy + Py) ()]

where ® means element-wise multiplication, and 7)(-) refers
to a function consisting of two 1 x 1 convolutional layers fol-
lowed by two activation layers. To calculate the score of Sy,
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Figure 3: The pipeline of our proposed method. The modules with green, red, yellow, and blue backgrounds represent the
Textual Grid Representation, Feature Extraction, Early Fusion, and Late Fusion, respectively.

we use a 1 x 1 convolutional layer followed by a ReLU acti-
vation layer (Nair and Hinton 2010). We then apply another
1 x 1 convolutional layer and a Tanh activation layer to re-
strict the score to the range of (0, 1). We obtain the weighted
textual feature by multiplying the score oy with Sy. Finally,
we add the weighted textual feature to the visual features Py
to obtain the fused feature Fjp.

Since the textual grid representation G equals O in pixels
without text as given in Eq.(2), we normalize the fused fea-
tures using a LayerNorm normalization layer. This normal-
ization ensures the distribution of the fused features is more
consistent. After the early fusion phase, well-fused features
Fy are generated.

Late Fusion

After feeding Fj into either the RPN or Transformer en-
coder, we generate numerous candidate bounding boxes. We
then fuse features based on the candidate bounding boxes.
Specifically, we fuse the visual features P, with the as-
signed block-level textual features for each candidate bound-
ing box. This fusion allows us to obtain more accurate pre-
dictions of the bounding box locations and classifications.

Since we have candidate bounding boxes and sequential
text embeddings T; based on Eq.(1), we can assign each
candidate bounding box its own block-level textual features
through an IoU matching operation.

Accounting for the distinct networks employed in gener-
ating candidate bounding boxes, we will discuss end-to-end
detectors and two-stage detectors separately.

End-to-End Detectors We use DINO (Hao et al. 2023)
as the representative end-to-end detector for illustration. As
shown in Fig. 3 (c), DINO initially flattens the fused features
with corresponding positional encodings and feeds them into
the Transformer encoder layers to enhance the feature rep-
resentation. The output of the Transformer encoder serves
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as the keys and values of each layer of the Transformer
decoder. With regards to the queries of the decoder lay-
ers, DINO splits them into two parts, positonal queries and
content queries. The positional queries explicitly indicate
the position of candidate bounding boxes, while the con-
tent queries are obtained through learnable embeddings that
represent the features of candidate bounding boxes. In each
decoder layer, DINO refines the positions and categories of
candidate bounding boxes gradually.

To enhance the multi-modal feature representations of the
content queries, we calculate the IoU; ; between the pre-
dicted candidate boxes r; where j = {1,..., K} and the
OCR bounding boxes b; where i = {1,..., N}.

|75 () i
IoU, , = Lot 7l
Vi =1 Uby ©)

When the IoU; ; is greater than the threshold, it means that
the word bounding box b; is inside the candidate box r;.
We use Jj = {Z = {1, .. .,N}l(IOUiJ‘ > IOUthreshold)} €
RN to represent the inclusion of the candidate bounding
boxes r; for all N words. Block level textual feature E; €
Re*1 can then be constructed as follows,

Ej =T(T - J;) (6)
where T = (T},...,Tn) € R¥N is the textual feature
matrix obtained in Eq.(1), and I' represents the MLP lay-
ers that map the textual embedding channel dimensions d
to Transformer decoder channel dimensions c. We add the
block level textual features E; to the content queries Query;
to obtain multi-modal content queries.

Query; = Query, + A\ Ej 7

Where \; is an adjustable hyper-parameter. We then use the
new content queries as input to the decoder layer to obtain
finer predictions.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Method Model | €ap- Foot- For- List- Page-  Page- = Pic- Section- 10 i migle | mAP
tion note mula item footer header ture header
Human [1] - 89 91 85 88 94 89 71 84 81 86 72 83
" Faster R-CNN[1] | 1 R101 [ 70.1 737 635 81.0 589 720 720 684 822 854 7199 | 734
Mask R-CNN [1] R101 | 71.5 71.8 634 80.8 59.3 700 727 69.3 829 858 804 | 735
YOLOVS5 [1] v5x6 | 777 772 662 862 61.1 679 77.1 74.6 86.3 88.1 827 | 76.8
Cascade
Mask R-CNN R101 | 732 753 669 839 617 713 75.0 70.1 859 87.1 815 | 75.6
TransDLANet [3] R101 | 682 747 61.6 81.0 548 68.2  68.5 69.8 824 838 81.8 | 72.3
SwinDocSegmenter [4] | Swin | 83.6 64.8 623 823 65.1 66.4  84.7 66.5 874 882 633 | 769
DINO [5] R101 | 71.8 78.8 727 856 63.0 76.6  74.1 72.1 873 876 851 | 777
VSR [6] R101 | 726 72.1 73.8 862 818 81.3 63.1 82.5 794 884 80.7 | 78.4
Ours (Cascade
Mask R-CNN) R101 | 86.0 836 87.1 928 86.7 856 763  89.1 86.4 927 87.8 | 86.7
Ours(DINO) R101 | 853 86.7 898 936 903 91.0 784 90.7 874 939 91.3 | 89.0

Table 1: Performance comparisons on DocLayNet. Bold indicates SOTA and underline indicates the second best. ([1](Pfitzmann
et al. 2022), [2](He et al. 2017), [3](Hiuyi et al. 2023), [4](Ayan et al. 2023), [S](Hao et al. 2023), [6](Peng et al. 2021) )

Our experimentation has shown that utilizing a summa-
tion fusion method in the late fusion phase can yield superior
results compared to the gate mechanism used in the early fu-
sion phase. This difference can be attributed to the fact that
the textual features in the early fusion phase are extracted by
the backbone, while the textual features in the late fusion are
provided directly by the pre-trained language model.

Two-Stage Detectors In contrast to end-to-end detectors,
which employs a Transformer encoder-decoder and learn-
able queries to generate candidate bounding boxes, two-
stage detectors uses the RPN to generate candidate bound-
ing boxes called Region of Interests (ROIs), as shown in
Fig. 3 (b). After obtaining the ROIs, two-stage detectors ex-
tracts the features using ROIAlign and feeds the features into
the R-CNN network for further regression on the offsets of
ROIs.

The multi-modal ROI feature can be obtained as follows:

RF; = RF; + A2 E; (3)

where RF; is the feature in the ¢¢th ROI and ), is a hyper-
parameter controls trade-off between two modality features.
E; is the corresponding block-level textual features, which
is obtained by using IoU matching and block-level textual
feature transforming in Eq.( 5) and Eq.( 6). Finally, we send
the multi-modal ROI features to R-CNN for better categori-
sation and precise regression.

Experimental Results
Datasets

We evaluate the effectiveness of our method on three lay-
out analysis datasets: PubLayNet (Zhong, Tang, and Ji-
meno Yepes 2019), DocLayNet (Pfitzmann et al. 2022), and
M®Doc (Hiuyi et al. 2023).

PubLayNet PubLayNet is a widely used dataset that con-
tains 360,000 document images. As all images in Pub-
LayNet originate from PDF documents, the extraction of
word-level OCR annotations can be facilitated through the
use of PDFMiner (Shinyama 2015). PubLayNet is a physi-
cal layout analysis dataset that focuses on scientific articles
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and only classifies the basic units of document images, with
5 categories: Text, Title, List, Table, and Figure.

DocLayNet DocLayNet is a recently released logical lay-
out analysis dataset that focuses on complex, challenging,
and diverse layouts. It contains 80,863 manually annotated
pages with sentence-level OCR annotations. DocLayNet
mainly include 6 scenarios: Financial Reports, Manuals, Sci-
entific Articles, Laws & Regulations, Patents, and Govern-
ment. It distinguishes eleven categories in the layout, in-
cluding Caption, Footnote, Formula, List-item, Page-footer,
Page-header, Picture, Section-header, Table, Text, and Title.

M®Doc M®Doc is a newly released logical layout analy-
sis dataset includes 9,080 document images from 7 scenar-
ios: Scientific articles, Textbooks, Books, Test papers, Mag-
azines, Newspapers, and Notes. M®Doc contains PDF doc-
uments, scanned and photographed documents, and we get
sentence-level OCR annotations using OCR engine. M®Doc
is the first dataset to consider the commonality and speci-
ficity of documents, it classify 74 categories, including QR
code, advertisement, figure, and algorithm, etc.

Evaluation Metric and Implementation Details

To measure the performance of the document layout analysis
models, we use the metric mean Average Precision (mAP)
@ IoU [0.50:0.95:0.05], which is commonly used in the obe-
ject detection task.

In main experiments, we employ DINO (Hao et al. 2023)
and Cascade Mask R-CNN (Cai and Vasconcelos 2018) as
representative end-to-end and two-stage detectors, respec-
tively. We use ResNet-101 (Kaiming et al. 2016) with FPN
(Tsung-Yi et al. 2017) to extract features. Considering that
both DocLayNet and M®Doc contain non-English texts, we
use BERT-Base-Multilingual as the language model and
load the pre-trained weights provided by HuggingFace'.
We also load the pre-trained weights of DINO and Cas-
cade Mask R-CNN detectors from the COCO 2017 dataset
(Tsung-Yi et al. 2014) for initialisation. For the Cascade

"https://huggingface.co/bert-base-multilingual-cased
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Method Model| AP50 AP75 Recall mAP
SOLOV2 [1] R101 | 67.5 514 61.5 [46.8
Faster R-CNN [1] R101 | 67.8 572 57.2 |49.0
Mask R-CNN [1] R101 | 58.4 46.2 50.8 |40.1
Cascade Mask R-CNN [1] | R101 | 70.5 629 62.1 |54.4
HTC [1] R101 | 743 67.2 68.1 |58.2

SCNet [1] R101 | 73.5 65.1 67.3 |56.1
Deformable DETR [1] R101 | 76.8 634 752 |57.2
Querylnst [1] R101 | 67.1 58.1 71.0 |51.0

ISTR [1] R101 | 80.8 70.8 73.2 |62.7
TransDLANet [1] R101 | 82.7 727 749 |64.5
VSR [2] R101 | 76.2 68.8 66.4 |59.9

DINO [3] R101 | 84.6 76.7 82.9 |68.0
Ours(Cascade Mask R-CNN)| R101 | 78.0 70.7 67.9 |61.8
Ours(DINO) R101 | 86.7 79.4 82.5 [69.9

Table 2: Performance comparisons on M®Doc. ([1](Hiuyi
et al. 2023), [2](Peng et al. 2021), [3](Hao et al. 2023))

Mask R-CNN, we use 10 anchors [0.01, 0.02, 0.05, 0.1, 0.2,
0.5, 1.0, 2, 5, 10] to adapt to different scales of input. For the
DINO, we use DINO-4Scale, and set the query numbers to
900 following the default settings of DINO.

We train our model based on MMDetection (Chen et al.
2019). We adopt the same setting of models trained on both
the M®Doc dataset and the DocLayNet dataset., Cascade
Mask R-CNN uses the SGD optimiser with an initialised
learning rate of 2e-2 to train for 36 epochs, while learning
rate decays to 2e-3 on 27th epoch and decays to 2e-4 on 33rd
epoch; DINO uses the AdamW optimiser (Ilya and Frank
2019) with an initialised learning rate of 1e-4 to train for 36
epochs, while learning rate decays to 3.3e-5 on 27th epoch
and decays to le-5 on 33rd epoch. For PubLayNet dataset,
both Cascade Mask R-CNN and DINO training 6 epochs
with the same initialized learning rate in DocLayNet, and
both learning rates divided by 10 on 5th epoch.

Results and Discussion

The performance of all methods on DocLayNet is summa-
rized in Table 1. The first row represents the human perfor-
mance baseline provided by the DocLayNet. Notably, our
model is the first to significantly outperform the human base-
line. Our multi-modal models achieve significant improve-
ments over the performance of their previous unimodal mod-
els. DINO was improved by 11.3% mAP (from 77.7% mAP
to 89.0% mAP), and Cascade Mask R-CNN also obtained
an 11.1% mAP gain (from 75.6% mAP to 86.7% mAP).

It’s worth noting that VSR as the only multi-modal model
in Tablel except for our method, and it still performs bet-
ter than other unimodal detectors. Notably, VSR and our
method have both demonstrated tremendous improvements
in certain categories (Page-header, Page-footer, Section-
header) compared to other detectors. Instances in these cat-
egories have semantically distinct elements, thus detectors
can get better classification accuracy by integrating textual
features. Therefore, these categories can be better enhanced
from multi-modal modeling methods.

Additionally, it is interesting to note that the only category
with a worse mAP than the unimodal detectors is Figure,
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Method Model Text Title List Table FiguremAP
Faster R-CNN [1] [X101(91.0 82.688.3 95.4 93.7 [90.2
Mask R-CNN [1] X1011(91.6 84.088.6 96.0 94.9 |91.0

Cascade RI101(93.988.494.7 97.6 96.9 |94.2

Mask R-CNN ’ : ’ ’ ’ ’
UDoc'[3] R50 (93.988.593.7 97.3 96.4 |93.9

DiTf [4] ViT |94.4 88.994.8 97.6 96.9 |94.5

LayoutL.Mv3[5] ViT [94.590.695.5 97.9 97.0 |95.1
StructTextv2[6] vit | - - - - - |955
SwinDocSegmenter [7]| Swin [94.6 87.293.0 97.9 97.3 |93.7
TransDLANet [8] |R101(94.389.295.2 97.2 96.6 |94.5
VSR [9] X101 (96.7 93.194.7 97.4 96.4 |95.7
DINO [10] R101 [94.8 89.4 97 98.3 97.6 |95.4
Ours(Cascade
Mask R-CNN) R101 (94.3 88.795.2 97.3 96.7 |94.5
Ours(DINO) R101 |95.6 89.796.6 98.1 97.3 |95.5

Table 3: Performance comparisons on PubLayNet. (“”
denotes pre-trained methods, [1](Zhong, Tang, and IJi-
meno Yepes 2019), [2](He et al. 2017), [3](Jiuxiang et al.
2021), [4](Li et al. 2022), [5](Yupan et al. 2022), [6](Yu
et al. 2023), [7](Ayan et al. 2023), [8](Hiuyi et al. 2023),
[9](Peng et al. 2021), [10](Hao et al. 2023))

where most instances do not have texts. Thus it doesn’t gain
mAP improvements using multi-modal models.

As shown in Table 2, traditional two-stage detectors have
a recall around 60%, and their mAP is below 60%. In con-
trast, the recall of end-to-end detectors is around 70%, and
their mAP is mostly above 60%. Notably, DINO’s recall can
reach 82.9% because of its large number of queries, thus its
mAP is close to 70%. The high correlation between the mAP
and Recall metrics is mainly due to several difficulties in the
M®Doc dataset, including a great variation in input image
scale, complex data scenario distribution, and the need to
distinguish 74 categories for each instance. These difficulties
lead to a low recall of the model for some scenarios, which in
turn limits the detection performance. Although our method
does not solve the problem of low recall on MSDoc, we can
still improve the performance of the model at the original
recall level and achieve state-of-the-art result 69.9% mAP.

On the PubLayNet dataset, as presented in Table 3, we
also compare pre-trained models, including LayoutLMv3
(Yupan et al. 2022), DiT (Li et al. 2022), UDoc (Jiuxiang
etal. 2021), and StrucTextv2 (Yu et al. 2023). Although they
utilize a well-pre-trained ViT (Dosovitskiy et al. 2020) back-
bone, VSR with ResNeXt-101 (Saining et al. 2017) as the
backbone achieves the best performance on the PubLayNet
dataset. Our proposed method also achieves a comparable
result 95.5% mAP. However, we observed that our method
does not significantly outperform DINO itself. We speculate
that this is because PubLayNet is a simple physical layout
analysis dataset, which only distinguishes five basic cate-
gories unrelated to semantic information for scientific arti-
cles. Therefore, a good enough unimodal detector such as
DINO can perform well on this dataset.

Furthermore, we find that the mAP gain for the Table and
Figure categories was not as significant as for other cate-
gories after using multi-modal modeling(M2Doc or VSR),
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Method Early | Late | AP5S0 AP75 Recall mAP
v | v | 867 794 825 699

v | X | 854 774 829 685

DINO X | v | 853 772 828 684

X | x | 846 767 829 680

Casead v | v 780 707 679 618
ascade v X | 760 695 674 605

X | v | 763 693 673 60.9

MaskR-CNN | o0 | % | 740 686 657 597

Table 4: Main ablation results on M®Doc test set

Module | Strategies | AP5S0 AP75 Recall mAP
Early- Concate 86.5  78.9 82.4 69.4
Sum 86.2 78.8 82.1 69.1

fusion Gate 86.7 79.4 82.5 69.9
Late- Concate 85.6 78.1 82.6 69.2
Sum 86.7 79.4 82.5 69.9

fusion Gate 85.5 76.9 82.3 68.5

Table 5: Ablation results on M®Doc test set using DINO with
different fusion strategies in two modules.

and even exhibited a decline. Such intriguing experimental
phenomenon was observed in Tabel 3 and 5. We attribute
this phenomenon to the presence of text content within these
categories, which can potentially degrade the detection qual-
ity of detectors. For instance, the determination of bound-
aries becomes challenging for multi-modal detectors when
dealing with pictures containing overlaid texts.

Ablation and Effectiveness Analysis

To validate the effectiveness of our proposed two level
modality fusion strategy, we conducted ablation studies on
the M%Doc test set, and the results are presented in Table 4.
To determine whether the early-fusion module indeed im-
proves detector performance, we compared the results with
and without the early-fusion module using DINO and Cas-
cade Mask R-CNN detectors, respectively. As shown in Ta-
ble 4, the removal of the early-fusion led to a 0.5% absolute
mAP drop in DINO and a 0.8% drop in Cascade Mask R-
CNN. The removal also resulted in a drop of approximately
0.8% in AP50 and AP75 for DINO and a 1.0% drop for Cas-
cade Mask R-CNN. These results demonstrate the benefits
of the early-fusion. Similarly, we verified the effectiveness
of the late-fusion following the same process, and we can see
the mAP decrease with the removal of the late fusion, which
demonstrates the benefits of the late fusion.And when we
use both fusion modules, Cascade Mask R-CNN and DINO
can get 2.1% and 1.9 % mAP gain respectively. These re-
sults indicate that either early-fusion or late-fusion module
is beneficial to both detectors and provides a relatively large
boost when used together due to the different fusion levels.
Table 5 presents a comparison of the performance of
early-fusion and late-fusion using three different fusion
strategies. The results indicate that the best result is achieved
by utilizing the gate mechanism in Eq.(4) for the early-
fusion module and the summation for the late-fusion mod-
ule. We think this may be attributed to the unique textual fea-
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Method M2Doc | AP50 AP75 Recall mAP

X 84.6 76.7 82.9 68.0

DINO v 86.7 79.4 82.5 69.9

A +2.1 +2.7 -0.4 +1.9

Cascade X 74.9 68.6 65.7 59.7

v 78.0  70.7 67.9 61.8

Mask R-CNN A +3.1 +2.1 +2.2 +2.1
X 73.2 64.7 63.7 55.9

Mask R-CNN v 71.5 69.2 66.1 58.8
A +4.3 +4.5 +2.4 +2.9

X 72.3 64.6 62.6 55.3

Faster R-CNN v 77.3 68.6 65.1 57.9
A +5.0 +4.0 +2.5 +2.6

X 81.4 70.1 73.8 62.3

Deformable v | 837 721 751 639
DETR A +2.3 +2.0 +1.3 +1.6

Table 6: Comparison between detectors before and after
plugging M2Doc on M®Doc test set. Due to the different
experimental setting, the baseline results we reproduce are
higher than the results provided by M%Doc.

ture distributions in two module, as previously mentioned.

Pluggablity of M2Doc

To further validate the pluggablity of M2Doc, we also com-
bine it with other detectors. As shown in Table 6, we con-
duct experiments on M®Doc dataset using Mask R-CNN
(He et al. 2017), Faster R-CNN (Ren et al. 2015), and De-
formable DETR (Xizhou et al. 2021) besides DINO and
Cascade Mask R-CNN. The experimental setting of Mask
R-CNN and Faster R-CNN basically refer to the setting of
Cascade Mask R-CNN mentioned above, and Deformable
DETR uses the default setting. In Table 6, with the use of
M2Doc, all detectors get significant improvements across all
metrics. These qualitative results demonstrate the excellent
generality and robustness of M2Doc.

Conclusion

In this paper, we propose an effective and pluggable multi-
modal fusion approach M2Doc for document layout analy-
sis. M2Doc aims to endow existing unimodal detectors with
multi-modal capablities for DLA tasks. We have demon-
strated the broad applicability of M2Doc by implementing
it on top of both two-stage and end-to-end detectors. Exten-
sive experiments on three benchmark datasets, DocLayNet,
MSDoc and PubLayNet validate that M2Doc significantly
boosts the performance over baseline unimodal detectors.
While promising progress has been made, some limitations
persist such as marginal gains on simple datasets where uni-
modal methods suffice. Future work can explore adaptive
fusion techniques and incorporate structural and semantic
relationships between document entities. Nonetheless, we
believe M2Doc provides an important step towards devel-
oping more unified multi-modal models for advanced docu-
ment layout understanding.
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