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Abstract

Labelling LiDAR point clouds for training autonomous driv-
ing is extremely expensive and difficult. LiDAR simulation
aims at generating realistic LiDAR data with labels for train-
ing and verifying self-driving algorithms more efficiently. Re-
cently, Neural Radiance Fields (NeRF) have been proposed
for novel view synthesis using implicit reconstruction of 3D
scenes. Inspired by this, we present NeRF-LIDAR, a novel
LiDAR simulation method that leverages real-world infor-
mation to generate realistic LIDAR point clouds. Different
from existing LiDAR simulators, we use real images and
point cloud data collected by self-driving cars to learn the 3D
scene representation, point cloud generation and label ren-
dering. We verify the effectiveness of our NeRF-LiDAR by
training different 3D segmentation models on the generated
LiDAR point clouds. It reveals that the trained models are
able to achieve similar accuracy when compared with the
same model trained on the real LiDAR data. Besides, the
generated data is capable of boosting the accuracy through
pre-training which helps reduce the requirements of the real
labeled data. Code is available at https://github.com/fudan-
zvg/NeRF-LiDAR

Introduction
LiDAR sensor plays a crucial role in autonomous driving
cars for 3D perception and planning. However, labelling the
3D point clouds for training 3D perception models is ex-
tremely expensive and difficult. In view of this, LiDAR sim-
ulation that aims at generating realistic LiDAR point clouds
for different types of LiDAR sensors becomes increasingly
important for autonomous driving cars. It can generate use-
ful LiDAR data with labels for developing and verifying the
self-driving system.

Many previous works have studied the LiDAR simula-
tion, which can be mainly categorized into two types: the
virtual environment creation method and the reconstruction-
based method. The former creates the 3D virtual world by
graphics-based 3D modeling and then generates the 3D Li-
DAR point clouds by physics-based simulation (ray tracing).
These kinds of works (Dosovitskiy et al. 2017; Koenig and
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(a) CARLA (b) LiDARGen

(c) Our NeRF-LiDAR (d) Real LiDAR sensor

Figure 1: Comparisons of results between our NeRF-LiDAR
and other existing LiDAR simulation methods. (a) Method
(Dosovitskiy et al. 2017) that creates virtual world for Li-
DAR simulation. (b) Diffusion model used for LiDAR gen-
eration (Zyrianov, Zhu, and Wang 2022). (c) Our NeRF-
LiDAR can generate realistic point clouds that is nearly the
same as the real LiDAR point clouds (d).

Howard 2004) have natural limitations as it’s impossible for
3D modelers to create a virtual world that is the same as
the complex real world. The simulated LiDAR points have
significant domain differences from the real LiDAR points
and cannot be used to train robust deep neural network mod-
els. The latter (Manivasagam et al. 2020; Fang et al. 2020)
relies on multiple LiDAR scans to densely reconstruct the
street background and then place the foreground objects into
the background. However, it’s expensive to collect dense Li-
DAR scans which may need special devices (Fang et al.
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2020). Moreover, it’s expensive to generate point-wise se-
mantic labels for simulated LiDAR data. It still requires hu-
man annotations on the 3D scans.

Recently, Neural Radiance Fields (NeRF) (Mildenhall
et al. 2020; Barron et al. 2021) have been proposed for
implicit reconstruction of the 3D object/scenes with multi-
ple images as inputs. NeRF can render photo-realistic novel
views along with dense depth maps.

Inspired by this, we proposed to learn a NeRF repre-
sentation for real-world scenes and render LiDAR point
clouds along with accurate semantic labels. Different from
existing reconstruction-based LiDAR-simulation methods
(Manivasagam et al. 2020; Fang et al. 2020) or the vir-
tual world creation (Dosovitskiy et al. 2017) (Fig. 1a), our
method takes full use of the multi-view images to implicitly
reconstruct the labels and 3D real-world spaces. The multi-
view images can assist the simulation system to learn more
accurate 3D geometry and real-world details and gener-
ate more accurate point labels. The proposed NeRF-LiDAR
model consists of two important modules: 1) the reconstruc-
tion module that uses NeRF to reconstruct the real world
along with labels; 2) the generation module that learns to
generate realistic point clouds through a point-wise align-
ment and a feature-level alignment.

Since our NeRF-LiDAR can generate realistic LiDAR
point clouds along with accurate semantic labels, we verify
the effectiveness of our NeRF-LiDAR by training different
3D segmentation models on the generated data. The trained
3D segmentation models are shown able to achieve com-
petitive performance when compared with the same model
trained on the real LiDAR data which implies that the gener-
ated data can be directly used to replace the real labeled Li-
DAR data. Besides, by using the generated LiDAR data for
pre-training and a small number of real data (e.g., 1/10) for
fine-tuning, the accuracy can be significantly improved by a
large margin which is even better than the model trained on
a 10 times larger real LiDAR dataset.

Related Work
LiDAR point-cloud simulation has been studied for many
years from the initial engine based rendering to the state-of-
the-art real-world reconstruction-based LiDAR rendering.

LiDAR Simulation The first type of the LiDAR simula-
tion method (Dosovitskiy et al. 2017; Koenig and Howard
2004; Yue et al. 2018; Gschwandtner et al. 2011) relies on
creating 3D virtual world and rendering the point clouds
with physics-based simulation. However, the generated vir-
tual data have large domain gaps with the real data when
used for training deep neural networks. This is because the
3d virtual world cannot simulate the complexity and details
of the real world. Another point-cloud simulation method
(Achlioptas et al. 2018; Luo and Hu 2021; Yang et al. 2019;
Zyrianov, Zhu, and Wang 2022) generates 3D point clouds
based on generative models. However, these generated data
cannot be used to train models as they also have significant
domain differences with real point clouds. Moreover, it’s dif-
ficult to generate labels for the point clouds.

State-of-the-art LiDAR simulation methods (Fang et al.

2020; Manivasagam et al. 2020) first reconstruct the real-
world driving scenes into 3D meshes and then run the
physics-based simulation. In order to achieve dense accu-
rate reconstruction results, these methods need to scan the
street many times using expensive LiDAR devices (Fang
et al. 2020). More importantly, it’s still expensive to gen-
erate point-wise semantic labels for simulated LiDAR data
as it requires human annotations on the reconstructed 3D
scenes. Instead of simulating whole LiDAR scenes, oth-
ers, e.g., (Fang et al. 2021) use the real-world 3D scenes
and propose a rendering-based LiDAR augmentation frame-
work to enrich training data and boost performance of
LiDAR-based 3D object detection. Our method also lever-
ages real-world information for learning LiDAR simulation.
Our NeRF-LiDAR creates an implicit neural-radiance-field
representation of the real world for both point clouds and
label rendering.

Neural Radiance Fields Recently, Neural radiance fields
(NeRF) (Mildenhall et al. 2020) have been proposed as
an implicit neural representation of the 3D real world for
novel view synthesis. NeRFs can take multiple 2D images
and their camera-view directions to represent the whole 3D
space. However, early NeRFs are only applicable to small
object-centric scenes.

Many recent NeRFs have been proposed to address the
challenges of large-scale outdoor scenes (Barron et al. 2021,
2022; Tancik et al. 2022; Zhang et al. 2020). There are also
some methods (Rematas et al. 2022; Deng et al. 2022) lever-
aging depth supervision to help create more accurate 3D ge-
ometry of scenes. Panoptic or semantic label synthesis for
novel views is also explored in (Zhi et al. 2021; Kundu et al.
2022; Fu et al. 2022). They utilize the density of the volume
to render image labels along with the novel view synthesis.
Inspired by these works, our method reconstructs the accu-
rate 3D geometry using the NeRF methodology in the driv-
ing scene and generates 3D point clouds along with accurate
semantic labels for the LiDAR simulation.

NeRF-LiDAR
In this section, we present our NeRF-based LiDAR simula-
tion framework (as shown in Fig. 2). The method consists of
three key components: 1) NeRF reconstruction of the driv-
ing scenes, 2) realistic LiDAR point clouds generation and
3) point-wise semantic label generation. We formulate the
three components into end-to-end deep neural network mod-
els for learning LiDAR simulation.

Neural Radiance Fields Neural Radiance Fields learn im-
plicit representation for the scenes and render novel view
synthesis through volume rendering. It learns a function
f : (x,v) → (c, σ) for mapping coordinates x and viewing
directions v to color c and density σ. The volume rendering
is based on discrete rays r = o+ td in the space and apply-
ing numerical integration along the rays to query color:

Ĉ(r) =
N∑
i=1

Ti(1− e−σiδi)ci, Ti = exp

−
i−1∑
j=1

σjδj

 ,

(1)
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Figure 2: Schematic illustration of NeRF-LiDAR. Image sequences along with the predicted weak semantic labels are used as
inputs to reconstruct the implicit NeRF model. LiDAR signals are also used to help create more accurate 3D geometry. Initial
coarse point clouds are generated by the NeRF reconstruction through Eq. (5)∼(7). The initial point clouds are projected into
2D equirectangular images. We then utilize a U-Net to learn raydrop and the alignment (detailed in Fig. 3) to make the generated
point clouds more realistic.

where o is the origin of the ray, d is the direction, Ti is the
accumulated transmittance along the ray, and ci and σi are
the corresponding color and density at the sampled point ti.
δj = tj+1 − tj refers to the distance between the adjacent
sampled points.

NeRF Reconstruction State-of-the-art LiDAR simulation
methods (Manivasagam et al. 2020) rely on dense LiDAR
scans for scene reconstruction. To achieve the dense recon-
struction of the street, (Fang et al. 2021) uses a special (ex-
pensive) LiDAR device to collect dense depth maps. (Mani-
vasagam et al. 2020) scans the street many times to accu-
mulate much denser point clouds. These dense depth maps
or point clouds are then used to extract the meshes of the
street. Finally, the meshes are used to generate point clouds
of different types of LiDAR sensors.

In this paper, we present a new method takes multi-view
images and sparse LiDAR signals to reconstruct the street
scenes and represent the 3D scenes as an implicit NeRF
model. We propose to use the driving-scene data to learn
the NeRF reconstruction.

NeRF reconstruction of the unbounded large-scale driv-
ing scenes is challenging. This is because most of NeRFs
(Mildenhall et al. 2020) are designed for small scene re-
construction with object-centric camera views. However,
the driving data are often collected in the unbounded out-
door scenes without object-centric camera views settings
(e.g., nuScenes (Caesar et al. 2020)). Moreover, since the
ego car moves fast during the data collection, the overlaps
between adjacent camera views are too small to be effective
for building multi-view geometry. We reconstruct the NeRF
representation based on the multi-view images and leverage
the LiDAR points to provide extra depth supervision to cre-
ate more accurate 3D geometries. Besides, the real LiDAR
point clouds are used as supervision to learn more realistic

simulated LiDAR data.
To reconstruct the driving scenes, we use the unbounded

NeRF (Barron et al. 2022) with a modified supervision of:

Lrgb = ∥Ĉ(r)−C(r)∥2, (2)

Ldepth = ∥D̂(r)−D(r)∥1. (3)

Here, D̂ is the rendered depth by the volume rendering in
Eq. (1):

D̂(r) =
N∑
i=1

Ti

(
1− e−σiδi

)
zi, (4)

where zi is the depth value at the sampled point ti on the ray
r. Since the original unbounded NeRF (Barron et al. 2022)
is extremely slow which takes about one day to train each
NeRF block, we adopt hash-encoding NeRF (Barron et al.
2023) to speed up the simulation process.

Point-cloud Generation After learning the implicit NeRF
representation of the driving scenes, we set a virtual LI-
DAR to simulate the real LIDAR sensor. The virtual LIDAR
shares the same parameter settings with the real LiDAR sen-
sors. For example, nuScenes (Caesar et al. 2020) uses Velo-
dyne HDL32E LiDAR sensor, of which the spinning speed
is 20Hz and the field of view ranges from -30.67 degree
to 10.67 degree (consists of 32 channels). We can therefore
simulate NeRF-LiDAR rays with the LiDAR center (o) and
direction d accordingly:

d = (cos θ cosϕ, sin θ sinϕ, cosϕ)T , (5)

where θ, ϕ represent the azimuth and vertical angle of the
ray, determined by the time interval of the lasers and the
settings of the LiDAR sensor.
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The origin of the rays o changes according to the defined
motion of ego cars.

o = o0 +∆t · v. (6)

Here, v is the velocity of the ego vehicle and ∆t means
the time interval from the previous state. ∆t is decided
by the frame rate of the LiDAR sensors (e.g., 20Hz for
nuScenes LiDAR).

Each simulated point p = {x, y, z} can be then calculated
by the pre-defined directions d of rays and the distances D̂
from the LiDAR sensor to the real world objects:

p = o+ D̂d. (7)

There are about 20∼40k points in one frame of a stan-
dard 32-channel LiDAR point clouds. To simulate the whole
point clouds, for each point, we render a ray to compute the
exact 3D location.

Label Generation To achieve the point-wise semantic la-
bels of the simulated LiDAR points, we use the 2D semantic
labels of the images to learn the 3D label generation.

Semantic NeRF (Zhi et al. 2021) proposes to use the se-
mantic logits that could be rendered through volume render-
ing (Eq. (1)) like RGB color:

Ŝ(r) =
N∑
i=1

Ti(1− e−σiδi)si, (8)

where Ti, σi, δi follows the definition of Eq. 1, si is the se-
mantic logit of the sampled point.

Here, we first consider the most difficult cases where there
is no annotated label from the collected driving data (im-
ages and LiDAR points). Given unlabeled real images col-
lected from multiple cameras of the self-driving cars, we
train a SegFormer (Xie et al. 2021) model, on the mixture
of other datasets including Cityscapes (Cordts et al. 2016),
Mapillary (Neuhold et al. 2017), BDD (Yu et al. 2020),
IDD (Varma et al. 2019) to compute weak labels that serve
as inputs to the NeRF reconstruction model. To achieve bet-
ter cross-dataset generalization of the SegFormer and avoid
conflicts in the label definition, we utilize the learning set-
tings and label merging strategy in the (Lambert et al. 2020).

Considering that the generated weak labels may have
many outliers, to reduce the influence of these outliers and
generate more accurate 3D point labels, we take full use
of multi-view geometric and video spacial temporal consis-
tency in our NeRF reconstruction.

In the NeRF training, we combine the image-label super-
vision into the reconstruction learning by constructing the
semantic radiance fields:

L̂l = CE(Ŝ(r),S(r)), (9)

where CE is the cross-entrophy loss, r represents pixel-wise
camera rays corresponding to each image pixel, Ŝ(r) is the
rendered labels by the NeRF model (Eq.(8)) and S(r) is the
label predicted by the image segmentation model.

In some other cases, when there is a small number of la-
beled images or LiDAR frames, we can also leverage the

existing ground-truth labels for more robust label genera-
tion. For example, in the nuScenes dataset, a small part of
the LiDAR frames (about 1/10) was labeled with semantic
annotations. We take the sparse 3D point labels along with
the weak 2D image labels to learn more accurate semantic
radiance fields.

Ll = CE(Ŝ(rLiDAR),S(rLiDAR)). (10)

Here rLiDAR represents the point-wise rays emitted by the
LIDAR sensor. The total loss for learning our NeRF recon-
struction can be represented as:

Lrec = Ldepth + wrgbLrgb + ŵlL̂l + Ll, (11)

where wrgb and wl balance the RGB geometry reconstruc-
tion, the LiDAR rendering and the semantic label rendering.

Learning Raydrop & Alignment In the real world, the
LiDAR sensor cannot receive all beams emitted by itself,
influenced by the reflectance ratio of different materials
(e.g., glasses), the incidence angle and many other fac-
tors (Manivasagam et al. 2020; Fang et al. 2020). Points
are usually dropped when the reflected intensity is below
the perception threshold. To make generated LIDAR points
closer to the real LIDAR points, we learn a raydrop process-
ing on the generated dense points.

NeRF-LiDAR allows us to render depths (3D points) at
arbitrary positions and directions. We use the ground-truth
LiDAR frames as supervision to learn the raydrop. Given
one ground-truth LiDAR frame P , we render the simu-
lated LiDAR frame P̂ at the same location accordingly.
The ground-truth P and the simulated P̂ should have strong
point-wise correspondence.

P ≃ P̂ . (12)

We adopt such point-to-point correspondence as the learning
target.

Equirectangular Image Projection It’s difficult to create
a point-to-point correspondence between the two irregular
3D point clouds. To better leverage the point-wise corre-
spondence, we first render all generated points into a 2D
equirectangular image (a panorama sparse depth image, as
illustrated in Fig. 2). For example, in nuScenes dataset, the
resolution of the 32-channel LiDAR equirectangular image
is set as 32× 1024.

To project the irregular LiDAR points, we adopt the spher-
ical projection (Geiger, Lenz, and Urtasun 2012) to project
our points into the equirectangular image grids (as illustrated
in Figure 3). Similarly, the real LiDAR frame is also trans-
ferred into a 2D 32 × 1024 equirectangular image. In this
way, we can easily create the correspondence in 2D grids.

Point-to-point Alignment To learn the drop probabilities
for each 2D grid location in the equirectangular image, we
employ a standard U-Net which encodes the depth ranges,
semantic labels, RGB textures, and depth variances between
neighborhoods into a feature representation. The U-Net out-
puts a 2D probability map (a binary mask) to represent
the raydrop results. We take the corresponding real LiDAR
equirectangular image as the learning target.
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Figure 3: Illustration of learning raydrop and alignment. The
initial coarse point clouds are projected into 2D equirect-
angular images. We use the projected depth, RGB texture,
and depth variances as input to a standard U-Net. The U-
Net learns the raydrop mask to improve the initial coarse
point clouds through the point-wise alignment (Eq. (13)) and
the feature-level alignment (Eq. (14)). Finally, the refined
equirectangular images are back-projected to 3D space to
achieve the expected LiDAR point clouds.

Lmask = CE(M̂,Mgt), (13)

where M̂,Mgt represent predicted and true mask respec-
tively. Extra points/grids are dropped through the learned
drop mask. The expected 3D point clouds can be achieved
through back-projection of the equirectangular image.

Feature-level Alignment The above point-wise alignment
aims at making the generated points more realistic or spa-
tially closer to the real point locations. However, the gen-
erated LiDAR data will finally be used to train deep neural
network models for 3D perceptions. To make the generated
data more effective and able to achieve better accuracy when
training deep neural networks (e.g., 3D perception models),
we propose the feature-level alignment to further regulate
the distribution of the generated point clouds.

Lfeat =
n∑

k=1

wk∥F (Î)k − F (Igt)k∥1, (14)

where F is a pre-trained and fixed feature extractor
(e.g., VGG (Simonyan and Zisserman 2015), Point-cloud
segmentation Net (Milioto et al. 2019)). We use n-level
pyramidal features to compute the feature distance. n = 4 is
the number of feature levels, wk = 2k−n is the weights for
kth-level features. The loss Lfeat measures the feature-level
similarity between the real and the simulated point clouds.
To enable the back-propagation from the feature loss to
the previous raydrop module, we apply the gumble-softmax
(Jang, Gu, and Poole 2016) on the ray drop processing.

The whole generation target can be represented as:

Lgen = Lmask + wfeatLfeat. (15)

The feature-level distribution alignment can make the
generated data more effective and achieve better accuracy in
training segmentation networks. Besides, we find that it also
helps to remove extra outliers in the generated point clouds
(examples are shown in Fig. 4 and the supplementary).

Experiment

Experimental Settings

Dataset We use the standard nuScenes self-driving dataset
for training and evaluation. NuScenes contains about 1000
scenes collected from different cities. Each scene consists
of about 1000 images in six views that cover the 360◦ field
of view (captured by the front, right-front, right-back, back,
left-back and left-front cameras). 32-channel LiDAR data
are also collected at 20 Hz. Human annotations are given in
key LiDAR frames (one frame is labeled in every 10 frames).

We use both unlabeled images and LiDAR data for
training our NeRF-LiDAR model. The labeled key LiDAR
frames are used for evaluations. Limited by computing re-
sources, we take 30 nuScenes sequences from the whole
dataset. Each sequence covers a street scene with a length
of 100∼200m, and the total length is about 4km. Namely,
we reconstruct about 4km of driving scenes for training and
evaluation.

Evaluation Settings To avoid conflicts in label defini-
tions, we remap image segmentation labels into five cate-
gories (road, vehicles, terrain, vegetation and man-made) in
accordance with the nuScenes LiDAR segmentation labels.

In the training set, we use a total of 7000 unlabeled
LiDAR frames and 30000 images for training our NeRF-
LiDAR model. There are extra 1000 labeled LiDAR frames
provided in these nuScenes scenes. We mainly use these la-
beled data for testing and fine-tuning in the experiments.

To evaluate the quality of the generated point clouds and
point-wise labels, we train different LiDAR segmentation
models (Cylinder3D (Zhou et al. 2021) and RangeNet++
(Milioto et al. 2019)) on the generated data and compare the
segmentation model with those models trained on the real
nuScenes LiDAR data(25k iterations).

We use two evaluation sets to evaluate the 3D segmen-
tation results. The first Test Set 1 consists of 400 labeled
real point clouds that is extracted from the 30 reconstructed
scenes which are not used for training. This validation set is
from the same scenes as the simulation data.

The second Test Set 2 is the whole nuScenes validation
set which consists of ∼5700 LiDAR point clouds from other
nuScenes scenes (not including the 30 selected scenes). This
is used to test the quality and generalization/transfer abilities
of the simulation data. We test the trained model in other
unseen scenes (results are available in the supplementary).
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Test Set 1
Training Set road vege. terrain vehicle manmade mIoU
CARLA 76.4 47.3 # 33.7 54.4 52.9∗

Real 1k 96.2 83.6 83.1 83.0 86.4 86.5
Real 10k 97.0 83.6 84.5 89.3 87.8 88.4
Sim20k 93.5 70.4 77.6 79.1 80.7 80.3
Sim20k + real1k 97.1 84.1 85.3 92.2 86.9 89.1

Table 1: Evaluation an comparisons with the real LiDAR
data and CARLA. ∗ mean IoU of four classes.

Raydrop Feature loss mIoU
no raydrop random learning vgg rangenet

! 65.7
! 63.5

! 66.3
! ! 66.5
! ! 69.9

Table 2: Ablations on different settings of ray drop and fea-
ture loss. Models are evaluated on validation set Test Set 2.

Ablation Study
To demonstrate the effectiveness of our method components,
in Table 2, we conduct experiments on different components
of our NeRF-LiDAR. We conduct ablation studies on 25 se-
quences of all data.

Effects of Raydrop We compare three different raydrop
settings in Table 2 and Fig. 4. Without any raydrop, the gen-
erated LiDAR data report a mIoU of 65.7 after training the
3D segmentation model (Zhou et al. 2021). By adding a ran-
dom drop strategy, the mIoU is dropped to 63.5. And with
our learning-based raydrop, the mIoU is improved to 66.3.

Effects of Feature Loss We also evaluate the effects
of the feature loss in Table 2. We use two different fea-
ture extractors (VGG (Simonyan and Zisserman 2015) and
RangeNet++ (Milioto et al. 2019)) to implement the feature-
level alignment. Without feature loss for feature-level align-
ment, our method reports a mIoU of 66.3. By using the pre-
trained VGG Net(Simonyan and Zisserman 2015) for fea-
ture alignment, the result is improved to 66.5. By imple-
menting a pre-trained 3D segmentation network as the fea-
ture extractor, the results are significantly improved to 69.9.

Label Quality
In Fig. 5, we visualize the generated LiDAR labels and com-
pare them with ground-truth labels in the real data. We can
observe that the generated point clouds by our NeRF-LiDAR
have strong point-to-point correspondence with the real data
and labels. The labels are accurate and close to manual an-
notations. In the supplementary, we also evaluate the quality
of the labels by computing the mIoU by comparing it with

road vege. terrain vehicle manmade mIoU
LiDAR + pseudo Seg 70.6 39.4 30.7 20.9 52.0 42.7

NeRF-LiDAR 10k 91.6 61.1 59.2 69.7 68.0 69.9

Table 3: Comparisons between NeRF-LiDAR data and un-
labeled real LiDAR data with pseudo segmentation labels.

the manual labels. NeRF-LiDAR can generate accurate la-
bels with a high mIoU of 80∼95 under different settings.
Pseudo Segmentation of Real LiDAR Scenes. Compared
with the pseudo segmentation labels on the real data, our
NeRF-LiDAR can generate harder cases which have not
been be collected by the dataset. These data significantly
improve the diversity of the training dataset and boost the
accuracy in training 3D segmentation models (Table 3).

Comparisons with State of the Art
CARLA and Real LiDAR In Table 1, we evaluate the qual-
ity of the generated data by training 3D segmentation model
(Zhou et al. 2021). Mean IoU is used as evaluation metric.

In Table 1, we use the predicted weak image segmentation
labels and 1000 labeled LiDAR frames to train our NeRF-
LiDAR. We use the Test Set 1 which is extracted from the
same scenes as the simulation data to evaluate the accuracy
of the 3D segmentation models. CARLA simulator (Doso-
vitskiy et al. 2017) and different real LiDAR sets are taken
as baselines. When we train the point cloud segmentation
network on the 20k simulation data, it achieves a mIoU of
80.3, which is close to real 1k data and far better than the
model trained on the 20k CARLA data. If we use 1k real
data for fine-tuning, the mIoU can be further improved to
89.1, which exceeds real 10k data.
Reconstruction-based Simulators Our NeRF-LiDAR pos-
sesses apparent advantages over other reconstruction-based
LiDAR simulators (Manivasagam et al. 2020; Fang et al.
2020). First, RGB images are used to assist the reconstruc-
tion in our NeRF-LiDAR, providing useful multi-view ge-
ometry information for reconstruction and label generation.
Secondly, no manual annotations on the point clouds are re-
quired. We use NeRF representation to learn label gener-
ation. Multi-view images provide useful label information
and geometry consistency to reduce the outlier labels. Fi-
nally, NeRF-LiDAR does not require dense point clouds for
reconstruction of the real world. LiDARSim (Manivasagam
et al. 2020) uses a 64-channel LiDAR and scans the street
many times to achieve dense point clouds for simulation.
Augmented LiDAR simulator (Fang et al. 2020) utilizes a
special and expensive LiDAR device to achieve the dense
point clouds. As a comparison, NeRF-LiDAR relies more
on 2D images to achieve 3D geometry accuracy.

We compare our method with LiDARSim (Manivasagam
et al. 2020) in Table 4 and Figure 6 . Considering that the of-
ficial code of LiDARSim is not published, we tried our best
to reproduce the procedures, i.e., accumulating the LiDAR
points, calculating normals, building meshes and doing ray-
casting and ray-dropping. However, the aggregated points
are not dense enough to build high-quality meshes and thus
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(a) Without RayDrop (b) Random RayDrop (c) Learning RayDrop (d) W/ Feature Alignment (e) Real LiDAR

Figure 4: Comparisons of different settings for LiDAR rendering. (a) Point clouds without raydrop, (b) Point clouds after
random raydrop. (c) Point clouds after our learning based raydrop but without using the feature-level alignment. (d) The final
generated point clouds with both learning based raydrop and the feature-level alignment. (e) the real LiDAR point clouds.

(a) Our Data & Label Rendering (b) Ground-truth Labels of the Real Data

Figure 5: Comparisons between the data and label generated by the NeRF-LiDAR and the real LiDAR data with human an-
notations. For better visualization, we project the 3D point cloud as 2D equirectangular image with colorized labels. Our
NeRF-LiDAR (a) is shown able to generate accurate labels and realistic point clouds that is almost the same as the real data (b).

(a) LiDARSim (Manivasagam et al. 2020) (b) Our NeRF-LiDAR (c) Real LiDAR sensor

Figure 6: Comparison between our NeRF-LiDAR and LiDARSim (Manivasagam et al. 2020). Sparse aggregated point cloud
leads to poor-quality mesh when reconstructing scenes thus the simulated LiDAR points lose reality compared to NeRF-LiDAR.

road vege. terrain vehicle manmade mIoU
LiDARSim 83.1 55.1 39.1 36.7 75.2 57.8

NeRF-LiDAR 92.5 69.9 70.1 74.7 84.8 78.4

Table 4: Comparison with LiDARSim. We reconstruct 25
sequences and generate 10k LiDAR frames to train 3D seg-
mentation models.

produce poor results.
Combining Real and Simulated Data We combine real
data with NeRF-LiDAR data generated from ground-truth
scenes to see if simulated data can further boost performance
for training. As shown in Table 1, simulated data along with
10% real data (real 1k) perform better (Sim10k + real 1k:
89.1) than 100% real data (real 10k: 88.4).

Conclusion
NeRF-LiDAR is proposed to generate realistic LIDAR point
clouds via neural implicit representation. Images are utlized
to achieve accurate 3D geometry and labels rendering and
real data are also adopted as supervision. The effectiveness
of NeRF-LiDAR is verified by training 3D segmentation
networks. Models trained on the generated LiDAR data can
achieve similar mIoU as models trained on real LiDAR data.
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