
Deep Semantic Graph Transformer for Multi-View 3D Human Pose Estimation

Lijun Zhang1, 2, Kangkang Zhou1, 2, Feng Lu3, 4, Xiang-Dong Zhou1, 2, Yu Shi1, 2

1Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China

3Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
4 Peng Cheng Laboratory, Shenzhen, China

{zhanglijun, zhouxiangdong, shiyu}@cigit.ac.cn, zhoukangkang21@mails.ucas.ac.cn, lf22@mails.tsinghua.edu.cn

Abstract

Most Graph Convolutional Networks based 3D human pose
estimation (HPE) methods were involved in single-view 3D
HPE and utilized certain spatial graphs, existing key prob-
lems such as depth ambiguity, insufficient feature representa-
tion, or limited receptive fields. To address these issues, we
propose a multi-view 3D HPE framework based on deep se-
mantic graph transformer, which adaptively learns and fuses
multi-view significant semantic features of human nodes to
improve 3D HPE performance. First, we propose a deep se-
mantic graph transformer encoder to enrich spatial feature
information. It deeply mines the position, spatial structure,
and skeletal edge knowledge of joints and dynamically learns
their correlations. Then, we build a progressive multi-view
spatial-temporal feature fusion framework to mitigate joint
depth uncertainty. To enhance the pose spatial representa-
tion, deep spatial semantic feature are interacted and fused
across different viewpoints during monocular feature extrac-
tion. Furthermore, long-time relevant temporal dependencies
are modeled and spatial-temporal information from all view-
points is fused to intermediately supervise the depth. Exten-
sive experiments on three 3D HPE benchmarks show that our
method achieves state-of-the-art results. It can effectively en-
hance pose features, mitigate depth ambiguity in single-view
3D HPE, and improve 3D HPE performance without provid-
ing camera parameters. Codes and models are available at
https://github.com/z0911k/SGraFormer.

Introduction
3D human pose estimation (HPE) is a popular research topic
in computer vision. It is a crucial tool for analyzing human
behavior since it is able to estimate human pose by predict-
ing the locations of main human body joints in 3D space. As
a result, it is the foundational technology for many human-
assisted vision tasks, such as robotics, action recognition,
pedestrian re-identification, and virtual/augmented reality.

With the advancement of deep learning techniques, 3D
HPE methods based on Convolutional Neural Networks
(CNNs) have risen to prominence. They are broadly char-
acterized as direct estimation methods (Pavlakos et al. 2017;
Luvizon, Tabia, and Picard 2019) and 2D-3D lifting methods
(Tekin et al. 2017; Zhou et al. 2019). The latter performs bet-
ter due to the intermediate supervision of 2D poses, which
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is the current mainstream. CNNs commonly concatenate the
2D joint coordinates directly as input features in the 2D-3D
lifting approaches, ignoring the original spatial arrangement
of human body joints. Since Graph Convolutional Networks
(GCNs) have good performance when processing irregular
graph data, researchers have introduced GCNs into 3D HPE
and gained some achievements.

GCN-based 3D HPE methods are currently employed pri-
marily in single-view 3D HPE (Cai et al. 2019; Zhao et al.
2019; Xu and Takano 2021; Zhang et al. 2022b), where
graph features are commonly generated based on adjacency
matrices of connected 2D joints. However, there is an inher-
ent depth ambiguity problem with single-view 3D HPE, as
a 2D pose may project multiple 3D poses. The utilization
of multi-view information can mitigate the depth ambiguity
problem, while few graph-based multi-view 3D HPE meth-
ods have evolved, hence this paper covers this direction.

Most GCN-based 3D HPE approaches (Pavllo et al. 2019;
Zhao et al. 2019; Xu and Takano 2021; Liu et al. 2021)
only consider the connections between joint points, without
taking into account the original position and skeletal edge
information of human joints, as well as their effective fu-
sion. Additionally, the GCN has a limited receptive field,
resulting in inadequate feature representation. Some work
(Cai et al. 2019; Wang et al. 2020; Zeng et al. 2021; Zhang
et al. 2022b) incorporated temporal information to enhance
the feature and alleviate depth uncertainty, while it is diffi-
cult to build long-time dependencies. Transformer has ad-
dressed this issue and has been employed in several 3D HPE
methods with decent results (Zheng et al. 2021; Shuai, Wu,
and Liu 2022; Zhao et al. 2023; Li et al. 2023). However,
these works directly transform and concatenate the coordi-
nates of 2D points into input feature tokens, with no regard
for node spatial structural information such as graphs. Only
a few methods (Zhao, Wang, and Tian 2022; Ionescu et al.
2023) incorporated graph features into transformer, while
they have limited model performance.

To address the above problems, we propose a multi-view
3D HPE method based on a deep semantic graph trans-
former. The network can dynamically learn deep semantic
features and their correlations involving the position, spatial
structure, and skeletal edge of all human joints. It progres-
sively fuses significant spatial-temporal information across
multiple viewpoints and successfully models the long-time
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Figure 1: Our semantic graph transformer encoder over com-
mon transformer encoder, which dynamically learns the po-
sition, spatial structure, and skeletal edge knowledge of hu-
man joints, as well as their correlations.

dependencies of relative frames, with the goal of effectively
alleviating the depth ambiguity problem of single-view 3D
HPE and improving model performance.

Many graph-based 3D HPE methods get graph features
by manually creating adjacency matrices, which are then fed
into CNNs to predict the pose. These graphs mainly focus on
the connections between joints while ignoring many signif-
icant details like joint locations or edges. The convolutional
window has a limited receptive field, making it challeng-
ing to model long-time joint dependencies. Also, since its
weights are independent of the input, there is no interaction
between the graph features, which can be considered static.
To deal with these, we improve the common transformer and
propose a deep semantic graph transformer encoder by intro-
ducing several graph features conveying spatial information
on joint position features, as shown in Figure 1. To extract
deep hidden semantic knowledge, we simultaneously mine
the position, spatial structure, and bone edge information as-
sociated with human nodes and generate a variety of relevant
feature embeddings. Then, we establish a dynamic commu-
nication strategy among these features via a semantic atten-
tion mechanism, which fully exploits their correlations and
performs effective fusion to enhance feature representation.

In order to reduce depth ambiguity and improve model
performance, we build a progressive spatial-temporal feature
fusion framework across multiple viewpoints. To make the
spatial feature more expressive, we perform cross-view spa-
tial feature fusion during monocular semantic feature extrac-
tion using multi-head attention between features of different
views. The mutual supervision and interaction of spatial se-
mantic knowledge from different viewpoints are utilized to
rich the joint features. To supplement the depth information,
the spatial and temporal features across multiple viewpoints
are progressively fused, and long-time dependencies of rele-
vant frames are dynamically learned and adopted. Extensive
experiments demonstrate the efficacy of our method. It sig-

nificantly mitigates the depth ambiguity problem of single-
view 3D HPE and improves the accuracy of 3D pose predic-
tion with the proposed graph features and fusion framework.

The main contributions of this paper are:
• We propose a deep semantic graph transformer encoder,

which effectively enhances pose feature representation
through deeply mining the position, spatial structure, and
skeletal edge information of human joints, as well as
learning their correlations dynamically.

• We build a progressive multi-view spatial-temporal fea-
ture fusion framework. The depth uncertainty of human
joints is greatly reduced by performing feature fusion
from spatial to temporal and modeling long-time depen-
dencies of relevant images across multiple viewpoints.

• Extensive experiments on three popular 3D HPE bench-
marks reveal that our method can outperform several
state-of-the-art 3D HPE approaches, significantly miti-
gates the depth ambiguity problem of single-view 3D
HPE and improves 3D HPE performance.

Related Works
CNN-Based 3D HPE Methods
According to different frameworks, CNN-based 3D HPE
methods can be classified into direct estimation and 2D-3D
lifting approaches. The direct estimation methods (Luvizon,
Picard, and Tabia 2018; Luvizon, Tabia, and Picard 2019;
Xiang, Joo, and Sheikh 2019) design an end-to-end network
to directly infer 3D pose from the input image. The 2D to
3D lifting methods (Zhou et al. 2019; Cai et al. 2019; Pavllo
et al. 2019; Yeh, Hu, and Schwing 2019; Zeng et al. 2021;
Liu et al. 2020b) first utilize a 2D pose estimator to obtain
the 2D pose, then adopt the 2D-3D lifting network to acquire
3D pose, which usually performs better due to intermediate
supervision of 2D pose. Our method adheres to the 2D-3D
lifting line, but improves several constraints of CNNs-based
methods by combining the graph with transformer.

It can also be divided into single-view and multi-view 3D
HPE based on camera view number. Single-view 3D HPE
methods (Luvizon, Tabia, and Picard 2019; Zheng et al.
2021; Li et al. 2022b; Zeng et al. 2021) predict 3D pose
from monocular images, which is an ill-posed problem with
depth ambiguity during 2D-3D pose mapping. Multi-view
3D HPE methods (Shuai, Wu, and Liu 2022; He et al. 2020;
Ma et al. 2021) have evolved to address this, because knowl-
edge from various views can supplement the missing joint
depth, yielding superior results in complex scenes with oc-
clusion or camera motion. Some jobs (He et al. 2020; Xie,
Wang, and Wang 2022; Wang et al. 2021; Iskakov et al.
2019) used epipolar geometry or triangulation to integrate
multi-view 2D heatmaps while neglecting considerable joint
semantic knowledge and requiring pre-providing camera pa-
rameters. Some (Bouazizi et al. 2021; Gholami et al. 2022;
Kim et al. 2022) fused multi-view features only at the deep
network levels, ignoring useful information at the shallow
and medium network layers. Some (Iqbal, Molchanov, and
Kautz 2020; Zhang et al. 2020) used complex loss func-
tions, making model training challenging. We present a pro-
gressive multi-view feature fusion framework from spatial
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to temporal using basic L2 loss, with no extrinsic camera
parameters required during implementation.

Graph-Based 3D HPE Methods
Current graph-based 3D HPE work mostly employs GCNs
to acquire graph features of 2D poses and then predict 3D
poses, which is mainly used in single-view 3D HPE (Cai
et al. 2019; Zhao et al. 2019; Liu, Zou, and Tang 2020; Liu
et al. 2020a; Zou et al. 2020, 2021; Xu and Takano 2021;
Liu et al. 2021; Zhang et al. 2022b, 2023a). However, most
of these methods (Pavllo et al. 2019; Zhao et al. 2019; Cai
et al. 2019; Xu and Takano 2021; Liu et al. 2021; Zhang
et al. 2022b, 2023a) only consider certain structural infor-
mation in the pose graph, ignoring numerous significant sig-
nals such as joint locations and bone edges. Some (Cai et al.
2019; Wang et al. 2020; Zeng et al. 2021; Liu et al. 2021;
Zhang et al. 2022b, 2023a) use temporal information of re-
lated images to help identify the joint depth of the target im-
age, although modeling long-time relationships is challeng-
ing. In contrast to these efforts, we construct a deep semantic
graph transformer encoder that dynamically and adaptively
learns the location, spatial structure, and skeletal edge prop-
erties of human joints. We also create a multi-view informa-
tion fusion network capable of mining the spatial-temporal
dependencies of human nodes in long-time related images.

Transformer-Based 3D HPE Methods
Due to the superior performance of transformer (Vaswani
et al. 2017) in modeling long-range dependencies, 3D HPE
work utilizing transformer has increasingly emerged. Cur-
rently, its primary application is in single-view 3D HPE
(Zheng et al. 2021; Li et al. 2022b,a; Zhao, Wang, and Tian
2022; Zhao et al. 2023; Li et al. 2023; Gong et al. 2023;
Shan et al. 2023), and only a few jobs are about multi-view
(He et al. 2020; Ma et al. 2021; Shuai, Wu, and Liu 2022;
Zhang et al. 2023b; Zhou et al. 2023). The input feature to-
kens of most these works are generally converted by 2D joint
positions that ignore much spatial structure information of
human nodes. A few single-view works (Zhao, Wang, and
Tian 2022; Ionescu et al. 2023) mix graphs with transformer
together, but they only evaluate certain structural messages
and have restricted performance. Our work combines graphs
with transformer networks. It first proposes a semantic graph
transformer encoder that learns the position, structure, and
edge features of human joints adaptively to enhance node
spatial feature representation. A multi-view spatial-temporal
feature fusion framework is also developed to address the
depth ambiguity issue of single-view 3D HPE and improve
model performance.

Method
The framework of the proposed method is illustrated in Fig-
ure 2. For the input image sequence I = {Ii}V×Ti=1 with T
frames from V views, we first use an offline 2D pose es-
timator to detect the 2D pose P2D ∈ RT×J×2 of the hu-
man body in each frame, and then input these 2D poses into
the subsequent 2D-3D lifting network to estimate the 3D
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Figure 2: The architecture of our method. A deep seman-
tic graph transformer encoder involving the position, spatial
structure, and bone edge information of human joints is pro-
posed to enhance spatial feature representation. A progres-
sive multi-view spatial-temporal feature fusion framework is
built to mitigate the depth ambiguity of single-view 3D HPE
and improve 3D HPE performance.

pose P3D ∈ RT×J×3 of the target image Ii. In our net-
work, we first propose a deep semantic graph transformer
encoder to fully extract the position, structure, and skeletal
edge features involved in human joints, and utilize the atten-
tion mechanism to mine their correlations and dependencies
to enhance the representation of spatial features. On this ba-
sis, we build a hierarchical multi-view information fusion
framework to fully fuse the spatial and temporal features
from multiple views, mitigate depth ambiguity of single-
view 3D HPE, and enhance 3D pose prediction accuracy.

Input Feature Embedding
Human body joints mainly involve the location of each joint,
the spatial structure formed by all joints, and bones between
connected joints. Most current graph-based 3D HPE work
utilizes the adjacency matrices produced by the connections
between joints to construct the graph feature, which only de-
picts part of the structural information of the human joints,
while disregarding the influence of the position and bone
edges. In order to enrich the spatial knowledge of pose fea-
tures, we here consider the position, spatial structure, and
skeleton edge feature embeddings of human nodes at the
same time, and try to dynamically learn and mine their cor-
relations. The following are the specifics of these features:

Node position embedding. The transformed features of
the 2D joint coordinates obtained by the 2D pose estimator
are defined as the node position embedding:

X = ϕ
(
‖T,J
i=1,j=1 {Pij}

)
, (1)

where Pij = (xij , yij), ϕ is a feature conversion function.
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Figure 3: The position, spatial structure, and bone edge fea-
ture embeddings of five connected nodes.

It describes the initial spatial position information of each
node ignored by many GCN-based 3D HPE approaches.

Spatial graph embedding. Based on connections of hu-
man joints, we construct multi-order graph features from
global to local to describe the spatial structure of human
joints. The global graph denotes the connected relationships
between all nodes, whereas the local graph depicts specific
special relationships such as similarity. For a 1-order graph
adjacency matrix A, if there is a connection between node i
and j, then its element aij = 1, otherwise aij = 0. These
graph features serve as the node spatial embedding G and
characterize their spatial arrangements, denoted as:

G = ‖Kk=1σ
(
WkXÃk

)
, (2)

where Ã = D̂−
1
2 ÂD̂−

1
2 is the symmetric matrix of Â.

Â = A + I , A is the interconnecting adjacency matrix, and
I means self-connections. D̂ is the normalized diagonal ma-
trix of Â. W = {wij} is a learnable weight matrix. σ de-
notes a nonlinear activation function, ‖ is the concatenation
of K kinds of global to local graph features.

Edge graph embedding. The bone edge connecting two
nodes describes their spatial information as well. We build
the edge graph adjacency matrixB based on whether there is
a connected bone between two points, and use their distance
as the corresponding element of this matrix. This feature is
used as the node edge embedding E, depicting the skeletal
connection and bone length between two connected joints.

E = σ
(
WXB̃

)
, (3)

where bij is the element of matrix B at position (i, j). If i
and j is connected, bij = Lij = ‖Pi − Pj‖2, else bij = 0.

Semantic Graph Transformer Encoder
We improve the common transformer encoder (Vaswani
et al. 2017) and propose a semantic graph transformer en-
coder, as shown in Figure 1. In order to enhance the pose
spatial feature representation, it deeply mines significant se-
mantic information hidden in the position, spatial, and edge
embeddings of all human joints, and dynamically builds an
adaptive communication and fusion bridge between them.

The attention matrix can be analogous to a row-
normalized adjacency matrix of a directed weighted com-
plete graph. Unlike a static input graph, it aggregates input

features dynamically using the attention mechanism. When
producing the attention matrix, however, there is no direct
way to merge the input spatial features. To solve the prob-
lem, we incorporate spatial embedding G into position em-
bedding X and propose the semantic attention (SA), which
is described as:

Qp = LN(ψ1(X)),Kp = LN(ψ2(X)), Vp = LN(ψ3(X)),
(4)

SA(Qp,Kp, Vp) = Softmax
(
QpK

>
p /
√
d+ σ(G)

)
Vp,

(5)
where ψ is a linear layer, and d is the feature dimension.
σ(G) serves as a bias term to position features, indicating
the combination of joint spatial and location knowledge. The
multi-head semantic attention (MHSA) is also utilized to
further enhance the feature, denoted as:

MHSA(X) = ‖Hh=1SA(Qh
p ,K

h
p , V

h
p ), (6)

where ‖ is the concatenation of H attention heads. To make
the feature more expressive, we further merge skeletal edge
embeddings associated with each pair of connected joints
into the position and spatial features. We transform their out-
puts passing through the MHSA and perform element-wise
product with the layer-normalized and linear converted edge
features. Residual connection is utilized to help in network
training. Node features from layer l − 1 to l are changed as:

X l′ = MHSA(X l−1) +X l−1, (7)

X l = X l′ + µl
p(X

l′) + τ lp
(
µl
p(X

l′)� LN(ψp(E
l−1))

)
,

(8)
El = El−1 + τ le

(
µl
e(X

l′)� LN(ψe(E
l−1))

)
, (9)

where� denotes element-wise product. µ and τ are different
feature transformation functions in the feedforward network.

Progressive Multi-View Feature Fusion
Single-view 3D HPE suffers from severe depth ambiguity.
Since a monocular image cannot determine the depth of hu-
man joints, a 2D pose may map several different 3D poses,
making single-view 2D-3D lifting challenging. To address
this issue, we take full advantage of the intermediate super-
vision of information from multiple viewpoints and design a
progressive multi-view feature fusion framework from spa-
tial to temporal, which alleviates depth uncertainty and im-
proves 3D pose prediction accuracy.

Cross-view Spatial Fusion (CSF). To improve the spatial
feature representation, we perform cross-view spatial feature
fusion during the spatial semantic feature extraction of each
individual viewpoint. The node and edge features are fused
individually to mine richer unique information. Assume the
output node features of layer l of view v1 and v2 are Xv1

and Xv2, respectively. We first transform them using linear
layers, and then feed them into the general transformer en-
coder for interaction and fusion. The convertedXv1 is as the
Q and K of the multi-head attention, while the converted
Xv2 is as the V . The fusion node feature is generated as:

X ′ = MHA (η1 (Xv1) , η2 (Xv1) , η3 (Xv2)) , (10)

X ′′ = X ′ +Xv1 +Xv2, (11)
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Methods Dir. Disc. Eat Greet Phone Photo Pose Purch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Single-view methods

(Ionescu et al. 2023) 47.9 50.0 47.1 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 54.3 40.0 42.9 50.5
(Zeng et al. 2021) 43.1 50.4 43.9 45.3 46.1 57.0 46.3 47.6 56.3 61.5 47.7 47.4 53.5 35.4 37.3 47.9
(Geng et al. 2023) - - - - - - - - - - - - - - - 47.8
(Zhao et al. 2023) - - - - - - - - - - - - - - - 45.2
(Liu et al. 2020b) 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
(Zheng et al. 2021) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
(Li et al. 2023) 39.1 42.7 38.7 40.3 44.1 50.0 41.4 38.7 53.9 61.6 43.6 40.8 42.5 29.6 30.6 42.5
(Zhang et al. 2022a) 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
(Gong et al. 2023) 33.2 36.6 33.0 35.6 37.6 45.1 35.7 35.5 46.4 49.9 37.3 35.6 36.5 24.4 24.1 36.9
(Ci et al. 2023) 31.7 35.4 31.7 32.3 36.4 42.4 32.7 31.5 41.2 52.7 36.5 34.0 36.2 29.5 30.2 35.6

Multi-view methods (camera parameters are given)

(Kadkho. et al. 2021) 39.4 46.9 41.0 42.7 53.6 54.8 41.4 50.0 59.9 78.8 49.8 46.2 51.1 40.5 41.0 49.1
(Luvizon et al. 2022)(+) 31.0 33.0 41.0 34.0 41.0 37.0 37.0 51.0 56.0 43.0 44.0 37.0 33.0 42.0 32.0 39.0
(Bultmann and Behnke 2021) 27.1 29.9 27.0 26.5 31.3 28.9 27.1 29.8 36.5 36.0 30.8 29.3 29.7 27.3 26.3 29.8
(Bartol et al. 2022) 27.5 28.4 29.3 27.5 30.1 28.1 27.9 30.8 32.9 32.5 30.8 29.4 28.5 30.5 30.1 29.1
(He et al. 2020) 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 31.7 28.2 26.4 23.6 28.3 23.5 26.9
(Qiu et al. 2019) (+) 24.0 26.7 23.2 24.3 24.8 22.8 24.1 28.6 32.1 26.9 31.0 25.6 25.0 28.1 24.4 26.2
(Iskakov et al. 2019) 19.9 20.0 18.9 18.5 20.5 19.4 18.4 22.1 22.5 28.7 21.2 20.8 19.7 22.1 20.2 20.8

Multi-view methods (camera parameters are not given)

(Luvizon et al. 2022)(+) 40.0 36.0 44.0 39.0 44.0 42.0 41.0 66.0 70.0 46.0 49.0 43.0 34.0 46.0 34.0 45.0
(Huang et al. 2020) 26.8 32.0 25.6 52.1 33.3 42.3 25.8 25.9 40.5 76.6 39.1 54.5 35.9 25.1 24.2 37.5
(Iskakov et al. 2019) 27.6 30.3 29.0 29.4 33.1 36.5 27.4 34.8 39.1 54.0 34.4 30.7 36.2 26.2 28.4 33.1
(Remelli et al. 2020) 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.7 31.2 29.9 26.9 33.7 30.4 30.2
(Gordon et al. 2022) 22.0 23.6 24.9 26.7 30.6 35.7 25.1 32.9 29.5 32.5 32.6 26.5 34.7 26.0 27.7 30.2
Ours (CPN, T=27) 26.5 28.3 23.0 25.9 27.2 31.0 25.4 27.2 28.6 33.8 28.6 25.6 30.1 27.1 26.5 27.6

Table 1: Comparisons with state-of-the-art 3D HPE methods on Human3.6M with P1 (mm) using the detected 2D poses. Our
results are given when the temporal receptive field is under 27. (+) means using extra data. Best in bold.

Xf = MLP (LN (X ′′)) +X ′′, (12)

where η is a linear layer. The Xf are concatenated with Xv1

andXv2 to generate the final cross-view spatial featuresXF ,
which is fed into the deeper network.

XF = Concat(Xv1, Xf , Xv1). (13)

The cross-view fusion edge features EF can be obtained in
the same way. This approach not only preserves the distinc-
tive characteristics of each viewpoint, but also fully embeds
fusion features across various viewpoints, resulting in richer
hidden information extraction.

Multi-view Spatial-Temporal Fusion (MSTF). To fur-
ther mitigate the depth ambiguity of 3D HPE, we develop
a multi-view spatial-temporal fusion module. It profoundly
integrates temporal knowledge of related images with spa-
tial data from multiple viewpoints to supplement the miss-
ing depth message of human joints in the target image. For
the cross-view fused features XF and EF , we first utilize a
multi-view cross-channel fusion block (consisting of a batch
normalization, 1x1 convolution layer, and layer normaliza-
tion) to better preserve and refine the original spatial infor-
mation, and convert these features to YX and YE . These two
features are then multiplied and embedded with frame tem-
poral position encoding ETPos before being fed into the
temporal transformer encoder for further spatial-temporal
fusion. Finally, an MLP layer is utilized to regress the final
pose features and predict the 3D pose. The spatial-temporal

fusion feature Z is defined as:

Y ′ = ρ(YX ⊗ YE) + ETPos, (14)

Y ′′ = MHA (LN (Y ′)) + Y ′, (15)
Z = MLP (LN (Y ′′)) + Y ′′, (16)

in which ρ is a feature transformation function, and ⊗ is the
dot product operation.

Loss Function. We train our model using only the basic
Mean Squared Error (MSE) loss function without any bells
and whistles, which minimizes the L2 distance error be-
tween the estimated human joint points and the correspond-
ing ground-truth joint points, denoted as

L =
T∑

i=1

J∑
j=1

∥∥∥P̂ 3D
i,j − P 3D

i,j

∥∥∥
2
, (17)

where P̂ 3D
i,j and P 3D

i,j denotes predicted and ground-truth 3D
coordinates of the j-th node in the i-th frame, respectively.

Experiments
Datasets and Protocols
Human3.6M. (Ionescu et al. 2013) is the largest and most
popular 3D HPE benchmark. It contains 3.6 million 3D hu-
man pose images and corresponding annotations captured by
4 synchronized cameras at 50Hz with different viewpoints
in a controlled indoor environment. These data involves 15
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Methods Dir. Disc. Eat Greet Phone Photo Pose Purch Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

(Gordon et al. 2022) - - - - - - - - - - - - - - - 22.9
(Shuai, Wu, and Liu 2022) 15.5 17.1 13.7 15.5 14.0 16.2 15.8 16.5 15.8 16.1 14.5 14.5 16.9 14.3 13.7 15.3
Ours 11.7 13.0 10.1 12.1 10.7 13.0 12.1 10.7 10.8 11.9 11.0 11.6 12.8 11.1 12.0 11.7

Table 2: Comparisons with state-of-the-art multi-view 3D HPE methods on Human3.6M with P1 (mm) using the ground-truth
2D poses. Our results are given when the temporal receptive field is under 27. Best in bold.

action scenes performed by 11 professional actors, with 17
human nodes annotated in each image. Following previous
works (Zheng et al. 2021; Li et al. 2022b, 2023), we use sub-
jects S1, S5, S6, S7, and S8 for model training, S9 and S11
for model testing. The Protocol 1 (P1) and Protocol 2 (P2)
are used to evaluate the validity of our models. P1 calculates
the mean per joint positioning error (MPJPE) in millimeters,
which is the Euclidean distance between the ground-truth
and the predicted joint points. P2 indicates the Procrustes-
MPJPE (P-MPJPE) error in millimeters, i.e., the MPJPE er-
ror between the predicted and ground-truth nodes after rigid
alignment in terms of translation, rotation, and scale.

MPI-INF-3DHP. (Mehta et al. 2017) is a large-scale 3D
human pose dataset from both indoor and outdoor scenes.
It consists of more than 1.3 million images captured by 14
synchronized cameras from different viewpoints, recording
8 types of activities of 8 participants. 17 nodes of each im-
age are annotated. Four chest views of S1-S6 are used for
training, S7 and S8 are for testing. The Protocol 1, Protocol
2, Percentage of Correct Keypoints (PCK) with a threshold
of 150 mm, and corresponding Area Under Curve (AUC)
are used to evaluate the model.

Ski-Pose PTZ-Camera. (Fasel et al. 2016) is a smaller
dataset with challenging in-the-wild images of alpine skiers
performing giant slalom runs. It contains images of 6 sub-
jects captured from 6 camera viewpoints. Following the offi-
cial implementations, we use the subject 1-5 for model train-
ing, and subject 6 for model testing. The Protocol 1 and Pro-
tocol 2 are used for model evaluation.

Implementation Details
Our experiments are conducted on the PyTorch platform
with 4 GeForce RTX 1080Ti GPUs. The Amsgrad optimizer
is used with a weight decay of 0.1. For model training, the
initial learning rate is 0.0002. The learning shrink factor af-
ter each epoch is α = 0.98. When training the model, we set
the maximum epoch and batch size to 50 and 1024, respec-
tively. Four-order global-to-local spatial embedding graph
features are considered. Four cascaded spatial and temporal
transformer encoder layers are used in our framework, re-
spectively. When using the detected 2D pose to obtain the
3D pose, we adopt the Cascaded Pyramid Network (CPN)
(Chen et al. 2018) as the 2D pose detector. For all the three
datasets, our models are trained just using the dataset them-
selves, without any other additional training data.

Comparison With State-of-the-art Methods
Results on Human3.6M. Table 1 shows our comparisons
with state-of-the-art (SOTA) single-view and multi-view 3D

Methods Trainset PCK AUC P1(mm) P2(mm)

(Chen et al. 2021) H36M 64.3 31.6 - -
(Luvizon et al. 2022) H36M+ 80.6 42.1 112.1 -
(Iqbal et al.2020) H36M+ 80.2 - 110.8 -
(Kocabas et al. 2019) 3DHP 77.5 - 109.0 -
(Gholami et al. 2022) 3DHP - - 101.5 76.5
(Wandt et al. 2021) 3DHP 77.0 - 104.0 70.3
(Kocabas et al. 2019) H36M - - 76.6 67.5

Ours 3DHP 98.7 90.2 16.9 12.1
H36M 99.9 91.7 10.6 7.6

Table 3: Comparison results on 3DHP dataset. Best in bold.

HPE algorithms on Human3.6M. Our method outperforms
all SOTA single-view 3D HPE methods, with MPJPE re-
duced by 8.0mm (22.5%) to (Ci et al. 2023). This finding
suggests that intermediate supervision of multi-view infor-
mation is helpful to reduce depth ambiguity of single-view
3D HPE and effectively enhances model performance. Our
model surpasses several SOTA multi-view 3D HPE tech-
niques that require camera calibration but performs some-
what worse than (Qiu et al. 2019) and (Iskakov et al. 2019).
It indicates that while our method is competitive, meth-
ods using camera calibration still dominate in model per-
formance. However, they are difficult in adjusting to vari-
ous scenes because they are too reliant on camera settings.
When compared with multi-view 3D HPE methods without
pre-providing camera parameters, we achieve superior re-
sults, with MPJPE decreasing by 2.6mm (8.6%) compared
to (Gordon et al. 2022). When given ground-truth 2D pose,
as shown in Table 2, our model performance improves, with
MPJPE 15.9mm (57.6%) and 3.6mm (23.5%) lower than
Ours (CPN) and (Shuai, Wu, and Liu 2022), respectively.
This implies that 2D pose is essential to the 2D-3D lifting
and that better 2D poses facilitate the model. It is worth not-
ing that our model was trained without any extra training
data, using only the basic L2 loss function. These demon-
strate how effective our method is.

Results on 3DHP. Table 3 compares our methods with
relevant SOTA approaches on 3DHP. Two alternative sce-
narios have been explored. The first involves training and
testing the model both on 3DHP. The other is finetuning
the model trained on Human3.6M and testing it on 3DHP.
Results depict that our method outperforms others in both
scenarios and works better in the second case, with MPJPE
and P-MPJPE decreasing by 66.0mm (86.2%) and 59.9mm
(88.7%), respectively, in comparison to (Kocabas, Karagoz,
and Akbas 2019). Because the Human3.6M dataset is larger
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Methods Trainset P1(mm) P2(mm)

(Chen et al. 2021) H36M 130.2 108.7
(Wandt et al. 2021) Ski 128.1 89.6
(Chen et al. 2021) H36M+ 99.4 74.7
(Rhodin et al. 2018) Ski 85.0 -
(Gordon et al. 2022) Ski 65.5 -

Ours Ski 63.2 48.5
H36M 45.3 31.4

Table 4: Comparisons on Ski-Pose dataset. Best in bold.

position spatial edge P1(mm) P2(mm)

X X X 27.6 21.8
X X × 28.2 21.8
X × X 28.4 21.9
X × × 29.4 22.7

Table 5: Impact of various features. Best in bold.

and contains more action categories, the second scenario al-
lows the model to learn more about data types, actions, and
scenes, bringing in better results. These show that our ap-
proach works for both indoor and outdoor datasets.

Results on Ski-Pose. Table 4 compares how well our al-
gorithm performs against related methods on Ski-Pose. Sce-
narios of both training and testing on Ski-Pose, as well as
finetuning the model trained on Human3.6M and testing on
Ski-Pose, are studied. Results show that our method out-
performs other approaches in both scenarios. In the second
scenario, our MPJPE is 20.2mm (30.8%) lower than (Gor-
don et al. 2022), proving that the model benefits from more
training data categories. In the first scenario, our method is
also highly competitive, with MPJPE decreasing by 2.3mm
(3.5%) compared to (Gordon et al. 2022). These show effi-
cacy of our method in handling challenging in-the-wild data.

We present some qualitative results of our method on the
three datasets in Figure 5, demonstrating the intuitive effec-
tiveness of our approach in predicting 3D poses. It can be
observed that our method performs well even for severe self-
occluded poses and challenging complex poses.

Ablation Study
Impact of various features. Table 5 shows how the em-
ployed node position, structure, and edge feature embed-
dings affect the model. When all three features are utilized,
the model performs best. The spatial embeddings, which
provide main spatial structural knowledge of human joints,
have a greater impact on the model than edge embeddings,
while edge features also contribute. When we solely use
joint position features, the model performs the worst, prov-
ing that the introduction of related spatial graph features can
enrich joint information and improve feature representation.
We have also shown attention maps of the three feature em-
beddings, i.e., position, spatial, and edge in Figure 4, which
demonstrates how the pose information gradually becomes
richer and more meaningful as more feature types are em-
bedded, indicating the ability of our model to learn and uti-

P P + G P + G + E
1.5
1.6
1.7
1.8
1.9
2.0
2.1

Figure 4: The attention map of different feature embeddings.

CSF MSTF Params(M ) FLOPs (G) P1(mm) P2(mm)

X X 11.42 0.37 27.6 21.8
× X 11.39 0.35 29.0 23.1
X × 6.92 0.12 31.7 24.0

Table 6: Impact of fusion modules. Best in bold.

view number Params(M ) FLOPs (G) P1(mm) P2(mm)

1 7.25 0.28 47.8 37.2
2 9.64 0.31 32.0 25.1
3 10.02 0.33 31.1 24.7
4 11.42 0.37 27.6 21.8

Table 7: Impacts of different viewpoints. Best in bold.

lize significant semantic information.
Impact of fusion modules. Table 6 displays the impacts

of our proposed feature fusion modules, CSF and MSTF,
on 3D HPE performance. Results reveal that removing any
of the fusion modules worsens the model, emphasizing the
importance of progressive multi-view feature fusion in im-
proving 3D pose prediction. When MSTF is removed, MLP
is used for feature conversion, and the model performs worse
than when CSF is removed, indicating that spatial-temporal
feature fusion has a greater influence on model improvement
than simple spatial feature fusion, and that temporal knowl-
edge of relevant frames is crucial for reducing depth ambi-
guity and improving model performance.

Impact of views. The effects of various input numbers of
viewpoint information on model performance are depicted
in Table 7. Our model improves steadily as the number of
viewpoint increases, and it performs best when the view-
point number is 4 (since the Human3.6M data contains a
maximum of 4 viewpoints, we set the maximum number of
viewpoints to 4 here). It suggests that intermediate super-
vision of multi-view data can successfully compensate for
missing joint depth in single-view 3D HPE and boost the
model. Furthermore, it illustrates that our framework is ap-
plicable for multi-view data fusion, capable of accepting an
unlimited number of viewpoints.

Impact of temporal receptive fields (TRFs). We explore
the impact of various TRFs on the model in Figure 6. It can
be observed that when TRF grows, the model gradually im-
proves. When TRF reaches 81, the model is essentially satu-
rated, and further increases will not result in significant per-
formance advancements. It implies that while temporal data
promotes the model, utilizing a large TRF necessitates more
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Figure 5: The qualitative results on three datasets.
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Figure 6: Impacts of temporal receptive fields (TRFs).

data to train a better model. When TRF=1, our model per-
forms well, showing that our method can extract sufficiently
rich pose semantic information and somewhat reduce depth
ambiguity even in the absence of significant temporal infor-
mation. As TRF grows, the model parameters almost remain
constant, proving that our method is not sensitive to TRF
and has no burden to process multi-frame data. FLOPs rise
slowly with TRF but remain small even at TRF=243.

Computational complexity. Table 8 compares the com-
putational complexity of our model with relevant methods.
Even though our TRF is larger than (Luvizon, Picard, and
Tabia 2022), our model has fewer parameters and yields
better performance. When compared with (Gordon et al.
2022) using the same TRF, our model performs better with
fewer parameters and FLOPs. These indicate that our ap-
proach strikes a balance between performance and effi-

Methods TRF Params(M ) FLOPs(G) P1(mm)

(Luvizon et al. 2022) 1 23.3 - 45.0
(Gordon et al. 2022) 27 70.4 8.5 30.2
Ours 27 11.4 0.4 27.6

Table 8: Computation complexity comparison. Best in bold.

ciency, demonstrating strong practicality.

Conclusion
In this paper, we developed a deep semantic graph
transformer-based multi-view 3D HPE structure, which im-
proved 3D pose prediction performance by adaptively learn-
ing and fusing various significant pose semantic features.
First, we developed a deep semantic graph transformer en-
coder, which dynamically mined the position, spatial struc-
ture, and skeletal edge feature embeddings and their correla-
tions of human joints, greatly enhancing the spatial feature
representation. Then, we constructed a progressive multi-
view spatial-temporal feature fusion framework, success-
fully merging the spatial-temporal distinguishing and con-
sistent features across multiple viewpoints using various fea-
ture fusion modules. Extensive experiments on three 3D
HPE benchmarks demonstrated how effective our approach
is. It effectively increases the expressiveness of the pose fea-
ture, and its spatial-temporal feature fusion strategy is fairly
beneficial in reducing depth ambiguity in single-view 3D
HPE and significantly enhancing 3D HPE performance.
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