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Abstract

3D human pose estimation (3HPE) in large-scale outdoor
scenes using commercial LiDAR has attracted significant at-
tention due to its potential for real-life applications. However,
existing LiDAR-based methods for 3HPE primarily rely on
recovering 3D human poses from individual point clouds,
and the coherence cues present in the neighborhood are not
sufficiently harnessed. In this work, we explore spatial and
contexture coherence cues contained in the neighborhood that
leads to great performance improvements in 3HPE. Specif-
ically, firstly, we deeply investigate the 3D neighbor in the
background (3BN) which serves as a spatial coherence cue
for inferring reliable motion since it provides physical laws
to limit motion targets. Secondly, we introduce a novel 3D
scanning neighbor (3SN) generated during the data collec-
tion and 3SN implies structural edge coherence cues. We use
3SN to overcome the degradation of performance and data
quality caused by the sparsity-varying properties of LiDAR
point clouds. In order to effectively model the complemen-
tation between these distinct cues and build consistent tem-
poral relationships across human motions, we propose a new
transformer-based module called the CoherenceFuse mod-
ule. Extensive experiments conducted on publicly available
datasets, namely LidarHuman26M, CIMI4D, SLOPER4D and
Waymo Open Dataset v2.0, showcase the superiority and effec-
tiveness of our proposed method. In particular, when compared
with LidarCap on the LidarHuman26M dataset, our method
demonstrates a reduction of 7.08mm in the average MPJPE
metric, along with a decrease of 16.55mm in the MPJPE met-
ric for distances exceeding 25 meters. The code and models
are available at https://github.com/jingyi-zhang/Neighborhood-
enhanced-LidarCap.

Introduction
3D human pose estimation (3HPE) in unconstrained envi-
ronments is a rapidly advancing field with lots of promising
research work (Kim et al. 2022; Joo, Neverova, and Vedaldi
2020; Zhang et al. 2021; Jin et al. 2020; Wang et al. 2022;
Zhan et al. 2022). However, accurate 3HPE in long-range
outdoor scenes, which has diverse and impactful applications
in action recognition, sports analysis, AR/VR, autonomous
driving, etc, remains challenging.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: The visualization of 3SN and 3BN. Our method
treats 3SN sequence, 3BN sequence, and human sequence as
input to predict 3D human motions.

To effectively address long-range 3HPE, various modali-
ties have distinctive challenges that require specific solutions.
Some researchers (Xu et al. 2021, 2020b; Wan et al. 2021)
focus on recovering 3D human motions from degraded and
low-resolution images, due to factors such as poor lighting
and long camera-subject distances. Other researchers (Zhang
et al. 2022b; Sun et al. 2020; Li et al. 2020; Zhang et al.
2022a) concentrate on alleviating the influence of ill-posed to
global location prediction from RGB images since the camera
is unable to provide accurate depth information. RGBD-based
methods are also unsuitable for long-range 3HPE, due to the
limited effective range (less than 5 m). In contrast, body-
worn sensors like Inertial Measurement Units (IMUs) have
environment-independent properties, IMUs-based methods
(Yi et al. 2022; Yi, Zhou, and Xu 2021b; Marcard et al. 2017;
Huang et al. 2018b) dedicated to achieving convenient 3HPE
by minimizing the number of wearable devices. HSC4D (Dai
et al. 2022) employs LiDAR sensors to obtain depth informa-
tion and correct an accumulated global drifting artifact that
occurs in IMUs when working in long-range outdoor scenes.

Despite the success of these sensors, benefitting from the
LiDAR’s inherent insensitivity to lighting conditions, its ca-
pacity to acquire precise depth information, and its extended
detection range, the LiDAR-based method is the preferred
choice for conducting motion capture in daily scenarios char-
acterized by extensive distances and expansive environments.
Recently, researchers started exploring the LiDAR sensor in
human motion capture. LidarCap(Li et al. 2022a) achieves re-
markable results in 3D human motion capture within a range
of 30 meters, relying solely on individual human point clouds
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obtained from a single monocular LiDAR sensor, demon-
strating its outstanding potential. Multimodal fusion meth-
ods (Ren et al. 2022; Fürst et al. 2020; Kim et al. 2019)
improve algorithm robustness and accuracy by combining
LiDAR data with data from other modalities. Nevertheless,
previous methods overlook the fact that LiDAR sensors cap-
ture data not only from humans but also from the environment.
We hypothesize that environmental information, which corre-
lates with human behavior, is a key element for overcoming
fragile motion capture caused by sparsity. SLOPER4D (Dai
et al. 2023) and CIMI4D (Yan et al. 2023) incorporate envi-
ronmental information in the post-optimization stage, they
utilize environmental information as a physical constraint to
enhance the initial human pose collected by a motion capture
system. However, the inclusion of additional physical con-
straint terms leads to a significant increase in computation
time. Therefore, these methods are not suitable for real-time
applications.

To achieve efficient and accurate LiDAR-based 3HPE, in
this paper, we utilize spatial and contexture coherence cues
about human behavior in the neighborhood to enhance the
performance of the LiDAR-based 3HPE method. Specifically,
we introduce two types of coherence cues in the neighbor-
hood.

Firstly, the 3D neighbor in the background (3BN) is ex-
tracted from surrounding scenes and preserves the accurate
distribution of the real world. The spatial coherence cues
implied in 3BN are important for 3HPE, which are not easily
accessible in images or IMUs data. It provides a physical law
and spatial priority to motion targets. Therefore, when hu-
man motion is unreliable, the target poses will be extrapolated
from spatial coherence cues contained in 3BN.

Secondly, the 3D scanning neighbor (3SN) is defined based
on the characteristics of LiDAR point clouds. As the laser
beam scatters to a certain size, the portion of the beam that
illuminates the edges of the human body continues to travel
until it hits more distant objects (Robosense 2023). Hence,
the 3SN provides contexture coherence cues related to the
transition from the human structure to the background. By
utilizing this additional information, our approach can ad-
dress the issue of fragile motion capture caused by degraded
LiDAR point clouds at larger capturing distances.

The introduction of 3SN originally aimed at mitigating
point cloud degradation in distant regions. We observed that
projecting the 3SN onto the plane proved more advantageous
when the human point cloud is densely populated in close
proximity. This observation led us to speculate that 3SN
encapsulates not only structural edge coherence cues but
also vital human motion cues. In light of this, we devised a
self-attention mechanism tailored to 3SN. Furthermore, rec-
ognizing the potential synergy among the spatial coherence
cues in 3BN, the abundant coherence cues within 3SN, and
the motion cues within human points, we introduced a cross-
attention structure to harmoniously fuse these diverse cues.
The whole transformer-based module is named the ”Coher-
enceFuse” module.

To this end, by combining the 3SN with 3BN, our method
offers a more comprehensive and reliable way to understand
and predict human behavior in long-range outdoor scenes.

Despite the simplicity of our method, it outperforms the
SOTA learning-based and optimized-based methods on 4
public datasets without the need for additional modal data or
physical constraint terms. Specifically, our method compared
with the baseline method LidarCap (Li et al. 2022a) on the
LidarHuman26M dataset (Li et al. 2022a) reduces the mean
per joint position error (MPJPE) metric by 7.08mm and im-
proves the Percentage of Correct Keypoints (PCK30) metric
by 1.94%. In the case of distant targets (>25m), our method
achieves even greater improvements, with the MPJPE metric
reducing by around 16.55mm and the PCK30 metric improv-
ing by 5.64%. These results demonstrate the effectiveness
of our approach in utilizing the coherence cues contained in
the neighborhood to accurately predict and capture human
motion, even in challenging environments. To summarize,
this work has the following key contributions:

• We deeply investigate 3D neighbor in the background
(3BN), which effectively leverages spatial coherence cues to
predict reliable 3D human motion. In addition, we propose
a 3D scanning neighbor (3SN), which creatively employs
the contexture coherence cues to compensate for the data
degradation caused by increasing distance, enabling accurate
estimation of human motion even at long ranges.

• We introduce a CoherenceFuse module to build consis-
tent temporal relationships across human motions and effi-
ciently integrate the information encompassed by 3BN, 3SN,
and human point clouds. Thus, CoherenceFuse can enable
these diverse cues to complement each other.

• Our method by fully utilizing spatial and structure co-
herence cues contained in the neighborhood significantly
outperforms the baseline method in both close and distant
ranges. It offers a simple yet effective way to perform 3D
LiDAR-based 3HPE.

Related Work
The past ten years have witnessed a rapid development
of 3HPE. Inertial methods (Huang et al. 2018a; Yi, Zhou,
and Xu 2021b; Yi et al. 2022) use Inertial Measurement
Units (IMUs) to recover human motion with environment-
independent properties. Image-based methods (Xie, Bhatna-
gar, and Pons-Moll 2023; Zanfir, Marinoiu, and Sminchisescu
2018; Xu et al. 2018, 2020a; Habermann et al. 2020; Kocabas,
Athanasiou, and Black 2020) reconstruct 3D humans from
images, those methods are more practical and attractive when
applied in sufficient light and moderate distance condition.
RGBD-based methods (Su et al. 2020, 2021; Bhatnagar et al.
2022) using RGBD sensors are feasible for short-range hu-
man motion capture. Since we target 3HPE in long-range
outdoor scenes with a monocular LiDAR, we review previ-
ous works that are most related to our method.

LiDAR-Based Methods for 3HPE
The growing interest in the convenient capture of human
motions under long-range scenario settings has led to the
growing popularity of LiDAR-based motion capture meth-
ods. LidarCap (Li et al. 2022a) leverages point clouds of
the human body collected by a single static LiDAR sensor
within a range of 30 meters to predict corresponding human
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Figure 2: Overall pipeline. Given input point clouds of the 3BN, the 3SN and an individual human with XYZ coordinates,
PointNet++ (Qi et al. 2017) extracts features separately, and then those features are aggregated by a fully connected layer. Multi-
head self-attention layers and multi-head cross-attention layers are utilized to predict joints’ location, where n=8. ST-GCN (Yan,
Xiong, and Lin 2018) is utilized to predict joints’ rotation. At last, SMPL (Bogo et al. 2016) template corrects the final joints’
location.

motions. LIP (Ren et al. 2022) extracts rough global human
pose from point clouds, then utilizes IMUs to refine local
dynamic motions. In addition, there are many LiDAR-camera-
based sensor fusion methods for 3D HPE. FusionPose (Cong
et al. 2022) exploits the inherent geometry constraints of
point clouds and 2D keypoints on images for self-supervision.
HPERL (Fürst et al. 2020) integrates features of images and
point clouds for superior precision. Zheng et al. (Zheng et al.
2021) utilize a 2D keypoints heatmap predicted from 2D im-
ages to augment the point clouds. Although those methods
have shown excellent performance in long-range 3D human
motion capture, they only utilize the collected data of the
human body and ignore coherence cues contained in the envi-
ronment, which we assume is critical information to estimate
human motion when human body data is degraded severely.

Scene-Aware 3D Human Motion Capture

Many existing algorithms resort to multi-stage optimiza-
tion to estimate global human pose and human-scene in-
teraction. SLOPER4D (Dai et al. 2023) provides recon-
structed scene point clouds, and they use scene geometry
with several physic-based terms to perform joint optimization.
CIMI4D (Yan et al. 2023) concentrates on off-grounding ac-
tion and facilitates a detailed exploration of human-scene in-
teraction by using a blending optimization process. However,
those multi-stage optimization methods are inappropriate for
time-critical applications. Luo et al. (Luo et al. 2022) propose
a one-stage embodied scene-aware 3HPE method based on a
simulated agent’s proprioception and scene awareness, along
with external third-person observations. PORX (Hassan et al.
2019) formulates the inter-penetration constraint and concat
constraint to make use of the 3D scene information. Nonethe-
less, those methods need to obtain a prescanned environment,
which is unsuitable for the large-scale scenario.

Transformer-Based 3D Human Motion Capture
There is already much research about transformer-based
methods for estimating 3D human motion (Xu et al. 2022;
Yi, Zhou, and Xu 2021a). LPFormer (Ye et al. 2023) em-
ploy many blocks of a multi-head self-attention to regress
3D human joints location from LiDAR point clouds by fus-
ing points voxel features, points features, and box features.
MHFormer (Li et al. 2021) presented to relieve an inverse
problem where multiple feasible solutions exist. It utilizes
self-attention to capture relationships across solutions fea-
tures, and then cross-attention is applied to aggregate the
multi-hypothesis features and predict the final 3D pose.

Methodology
Our task is to estimate human motion using monocular Li-
DAR. The input of our method is sequential point clouds and
the output is the 3D human motion sequences in terms of joint
angles, global joint locations, and global rotation. The overall
pipeline is shown in Fig.2, which incorporates two modules.
(1) the CoherenceFuse module: a transformer-based feature
fusion module, which incorporates the 3D scanning neighbor
(3SN) and the 3D neighbor in the background (3BN) into
the 3HPE network. The 3SN and 3BN shown in Fig. 1. (2)
the kinematics module: a neural motion estimator. With the
purpose of providing more convincing evidence to prove the
benefits brought by incorporating 3SN and 3BN, the structure
of the kinematics module follows LidarCap (Li et al. 2022a),
which includes ST-GCN (Yan, Xiong, and Lin 2018) and
SMPL optimizer.

3D Neighbor in the Background (3BN)
Given individual human LiDAR point clouds at t frame
pht = {p1t, p2t, ..., pnt}, we calculate the global position
of the human pct by pct =

1
n ∗

∑
pit, where i=1 to n. Any

point in the environment within a two-meter radius of pct is
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Figure 3: Quanlitive results on 3 public datasets. The blue points mean human points. The red points mean 3BN. The green
points mean 3SN.

Method
Dataset LidarHuman26M CIMI4D SLOPER4D

Metric MPJPE PA- PCK3 PCK5 AE MPJPE PA- PCK3 PCK5 AE MPJPE PA- PCK3 PCK5 AE
LidarCap 79.31 66.72 86.0 95.0 45.2 130.43 97.95 70.22 87.44 31.11 101.89 78.93 78.15 89.77 40.09
HSC2 79.48 68.9 85.33 94.35 29.49 - - - - - - - - - -
P4T 127.77 98.44 72.58 85.64 151.67 146.93 108.94 65.26 83.96 97.13 103.56 79.34 77.42 90.04 66.62
CLIFF 80.55 60.03 86.03 94.64 92.48 - - - - - - - - - -
Ours 72.23 61.67 87.94 95.79 38.28 121.77 93.15 72.81 89.03 25.81 96.80 76.70 79.22 90.51 38.55

Table 1: Comparison results on LidarHuman26M, CIMI4D and SLOPER4D with learning-based method LidarCap, P4T and
optimized-based method HSC2.

defined as the 3BN (pbt). The two-meter radius parameter is
defined based on the human arm span being approximately 1
meter. Therefore, the area within a 1-meter radius of pct is
the interaction region. The spatial coherence cues contained
in this region can provide physical references for 3HPE, such
as the positions of foot and palm joints. The area, which is
outside the 1-meter radius but within the 2-meter radius, is
where interaction with the human is about to occur. The spa-
tial coherence cues in this region provide interaction priors
for 3HPE and constrain motion targets.

3D Scanning Neighbor (3SN)

Given a set of 3D points pht representing a human body
in Cartesian coordinates at t frame, we can transform each
point pit = (xit, yit, zit) to its corresponding spherical co-
ordinate (rit, θit, δit) as follows: rit =

√
x2
it + y2it + z2it,

polar angle θit = arctan zit√
x2
it+y2

it

and azimuthal angle

δit = arctan yit

xit
. Then, we obtain the minimum and maxi-

mum values for 3D scanning neighbors’ spherical coordinates
as follows:

θmin = min
pit∈pht

(θit)− 1◦, θmax = max
pit∈pht

(θit) + 1◦;

δmin = min
pit∈pht

(δit)− 1◦, δmax = max
pit∈pht

(δit) + 1◦;
(1)

Finally, we define the set of 3SN points pst as the sub-
set of points in the environment that satisfy the following
conditions:

min
pit∈pht

(rit) < rst, θmin < θst < θmax, δmin < δst < δmax

(2)
1◦ is determined based on the angular resolution (0.2◦) of

the LiDAR sensor. We adopt the Cartesian coordinates of the
3SN as input.

Overall Pipeline
We establish the LiDAR coordinate system as the global
coordinate system, with the origin located at the position of
the LiDAR device. For input, we utilize normalized temporal
sequence p′bt, p

′
st and p′ht, which are calculated as follows:

p′bt = pbt − pct, p
′
st = pst − pct, p

′
ht = pht − pct. The
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predicted joint location generated by the entire network is
initially in the local coordinate system, and we subsequently
transform them into the global coordinate system using pct.

CoherenceFuse module. To encode p′bt, p
′
st and p′ht, we

employed three separate PointNet++ (Qi et al. 2017) to obtain
3BN features f t

b , 3SN features f t
s and human features f t

h, the
size of those three features are all 512 dims. Subsequently,
we generated a 1024-dim global frame-wise descriptor f t by
leveraging a fully connected layer to aggregate f t

b , f t
s , and

f t
h. To disentangle motion cues and structural edge coher-

ence cues from f t
s , we employed self-attention layers. This

was followed by a concatenation operation, yielding abun-
dant 512-dimensional 3SN features denoted as f t

sa. Further
interactions among f t

b , f t
sa, and f t

h were modeled using cross-
attention layers. After applying a concatenation operation and
self-attention layers, we predicted the corresponding joint
locations Ĵt ∈ R24×3.

Kinematics module. Specifically, following ST-
GCN (Yan, Xiong, and Lin 2018), we set Ĵt as a graph
node, and the node feature Qt ∈ R24×(3+1024) is obtained
by concatenating the frame-wise global feature f t with
joint locations Ĵt. The output of ST-GCN is the joint
rotations Rt

6D ∈ R24×6. The joint rotations Rt
6D are fed

into an off-the-shelf SMPL model to obtain the 24 joints
Ĵt
SMPL ∈ R24×3 on the SMPL mesh.
Loss function. To sum up, our pipeline can be trained

through optimizing the united loss function L formulated as
below in an end-to-end way:

L = LJ + LΘ + LJSMPL
,LJ =

T∑
t

∥Jt
GT − Ĵt∥2

LΘ =
T∑
t

∥θt
GT − θ̂

t
∥2,LJSMPL

=
T∑
t

∥Jt
GT − Ĵt

SMPL∥2

(3)
where, Jt

GT is the ground truth joint locations of each
frame, θt

GT is the ground truth pose parameters of the t-th
frame.

Experiments
Implementation Details
The training process takes around 100 epochs with Adam
optimizer (Kingma and Ba 2015) on one NVIDIA GeForce
RTX 3090 Graphics Card. The batch size is set to 8 and the
sequence length is set to 16, while the learning rate is set to
be 1× 10−4. The decay rate is 1× 10−4. We set the dropout
ratio as 0.1 for the CoherenceFuse module and 0.5 for the
ST-GCN module.

Dataset
LidarHuman26M (Li et al. 2022a), CIMI4D (Yan et al.
2023) and SLOPER4D (Dai et al. 2023) are multi-modal
datasets captured using a markless motion capture system,
camera, and LiDAR. LidarHuman26M records 13 actors
performing 20 daily motions. The location of LiDAR is fixed.
The collected human data is idealistic without occlusion. We

adopt the same dataset split as LidarCap. CIMI4D focuses on
climbing with heavy self-occlusion. The location of LiDAR
is fixed. We randomly split the train and test set based on the
sequence. SLOPER4D is collected in realistic environments
with occlusion and multi-persons standing beside each other.
The spatial position of LiDAR changes as the gatherer moves
around. We divide each sequence according to 16 frames as
a patch, then randomly scramble the patches, and divide the
training and testing datasets according to the ratio of 7:3.
Waymo Open Dataset v2.0 (Sun et al. 2019) annotates the
location of 14 key points for a single person. It provides 3D
point clouds collected by LiDAR and provides RGB images.

Metrics
To evaluate the performance of pose estimation, we report
1) MPJPE↓: Mean per root-relative joint position error in mil-
limeters. 2) PA-MPJPE (PA-)↓: Aligning predicted skeleton
and label with the transformation matrix acquired by Pro-
crusted Analysis, after alignment, calculate MPJPE. 3) PCK-
30 (PCK3)↑: Percentage of Correct Keypoints with distance
to GT lower than 30cm. 4) PCK-50 (PCK5)↑: Percentage
of Correct Keypoints with distance to GT lower than 50cm.
5) Accel-error (AE)↓: Acceleration error between predicted
joint and corresponding label point, whose unit is (cm/s2).
6) CD↓: the chamfer distance between the vertices of pre-
dicted SMPL mesh and raw point cloud in millimeters.

Comparions
Quantitative. We compare our method to the state-of-the-
art learning-based method LidarCap (Li et al. 2022a) which
also targets motion capture from LiDAR point clouds and
P4T (Fan, Yang, and Kankanhalli 2021) which extracts spatio-
temporal features from raw point cloud video to capture
motion information. We also compare our method to the
optimized-based method HSC2 (Dai et al. 2023) and the
image-based method CLIFF (Li et al. 2022b). The results
on LidarHuman26M, CIMI4D, and SLOPER4D are shown
in Tab.1. For a fair comparison with the HSC2, we set the
predicted human motion of the LidarCap as initialized human
motion instead of collected human motion from the motion
capture system. As described by LidarHuman26M (Li et al.
2022a), due to poor lighting conditions and the low resolution
of human bodies, the accuracy of the 2D pose obtained by
OpenPose is low. To prevent the misleading optimization di-
rection caused by using an inaccurate 2D pose for projection
loss, we removed the projection loss during the training of
CLIFF.

On the unoccluded dataset LidarHuman26M, our method
improves the MPJPE index by 7.08mm compared with Lidar-
Cap. On the dataset CIMI4D with severe self-occlusion, our
method improves the MPJPE index by 8.66mm compared
with LidarCap. On the more complex dataset SLOPER4D,
our method improves the MPJPE index by 5.9mm com-
pared to LidarCap. Since HSC2 uses the distance between
the predicted human motion and the raw point clouds, and
the physical constraints between humans and scenes to opti-
mize the global location again in the post-optimization stage,
our method is inferior to HSC2 in terms of AE index by
8.79cm/s2, but it is also better than LidarCap 6.92cm/s2.
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3BN 3SN self-attention CF MPJPE (mm)↓ PA- (mm)↓ PCK3 (%)↑ PCK5 (%)↑ AE (cm/s2)↓
× × × × 79.31 66.72 86.00 95.00 45.20
✓ × × × 75.30 64.57 86.92 95.35 43.50
× ✓ × × 75.99 64.75 86.74 95.24 43.37
✓ ✓ × × 74.67 63.33 87.20 95.55 43.84

Stack × × 77.87 66.60 86.18 94.98 44.62
✓ ✓ ✓ × 73.68 62.90 87.40 95.67 39.21
✓ ✓ × ✓ 72.23 61.67 87.94 95.79 38.28

Table 2: Ablation study of different components of our framework. CF means CoherenceFuse module. Based on the metrics,
shows that each component in the neighborhood-enhanced method is effective.

Radius MPJPE↓ PA-↓ PCK3↑ PCK5↑ AE↓
2m 74.47 63.34 87.31 95.71 41.59
3m 76.31 64.45 86.68 95.39 44.04
5m 76.03 64.89 86.69 95.26 43.19
10m 75.24 63.71 87.06 95.50 42.77
20m 75.71 64.67 86.83 95.27 43.05

Table 3: Ablation study of radius parameter in 3BN on Li-
darhuman26m. It shows that the two-meter radius parameter
is reasonable.

Generalization. We also compare our method with LidarCap
and P4T on the Waymo Open Dataset v2.0. Because Waymo
Open Dataset v2.0 does not provide the rotation matrix of
each joint which is recorded by the motion capture system,
we train our method, LidarCap and P4T on the LidarHu-
man26M train set and validate it on the Waymo validation
set. We extract human points by utilizing the 3D detection
box provided by Waymo. In addition, because the number
and category of skeleton joints defined by Waymo are incon-
sistent with SMPL, CD is selected as a quantitative indicator.
At the same time, the frame rate of the Waymo Open Dataset
v2.0 is 1, while the frame rate of LidarHuman26M is 10. In
order to eliminate the influence of different frame rates on
the generalization ability, we repeat each frame of Waymo
Open Dataset v2.0 16 times as input, and we select the 9th
frame of each sequence as output. The results are shown in
Fig.4 (A).

On the Waymo Open Dataset v2.0, our method improves
the CD index by 4.79mm compared with LidarCap and im-
proves the CD index by 7.02mm compared with P4T, which
shows that our algorithm has a stronger generalization ability
in real scenes.
Distance analysis. We compare LidarCap and HSC2 with our
method in different distances, the results shown in Fig.4 (B).
The network achieves significant improvements in both short
and long-range motion capture accuracy by simply incorpo-
rating 3BN and 3SN. It further highlights the importance of
leveraging neighborhood coherence cues in LiDAR-based
3HPE. In the first and last cases, our method estimates bet-
ter global orientations. We select 4 examples at different
distances for visualization which is shown in Fig.4 (C). In
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Figure 4: (A): Comparison results on Waymo Open Dataset
v2.0 with LidarCap. (B): Comparison with LidarCap, HSC2,
and our method in different distances. We show different
MPJPE values of different methods. (C): Visualization of
methods at different distances.

the second and third cases, the arm motion predicted by our
method is more reliable. Although the estimated human mo-
tion slightly differs from the ground truth, our results still
outperform others. Based on the metrics and visualization, we
conclude that the neighborhood-enhanced method achieves
better motion capture results both at close-range and long-
range distances.
Qualitative. In Fig.3, we show the qualitative results on Li-
darHuman26M, CIMI4D, and SLOPER4D with LidarCap
and P4T. In the first and second rows, our method estimates
reliable motion when compared with the other two methods.
Especially the LiDAR point clouds degrade heavily due to
distant distance and self-occlusion, the major part of arm and
foot point clouds is missing, but our method still manages
to estimate more stable human motion. This is achieved by
leveraging the structural edge coherence cues in the 3SN.
Even though insufficient information is captured on the hu-
man surface, the laser rays in contact with the human’s edges
continue to propagate forward until they collide with the
distant environment. As a result, the information about the
missing part is recorded in the 3SN. In all cases, our method
estimates the joints, which contact with the environment, bet-
ter than the LidarCap and P4T, we attribute this superiority
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to the spatial coherence cues contained in the 3BN.

Ablation Study
Effect of model components. In Tab.2, we ablate the main
components of our framework. R1 (Row 1) means baseline
method LidarCap (Li et al. 2022a). R2 (Row 2) uses an ad-
ditional PointNet++ to extract the feature of 3BN and feed
it to LidarCap. R3 (Row 3) compared to R2, only replaces
the 3BN with the 3SN. Through analysis of the results of R1,
R2, and R3, we conclude the 3BN and the 3SN provide more
effective cues for the 3HPE network. R4 (Row 4) differs
from LidarCap only in the input part, where two independent
PointNet++ are added to encode the 3BN and the 3SN, re-
spectively. Then, the features of both are aggregated with the
original human feature to obtain global input features. R6
(Row 6) replaces the GRU in LidarCap with a multi-head
self-attention layer to fuse these three diverse features, the
input is the same as R4, and the whole network is named
LidarCaps. R7 (Row 7) replaces the GRU in LidarCap with
the CoherenceFuse module.

When comparing R2, R3, R4, and R6, we can see that
utilizing a multi-head self-attention layer for information
fusion of the three branches achieves the best performance.
In R5 (Row 5), compared to LidarCap, there is no difference
in the structure of the network. The only difference is that
the inputs from the three branches are stacked together and
one PointNet++ is used to extract global features. So it is
necessary to extract the features of 3BN, 3SN, and individual
human points respectively. By comparing R5 and R6, we
found the CoherenceFuse module is effective.
Impact of parameters in 3BN. We removed the 3SN branch
in the final experimental architecture and experimented by
changing the radius range of 3BN on LidarHuman26M. We
set 2m, 3m, 5m, 10m, and 20m, a total of 5 radius values, and
the results are shown in Tab.3. Because when the radius is
set to 1m, the background point clouds that can be extracted
are less, so we do not set the experiment with a radius of 1m.
By analyzing the data in the table, we can conclude that the
information covered in the background has a limited effect
on 3HPE. The larger coverage of the background point does
not mean that it has more useful information for 3HPE.

Evaluations
To further investigate the information contained in the 3SN
which is not merely the outline of human body movements,
we conducted a set of comparative experiments with shadows.
At first, we obtain plane formulate ax + by + cz − d = 0
by fitting a plane in the 3BN. Given a set of points ps =
{ps1, ps2, ...psn} in the 3SN, where psi = (xsi, ysi, zsi),
we obtain shadow points pn = {pn1, pn2, ...pnm}, where
pni = (k ∗ xsi, k ∗ ysi, k ∗ zsi) and k = d

(a∗xsi+b∗ysi+x∗zsi) .
In order to investigate the roles played by the 3BN and the
3SN in enhancing the performance of 3HPE, we analyzed the
experimental results, as shown in Fig. 5. The curve named
3BN represents 3BN as an additional input to LidarCapS ,
which is defined in the ablation study. The curve 3BN &
3SN signifies the inclusion of both the 3SN and the 3BN as
inputs. The curve 3BN & shadow refers to the inclusion of
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Figure 5: The role of the 3SN and 3BN in different dis-
tance scenes. Reduction calculated using the formulation:
MPJPELidarCap - MPJPEeachcurve.

shadow and 3BN as inputs. The spatial coherence cues in
the 3BN contribute to the improvement of the entire scene,
while the structural edge coherence cues in the 3SN exhibit a
more pronounced enhancement at long distances. Especially
in the distant distance, 3SN performs better than shadow
claims 3SN is not merely another representation of motion
contours. Meanwhile, we discover that the incremental infor-
mation introduced by 3SN is not as effective as the shadow
in close-range scenarios. However, the curve of our method
outperforms the other 3 curves. So the CoherenceFuse mod-
ule enables 3SN to perform well both at close and distant
distances.

Conclusion
In this study, we introduced the concept of 3D neighbor in
the background (3BN), which leverages spatial coherence
cues to enhance the reliability of 3D human pose estimation.
Furthermore, we extract 3D scanning neighbors (3SN) based
on the inherent properties of LiDAR sensors. These neigh-
bors contribute structural edge coherence cues that facilitate
accurate 3D human pose estimation over extended distances,
where human LiDAR point clouds are too sparse to supply
enough information for reliable estimation. To better integrate
the inputs with diverse features, we propose a Transformer-
based module named the CoherenceFuse module. Through
comprehensive contrast experiments with shadow points, we
demonstrate 3SN is not just the outline of motion, but rather
a unique characteristic of LiDAR. In addition, our investiga-
tions demonstrate that the coherenceFuse module is effective
in effectively disentangling the motion cues and structural
edge coherence cues within the 3SN. Quantitative and qualita-
tive experiments show that our method outperforms baseline
methods, regardless of whether the human subject is at a
close or distant distance. However, our current algorithm fo-
cuses on processing ideal foreground human point clouds
as input, without engaging in comprehensive segmentation
or detection tasks across the entire data frame. To address
this, our future work will integrate a binary segmentation
network into the LiDAR-based 3HPE method, allowing more
comprehensive and accurate analysis.
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